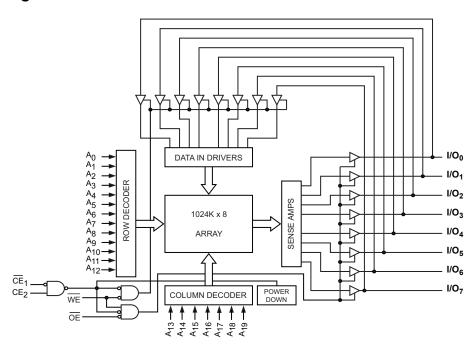


8-Mbit (1024 K × 8) Static RAM

Features

- Very high speed: 45 ns
 - □ Wide voltage range: 2.20 V–3.60 V
- Pin compatible with CY62158DV30
- Ultra low standby power
 - Typical standby current: 2 μA
 - Maximum standby current: 8 μA
- Ultra low active power
 - □ Typical active current: 1.8 mA at f = 1 MHz
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} features
- Automatic power down when deselected
- CMOS for optimum speed/power
- Offered in Pb-free 48-ball VFBGA and 44-pin TSOP II packages

Functional Description


The CY62158EV30 is a high performance CMOS static RAM organized as 1024K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life $^{\rm TM}$ (MoBL $^{\rm S}$) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Placing the device into standby mode reduces power consumption significantly when deselected (CE $_1$ HIGH or CE $_2$ LOW). The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high impedance state when the device is deselected (CE $_1$ HIGH or CE $_2$ LOW), the outputs are disabled (OE HIGH), or a write operation is in progress (CE $_1$ LOW and CE $_2$ HIGH and WE LOW).

To write to the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₉).

To read from the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and $\overline{\text{OE}}$ LOW while forcing the WE HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins. See Truth Table on page 11 for a complete description of read and write modes.

For a complete list of related documentation, click here.

Logic Block Diagram

Contents

Pin Configurations	. 3
Product Portfolio	. 3
Maximum Ratings	. 4
Operating Range	. 4
Electrical Characteristics	. 4
Capacitance	. 5
Thermal Resistance	
AC Test Loads and Waveforms	. 5
Data Retention Characteristics	. 6
Data Retention Waveform	. 6
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering information	12
Ordering Code Definitions	12
Package Diagrams	13
Acronyms	15
Document Conventions	15
Units of Measure	15
Document History Page	16
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC® Solutions	18
Cypress Developer Community	18
Technical Support	18

Pin Configurations

Figure 1. 48-ball VFBGA pinout (Top View) [1]

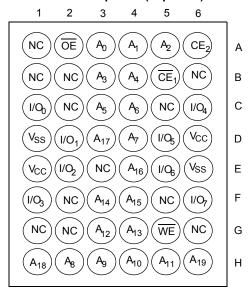
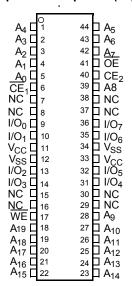



Figure 2. 44-pin TSOP II pinout (Top View) [1]

Product Portfolio

							Power Di	ssipation		
Product	V	_{CC} Range (V)	Speed	Operating I _{CC} (mA)		Standby, I _{SB2} (µA)			
Floudet	(ns) f = 1 MHz		f = f _{max}		Staridby, ISB2 (μΑ)					
	Min	Typ ^[2]	Max		Typ ^[2]	Max	Typ ^[2]	Max	Typ ^[2]	Max
CY62158EV30LL	2.2	3.0	3.6	45	1.8	3	18	25	2	8

Notes

NC pins are not connected on the die.

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage Temperature-65 °C to +150 °C Ambient Temperature with Power Applied-55 °C to +125 °C Supply Voltage to Ground Potential $^{[3,\;4]}$ –0.3 V to $V_{CC(max)}$ + 0.3 V DC Voltage Applied to Outputs in High Z State $^{[3,\ 4]}$ -0.3 V to $V_{CC(max)}$ + 0.3 V

DC Input Voltage $^{[3,4]}$ 0.3 V to $V_{CC(max)}$ + 0.3 V	/
Output Current into Outputs (LOW)20 mA	4
Static Discharge Voltage (MIL-STD-883, Method 3015)> 2001 \	V
Latch up Current> 200 m/	4

Operating Range

Product	Range	Ambient Temperature (T _A)	V cc ^[5]
CY62158EV30LL	Industrial	–40 °C to +85 °C	2.2 V-3.6 V

Electrical Characteristics

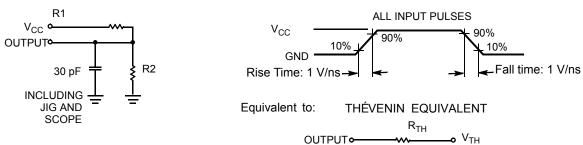
Over the Operating Range

Davamatav	Description	Took Com	ditions			11!4	
Parameter	Description	Test Conditions		Min	Typ ^[6]	Max	Unit
V _{OH}	Output HIGH voltage	$I_{OH} = -0.1 \text{ mA}$		2.0	_	_	V
		$I_{OH} = -1.0 \text{ mA}, V_{CC}$	≥ 2.70 V	2.4	_	_	V
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA		-	_	0.4	V
		I_{OL} = 2.1 mA, $V_{CC} \ge$	2.70 V	_	_	0.4	V
V _{IH}	Input HIGH voltage	V_{CC} = 2.2 V to 2.7 V		1.8	_	V _{CC} + 0.3 V	V
		V_{CC} = 2.7 V to 3.6 V		2.2	_	V _{CC} + 0.3 V	V
V _{IIL}	Input LOW voltage	V _{CC} = 2.2 V to 2.7 V		-0.3	_	0.6	V
		V_{CC} = 2.7 V to 3.6 V		-0.3	_	0.8	V
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$		-1	_	+1	μΑ
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, Or	utput Disabled	-1	_	+1	μА
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	V _{CC} = V _{CCmax}	_	18	25	mA
			l _{OUT} = 0 mA CMOS levels	_	1.8	3	mA
I _{SB1}	Automatic CE power down current — CMOS Inputs	$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V, C}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V, V}$ $\text{f} = \text{f}_{\text{max}} (\text{Address})$ f = 0 (OE and WE), V	_{IN} ≤ 0.2 V, d Data Only),	-	2	8	μА
I _{SB2} ^[7]	Automatic CE Power down Current — CMOS inputs		r CE ₂ ≤ 0.2 V, V _{IN} ≤ 0.2 V,	-	2	8	μА

Notes

- Notes
 3. V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 4. V_{IH(max)}= V_{CC} + 0.75 V for pulse duration less than 20 ns.
 5. Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
 6. Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 7. Chip enables (CE₁ and CE₂) must be at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter [8]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter [8]	Description	Test Conditions	48-ball BGA	44-pin TSOP II	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	72	76.88	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		8.86	13.52	°C/W

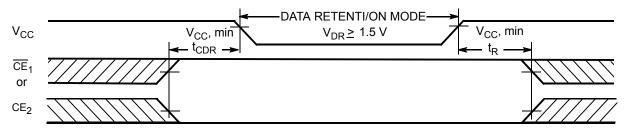
AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Note

^{8.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[9]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	-	-	V
I _{CCDR} ^[10]	Data retention current	$V_{CC} = 1.5 \text{ V}, \overline{CE}_1 \ge V_{CC} - 0.2 \text{ V}$ or $CE_2 \le 0.2 \text{ V}, V_{IN} \ge V_{CC} - 0.2 \text{ V}$ or $V_{IN} \le 0.2 \text{ V}$	_	2	5	μА
t _{CDR} ^[11]	Chip deselect to data retention time		0	-	-	ns
t _R ^[12]	Operation recovery time		45	_	_	ns

Data Retention Waveform

Figure 4. Data Retention Waveform

^{9.} Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

10. Chip enables (CE₁ and CE₂) must be at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

11. Tested initially and after any design or process changes that may affect these parameters.

12. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

Switching Characteristics

Over the Operating Range

Parameter [13, 14]	December 1	45	ns	11
Parameter 110, 111	Description	Min	Max	Unit
Read Cycle		-	•	
t _{RC}	Read cycle time	45	_	ns
t _{AA}	Address to data valid	-	45	ns
t _{OHA}	Data Hold from address change	10	_	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	_	45	ns
t _{DOE}	OE LOW to data valid	_	22	ns
t _{LZOE}	OE LOW to Low Z ^[15]	5	_	ns
t _{HZOE}	OE HIGH to High Z ^[15, 16]	_	18	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[15]	10	_	ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[15, 16]	-	18	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power Up	0	_	ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power Down	_	45	ns
Write Cycle [17, 18		·		
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	35	_	ns
t _{AW}	Address setup to Write End	35	_	ns
t _{HA}	Address Hold from Write End	0	-	ns
t _{SA}	Address setup to Write Start	0	-	ns
t _{PWE}	WE pulse width	35	-	ns
t _{SD}	Data setup to Write End	25	-	ns
t _{HD}	Data Hold from Write End	0	-	ns
t _{HZWE}	WE LOW to High Z ^[15, 16]	-	18	ns
t _{LZWE}	WE HIGH to Low Z ^[15]	10	-	ns

<sup>Notes
13. In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the chip enable signal as described in the Application Note AN66311. However, the issue has been fixed and in production now, and hence, this Application Note is no longer applicable. It is available for download on our website as it contains information on the date code of the parts, beyond which the fix has been in production.
14. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 5.
15. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} and t_{LZCE}, and t_{HZWE} for any given device.
16. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
17. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.
18. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of tsD and thzwe.</sup>

Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) [19, 20]

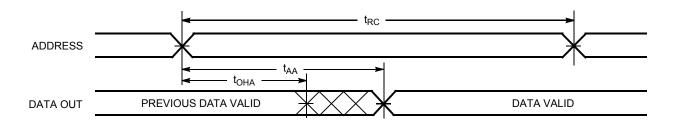
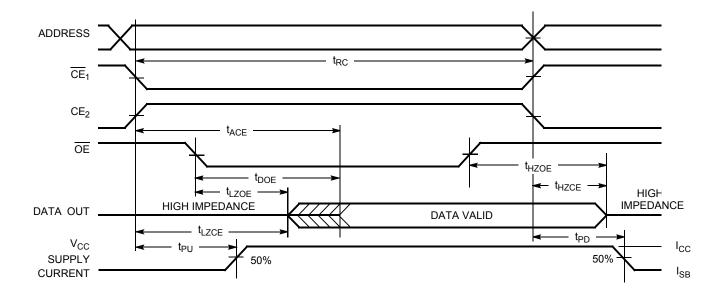



Figure 6. Read Cycle No. 2 (OE Controlled) [20, 21]

Note

^{19. &}lt;u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.

^{20.} WE is HIGH for read cycle.

^{21.} Address valid before or similar to $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) [22, 23, 24]

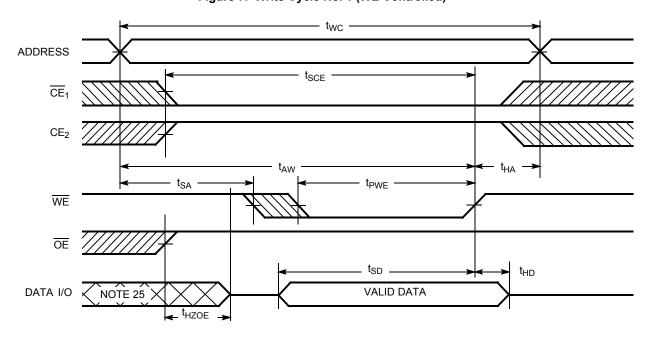
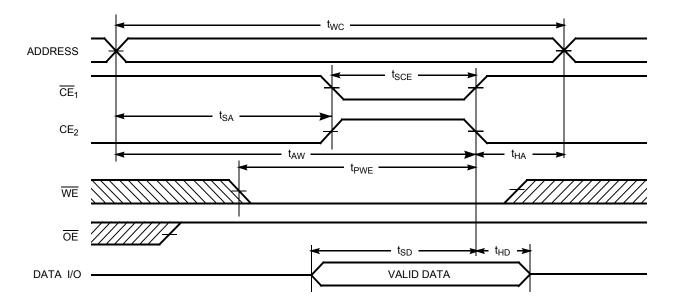
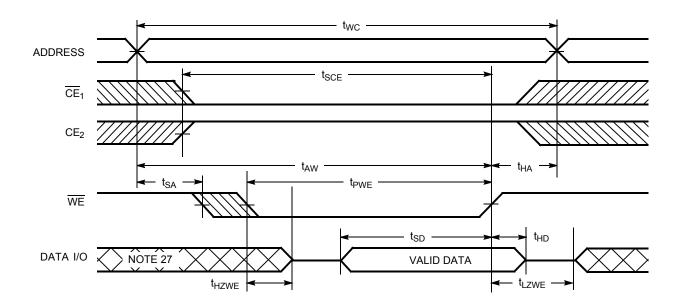



Figure 8. Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [22, 23, 24]

Notes

^{22.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{|L}, and CE₂ = V_{|H}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.

23. Data I/O is high impedance if OE = V_{|H}.


24. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in high impedance state.

25. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

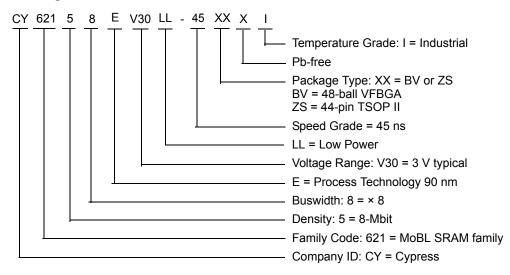
Figure 9. Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [26, 28]

^{28.} The minimum write cycle pulse width should be equal to the sum of tsD and tHZWE.

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	X ^[29]	Х	Х	High Z	Deselect/Power down	Standby (I _{SB})
X ^[29]	L	Х	Х	High Z	Deselect/Power down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

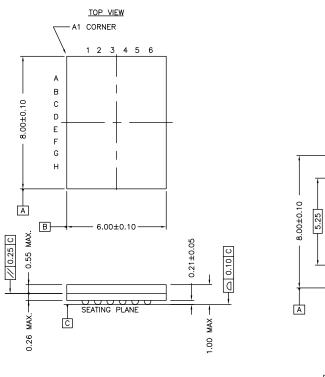
Note
29. The 'X' (Don't care) state for the Chip enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

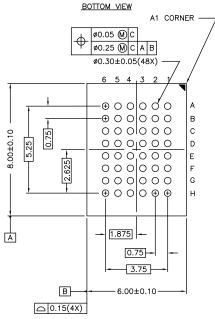


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62158EV30LL-45BVXI	51-85150	48-ball VFBGA (Pb-free)	Industrial
	CY62158EV30LL-45ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	

Contact your local Cypress sales representative for availability of these parts.

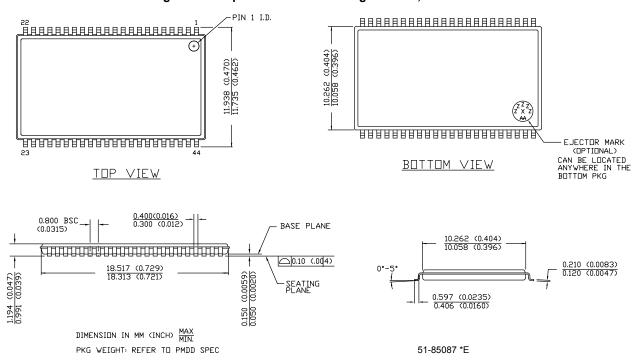

Ordering Code Definitions



Package Diagrams

Figure 10. 48-ball VFBGA (6 × 8 × 1 mm) BV48/BZ48 Package Outline, 51-85150

NOTE:


PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Package Diagrams (continued)

Figure 11. 44-pin TSOP Z44-II Package Outline, 51-85087

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
ŌĒ	Output Enable
RAM	Random Access Memory
SRAM	Static Random Access Memory
TTL	Transistor-Transistor Logic
TSOP	Thin Small Outline Package
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μΑ	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	270329	See ECN	PCI	New data sheet.
*A	291271	See ECN	SYT	Converted from Advance Information to Preliminary Changed I _{CCDR} from 4 to 4.5 μA
*B	444306	See ECN	NXR	Converted from Preliminary to Final. Removed 35 ns speed bin Removed "L" bin. Removed 44 pin TSOP II package Included 48 pin TSOP I package Changed the I_{CC} Typ value from 16 mA to 18 mA and I_{CC} max value from 26 mA to 25 mA for test condition f = fax = $1/t_{RC}$. Changed the I_{CC} max value from 2.3 mA to 3 mA for test condition f = 1MHz Changed the I_{SB1} and I_{SB2} max value from 4.5 μ A to 8 μ A and Typ value from 0.9 μ A to 2 μ A respectively. Updated Thermal Resistance table Changed Test Load Capacitance from 50 pF to 30 pF. Added Typ value for I_{CCDR} . Changed the I_{CCDR} max value from 4.5 μ A to 5 μ A corrected t_R in Data Retention Characteristics from 100 μ s to t_{RC} ns Changed t_{LZOE} from 3 to 5 Changed t_{LZOE} from 6 to 10 Changed t_{RCDR} from 30 to 35 Changed t_{RCDR} from 22 to 25 Changed t_{RCDR} from 6 to 10 Updated the ordering Information and replaced the Package Name column with Package Diagram.
*C	467052	See ECN	NXR	Included 44 pin TSOP II package in Product Offering. Removed TSOP I package; Added reference to CY62157EV30 TSOP I Updated the ordering Information table
*D	1015643	See ECN	VKN	Added footnote #8 related to I _{SB2} and I _{CCDR}
*E	2934396	06/03/10	VKN	Added footnote #21 related to chip enable Updated package diagrams Updated to new template.
*F	3110202	12/14/2010	PRAS	Updated Logic Block Diagram and Package Diagram. Added Ordering Code Definitions.
*G	3269641	05/30/2011	RAME	Updated Features. Removed the note "For best practice recommendations, refer to the Cypres application note "System Design Guidelines" at http://www.cypress.com." an its reference in Functional Description. Updated Data Retention Characteristics. Added Acronyms and Units of Measure. Updated to new template.
*H	3598409	04/24/2012	TAVA	Updated Package Diagrams: spec 51-85150 – Changed revision from *F to *G. spec 51-85087 – Changed revision from *C to *D.
*	4100078	08/20/2013	VINI	Updated Switching Characteristics: Added Note 13 and referred the same note in "Parameter" column. Updated Package Diagrams: spec 51-85150 – Changed revision from *G to *H. spec 51-85087 – Changed revision from *D to *E. Updated to new template.

Document History Page (continued)

Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
*J	4576526	11/21/2014	VINI	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end Updated Switching Characteristics: Added Note 18 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 28 and referred the same note in Figure 9.
*K	4790694	06/08/2015	VINI	Updated Maximum Ratings: Referred Notes 3, 4 in "Supply Voltage to Ground Potential". Updated to new template. Completing Sunset Review.
*L	5979591	11/29/2017	AESATMP8	Updated logo and Copyright.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

Memory cypress.com/memory
Microcontrollers cypress.com/mcu
PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.