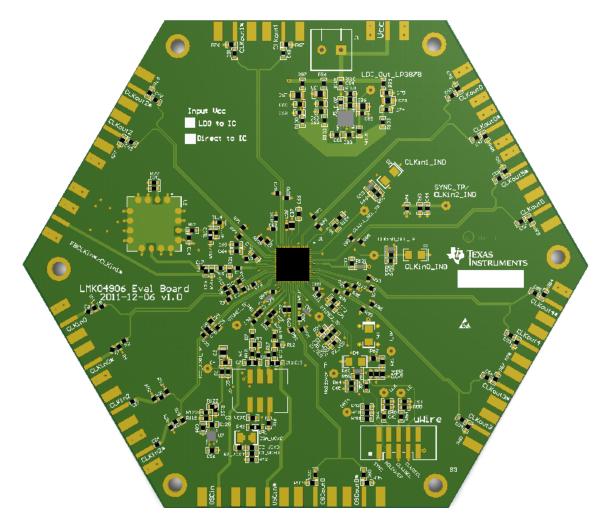
LMK04906 Evaluation Board

User's Guide



January 2012 Literature Number SNAU126A Revised – December 2013

LMK04906 Family Low-Noise Clock Jitter Cleaner with Dual Loop PLLs Evaluation Board Instructions

Table of Contents

TABLE OF CONTENTS	3
GENERAL DESCRIPTION	5
Evaluation Board Kit Contents	5
Available LMK04906 Evaluation Boards	5
Available LMK04906 Family Devices	5
QUICK START	6
Default CodeLoader Modes for Evaluation Boards	7
EXAMPLE: USING CODELOADER TO PROGRAM THE LMK04906B	8
1. Start CodeLoader 4 Application	8
2. Select Device	8
3. Program/Load Device	9
4. Restoring a Default Mode	9
5. Visual Confirmation of Frequency Lock	
6. Enable Clock Outputs	
PLL LOOP FILTERS AND LOOP PARAMETERS	12
PLL 1 Loop Filter	
25 MHz VCXO PLL	
PLL2 Loop Filter	
EVALUATION BOARD INPUTS AND OUTPUTS	14
RECOMMENDED TEST EQUIPMENT	21
APPENDIX A: CODELOADER USAGE	22
Port Setup Tab	
Clock Outputs Tab	23
PLL1 Tab	
Setting the PLL1 VCO Frequency and PLL2 Reference Frequency	27
PLL2 Tab	
Bits/Pins Tab	
Registers Tab	
APPENDIX B: TYPICAL PHASE NOISE PERFORMANCE PLOTS	35
PLL1	
25 MHz VCXO Phase Noise	
Clock Output Measurement Technique	
Clock Outputs (CLKout)	

LMK04906B CLKout Phase Noise	37
APPENDIX C: SCHEMATICS	38
Power Supplies	38
LMK04906B Device with Loop Filter and Crystal Circuits	39
Reference Inputs (CLKin0, CLKin1 & CLKin2), External VCXO (OSCin) & VCO Circuits	40
Clock Outputs (OSCout0, CLKout0 to CLKout5)	41
uWire Header, Logic I/O Ports and Status LEDs	42
APPENDIX D: BILL OF MATERIALS	43
APPENDIX E: PCB LAYERS STACKUP	47
APPENDIX F: PCB LAYOUT	48
Layer #1 – Top	48
Layer #2 – RF Ground Plane (Inverted)	49
Layer #3 – Vcc Planes	50
Layer #4 – Ground Plane (Inverted)	51
Layer # 5 – Vcc Planes 2	52
Layer #6 – Bottom	53
Layers #1 and 6 – Top and Bottom (Composite)	54
APPENDIX G: PROPERLY CONFIGURING LPT PORT	55
LPT Driver Loading	55
Correct LPT Port/Address	55
Correct LPT Mode	56
Legacy Board Port Setup	56
APPENDIX H: TROUBLESHOOTING INFORMATION	57
1) Confirm Communications	57
2) Confirm PLL1 operation/locking	57
3) Confirm PLL2 operation/locking	58
APPENDIX I: EVM SOFTWARE AND COMMUNICATION	59
OPTION 1	59
OPTION 2	59

General Description

The LMK04906 Evaluation Board simplifies evaluation of the LMK04906B Low-Noise Clock Jitter Cleaner with Dual Loop PLLs. Texas Instrument's *CodeLoader* software can be used to program the internal registers of the LMK04906B device through the USB2ANY-uWIRE interface. The *CodeLoader* software will run on a Windows 2000/XP or Windows 7 PC and can be downloaded from http://www.ti.com/tool/codeloader.

Evaluation Board Kit Contents

The evaluation board kit includes:

- (1) LMK04906 Evaluation Board from Table 1
- (1) CodeLoader and USB2ANY-uWIRE Interface → uWire header on EVM

Available LMK04906 Evaluation Boards

The LMK04906 Evaluation Board supports any of the four devices offered in the LMK04906 Family. All evaluation boards use the same PCB layout and bill-of-materials, except for the corresponding LMK04906B device affixed to the board. A commercial-quality VCXO is also mounted to the board to provide a known reference point for evaluating device performance and functionality.

Table 1: Available Evaluation Board Configurations

Evaluation Board ID	Device	PLL1 VCXO
		25 MHz Epson VCXO
LMK04906BEVAL	LMK04906B	Model VG-4231CA 25.0000M-FGRC3

Available LMK04906 Family Devices

Table 2: LMK04906B Devices

Device	Reference Inputs	Buffered/ Divided OSCin Outputs	Programmable LVDS/LVPECL/ LVCMOS Outputs	VCO Frequency
LMK04906B	3	1	6	2370 to 2600 MHz

Quick Start

Full evaluation board instructions are downloadable from the LMK04906B device product folder at <u>www.ti.com/product/LMK04906</u>.

- 1. Connect a power supply voltage of **5 V** to the Vcc SMA connector. The onboard LP3878-ADJ LDO regulator will output a low-noise 3.3 V supply to operate the device.
- 2. Connect a reference clock from a signal source to the CLKin1 SMA port. Use **125 MHz** for default. The reference frequency depends on the device programming.
- 3. Connect the uWire header to a PC USB port using the USB2ANY-uWIRE interface.
- Program the device with a default mode using CodeLoader. Ctrl+L must be pressed at least once to load all registers. Alternatively click menu "Keyboard Controls" → "Load Device". CodeLoader can be downloaded from <u>www.ti.com/tool/codeloader</u>.
- 5. Measurements may be made on an active output clock port via its SMA connector.

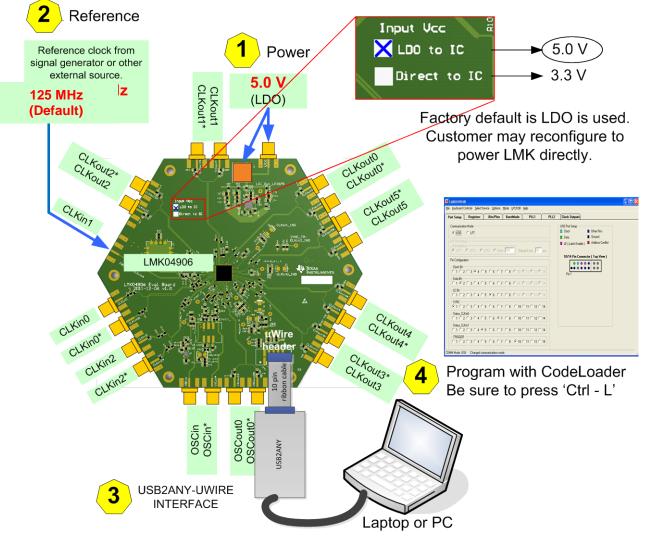


Figure 1: Quick Start Diagram

Default CodeLoader Modes for Evaluation Boards

CodeLoader saves the state of the selected LMK04906B device when exiting the software. To ensure a common starting point, the following modes listed in Table 3 may be restored by clicking "Mode" and selecting the appropriate device configuration, as shown in Figure 2 in the case of the LMK04906B device. Similar default modes are available for each LMK04906B device in CodeLoader. Choose a mode with CLKin0 or CLKin2 for differential clock signal or CLKin1 for a single ended signal.

😻 LMK04906B	and the second second	
File Keyboard Controls Select Device Options	Mode LPT/USB Help	
Port Setup Registers Bits/Pins E		
Reference (OSCin) Sync	Iz5 MHz CLKin1, 25 MHz VCXO Internal Add Loop Filter N2 Prescaler PDF = 50000 kHz 2	Internal VCO Internal O VCO Frequency 2500 MHz
VCO Divider	Clock Divider Delay Select Clock Output	CLKout0 MHz

Figure 2: Selecting a Default Mode for the LMK04906 Device

After restoring a default mode, press Ctrl+L to program the device. The default modes also disable certain outputs, so make sure to enable the output under test to make measurements.

Table 3: Default CodeLoader Modes for LMK04906

Default CodeLoader Mode	Device Mode	CLKin Frequency	OSCin Frequency
122.88 MHz CLKin1, 122.88 MHz VCXO	Dual PLL, Internal VCO	122.88 MHz	122.88 MHz
125 MHz CLKin1, 25 MHz VCXO	Dual PLL, Internal VCO	125 MHz	25 MHz

The next section outlines step-by-step procedures for using the evaluation board with the LMK04906B. For boards with another part number, make sure to select the corresponding part number under the "Device" menu.

Example: Using CodeLoader to Program the LMK04906B

The purpose of this section is to walk the user through using CodeLoader 4 to make some measurements with the LMK04906B device as an example. For more information on CodeLoader refer to Appendix A: CodeLoader Usage or the CodeLoader 4 instructions located at <u>http://www.ti.com/tool/codeloader</u>.

Before proceeding, be sure to follow the Quick Start section above to ensure proper connections.

1. Start CodeLoader 4 Application

Click "Start" \rightarrow "Programs" \rightarrow "CodeLoader 4" \rightarrow "CodeLoader 4"

The CodeLoader 4 program is installed by default to the CodeLoader 4 application group.

2. Select Device

Click "Select Device" \rightarrow "Clock Conditioners" \rightarrow "LMK04906B"

Once started CodeLoader 4 will load the last used device. To load a new device, click "Select Device" from the menu bar. Then, select the subgroup and finally device to load. In this example, the LMK04906B is chosen. Selecting the device does cause the device to be programmed.

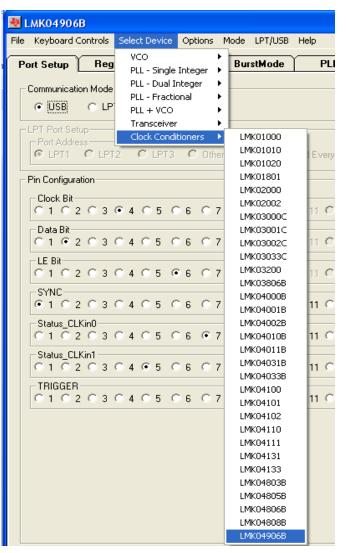


Figure 3 – Selecting the LMK04906B device

3. Program/Load Device

Assuming the Port Setup settings are correct, press the "Ctrl+L" shortcut or click "Keyboard Controls" \rightarrow "Load Device" from the menu to program the device to the current state of the newly loaded LMK04906 file.

	😽 L	MK04906B				
ſ	File	Keyboard Controls Select D)evice	Options	Mode	LPT/USB
ł	Pa	Load Device	Ctrl-	+L		stMode
1	Fu	Step Frequency		• •	Du	SIMUUC
	- (Set VCO Frequency	Ctrl-	+F		
	Ì	Set Comparison Frequenc	y Ctrl-	+C		
		Set Crystal Frequency	Ctrl-	+X		
		Reset Port				

Once the device has been initially loaded, CodeLoader will automatically program

Figure 4 – Loading the Device

changed registers so it is not necessary to re-load the device upon subsequent changes in the device configuration. It is possible to disable this functionality by ensuring there is no checkmark by the "Options" \rightarrow "AutoReload with Changes."

Because a default mode will be restored in the next step, this step is not really needed but is included to emphasize the importance of pressing "Ctrl+L" to load the device at least once after starting CodeLoader, restoring a mode, or restoring a saved setup using the File menu.

See Appendix A: CodeLoader Usage or the CodeLoader 4 instructions located at http://www.ti.com/tool/codeloader for more information on Port Setup. Appendix H: Troubleshooting Information contains information on troubleshooting communications.

4. Restoring a Default Mode

Click "Mode" \rightarrow "125 MHz CLKin1, 25 MHz VCXO"; then press Ctrl+L.

🧶 LMK04906B	and the second second	
File Keyboard Controls Select Device Options	Mode LPT/USB Help	
Port Setup Registers Bits/Pins	B 122.88 MHz CLKin1, 122.88 MHz VCXO	
Reference (OSCin) Sync	125 MHz CLKin1, 25 MHz VCXO Add Loop Filter N2 Prescaler PDF = 50000 kHz	ternal p Filter VCO 200 ohms 10 pF
25 MHz O Internal VCO Frequency VCO Divider Digital Delay	2 Clock Analog Analog Delay Clock Divider Delay Select Clock	200 ohms 10 pF 2500 MHz pck Output CLKout0 450 or MHz

Figure 5: Setting the Default mode for LMK04906

For the purpose of this walkthrough, a default mode will be loaded to ensure a common starting point. This is important because when CodeLoader is closed, it remembers the last settings used for a particular device. Again, remember to press Ctrl+L as the first step after loading a default mode.

5. Visual Confirmation of Frequency Lock

After a default mode is restored and loaded, LED D5 should illuminate when PLL1 and PLL2 are locked to the reference clock applied to CLKin1. This assumes LD_MUX = PLL1/2 DLD and LD_TYPE = Active High, which are the default settings.

6. Enable Clock Outputs

While the LMK04906B offers programmable clock output buffer formats, the evaluation board is shipped with preconfigured output terminations to match the default buffer type for each output. Refer to the CLKout port description in the Evaluation Board Inputs and Outputs section.

To measure phase noise at one of the clock outputs, for example, CLKout0:

- 1. Click on the Clock Outputs tab,
- 2. Uncheck "Powerdown" in the Digital Delay box to enable the channel,
- 3. Set the following settings as needed:
 - a. Digital Delay value
 - b. Clock Divider value
 - c. Analog Delay select and Analog Delay value (if not "Bypassed")
 - d. Clock Output type.

_								
Digital Delay	Clock Divider	Analog Delay	Analog Delay Select		Clock Output			
5	16	500 ps 💌	Bypassed 💌	F	LVPECL (1600 mVpl 💌	CLKout0	156.25	MHz
Half step								
				H		CLKout1		

Figure 6: Setting Digital Delay, Clock Divider, Analog Delay, and Output Format for CLKout0

- 4. Depending on the configured output type, the clock output SMAs can be interfaced to a test instrument with a single-ended 50-ohm input as follows.
 - a. For LVDS:
 - i. A balun (like ADT2-1T) is recommended for differential-to-single-ended conversion.
 - b. For LVPECL:
 - i. A balun can be used, or
 - ii. One side of the LVPECL signal can be terminated with a 50-ohm load and the other side can be run single-ended to the instrument.
 - c. For LVCMOS:
 - i. There are two single-ended outputs, CLKoutX and CLKoutX*, and each output can be set to Normal, Inverted, or Off. There are nine (9) combinations of LVCMOS modes in the Clock Output list.
 - ii. One side of the LVCMOS signal can be terminated with a 50-ohm load and the other side can be run single-ended to the instrument.
 - iii. A balun may also be used. Ensure CLKoutX

and CLKoutX* states are complementary to each other. That is, Norm/Inv or Inv/Norm.

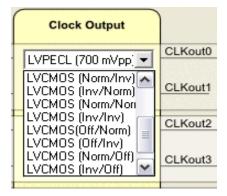


Figure 7: Setting LVCMOS modes

5. The phase noise may be measured with a spectrum analyzer or signal source analyzer.

See Appendix B: Typical Phase Noise Performance Plots for phase noise plots of the clock outputs.

National's Clock Design Tool can be used to calculate divider values to achieve desired clock output frequencies. See: <u>http://www.ti.com/tool/clockdesigntool</u>.

PLL Loop Filters and Loop Parameters

In jitter cleaning applications that use a cascaded or dual PLL architecture, the first PLL's purpose is to substitute the phase noise of a low-noise oscillator (VCXO or crystal resonator) for the phase noise of a "dirty" reference clock. The first PLL is typically configured with a narrow loop bandwidth in order to minimize the impact of the reference clock phase noise. The reference clock consequently serves only as a frequency reference rather than a phase reference.

The loop filters on the LMK04906 evaluation board are setup using the approach above. The loop filter for PLL1 has been configured for a narrow loop bandwidth (< 100 Hz), while the loop filter of PLL2 has been configured for a wide loop bandwidth (> 100 kHz). The specific loop bandwidth values depend on the phase noise performance of the oscillator mounted on the board. The following tables contain the parameters for PLL1 and PLL2 for each oscillator option.

National's Clock Design Tool can be used to optimize PLL phase noise/jitter for given specifications. See: <u>http://www.ti.com/tool/clockdesigntool</u>.

PLL 1 Loop Filter

Table 4: PLL1 Loop Filter Parameters for Epson 25 MHz VCXO

25 MHz VCXO P	LL		
Phase Margin	49°	Kφ (Charge Pump)	400 uA
Loop Bandwidth	21 Hz	Phase Detector Freq	2083.33 MHz
		VCO Gain	4.5 kHz/Volt
Reference Clock Frequency	125 MHz	Output Frequency	25 MHz (To PLL 2)
Loop Filter Components	C1_VCXO = 3300 nF	C2_VCXO = 10000 nF C2A_VCXO = 10000 nF	R2_VCXO = 1 kΩ

Note: PLL Loop Bandwidth is a function of $K\phi$, Kvco, N as well as loop components. Changing $K\phi$ and N will change the loop bandwidth.

PLL2 Loop Filter

Table 5: PLL2 Loop Filter Parameters for LMK04906B

	LMK04906B		
C1_VCO	0.082	nF	
C2_VCO	5.6	nF	
C3 (internal)	0.01	nF	
C4 (internal)	0.01	nF	
R2_VCO	0.68	kΩ	
R3 (internal)	0.2	kΩ	
R4 (internal)	0.2	kΩ	
Charge Pump	3.2	mA	
Current, Kø	5.2	ШA	
Phase			
Detector	50	MHz	
Frequency			
Frequency	2500	MHz	
Кусо	18.5	MHz/V	
N	50		
Phase Margin	69	degree s	
Loop Bandwidth	132	kHz	

Note: PLL Loop Bandwidth is a function of $K\phi$, Kvco, N as well as loop components. Changing $K\phi$ and N will change the loop bandwidth.

Evaluation Board Inputs and Outputs

The following table contains descriptions of the inputs and outputs for the evaluation board. Unless otherwise noted, the connectors described can be assumed to be populated by default. Additionally, some applicable CodeLoader programming controls are noted for convenience. Refer to the <u>LMK04906 Family Datasheet</u> for complete register programming information.

Connector Name	Signal Type, Input/Output	Description		
Populated: CLKout0, CLKout0*, CLKout1, CLKout1*, CLKout2, CLKout2*, CLKout3, CLKout3*, CLKout4, CLKout4*, CLKout5, CLKout5*	Analog, Output	Clock outputs with program The output terminations by are shown below, and the CodeLoader is indicated by CLKout0 CLKout0 CLKout1 CLKout2 CLKout3 CLKout3 CLKout4 CLKout5 Each CLKout pair has a p LVCMOS buffer. The outp CodeLoader in the Clock CLKoutX_TYPE control. All clock outputs are AC-c RF test equipment. All LVPECL clock outputs ohm resistors.	mmable output buffers. y default on the evaluation board output type selected by default in by an asterisk (*):	
		If an output pair is programmed to LVCMOS, each output can be independently configured (normal, inverted, or of state).		

Table 6: Evaluation Board Inputs and Outputs

Connector Name	Signal Type, Input/Output	Description		
<u>Populated:</u> OSCout0, OSCout0*,	Analog, Output	Buffered outputs of OSCin port. The output terminations on the evaluation board are shown below, the output type selected by default in CodeLoader is indicated by an asterisk (*): OSC output pair Default Board Termination OSCout0 LVDS* / LVCMOS OSCout0 has a programmable LVDS, LVPECL, or LVCMOS output buffer. The OSCout0 buffer type can be selected in CodeLoader on the Clock Outputs tab via the OSCout0_TYPE control. OSCout0 is AC-coupled to allow safe testing with RF test equipment. If OSCout0 is programmed as LVCMOS, each output can be independently configured (normal, inverted, inverted, and off/tri-state).		
Vcc	Power, Input	 Main power supply input for the evaluation board. A 3.9 V DC power source applied to this SMA will, by default, source the onboard LDO regulators that power the inner layer planes that supply the LMK04906B and its auxiliary circuits (e.g. VCXO). The LMK04906B contains internal voltage regulators for the VCO, PLL and other internal blocks. The clock outputs do not have an internal regulator, so a clean power supply with sufficient output current capability is required for optimal performance. On-board LDO regulators and 0 [lexibility to supply and route power to various devices. See schematics for more details. 		
<u>Populated:</u> J1	Power, Input	Alternative power supply input for the evaluation board using two unshielded wires (Vcc and GND). Apply power to either Vcc SMA or J1, but not both.		
<u>Unpopulated:</u> VccVCO/Aux	Power, Input	Optional Vcc input to power the VCO circuit if separated voltage rails are needed. The VccVCO/Aux input can power these circuits directly or supply the on-board LDO regulators. 0 Ω resistor options provide flexibility to route power.		

Connector Name	Signal Type, Input/Output		Descripti	ion									
Populated:	· · ·	Reference Clock Inputs for PLL1 (CLKin0, 1, 2). CLKin1 can alternatively be used as an External Feedback Clock Input (FBCLKin) in 0-delay mode or an RF Input (Fin) in External VCO mode.											
		Reference Cloc FBCLKin/CLKin single-ended re- source. The no (FBCLKin/CLKin uF. CLKin0/CLK differential refer source.	1* is configu ference cloc n-driven inpu n1) is conneu (in0* is confi	ired by k input ut pin cted to gured l	default from a GND v by defa	t for a 50-ohm vith a 0.1 ult for a							
		CLKin1* is the c selected in Cod mode can be pr via the CLKin_S LMK04906 Fam Switching" for m	eLoader. Th ogrammed c Select_MODI nily Datashee	ne clock on the I E contr et sections	k input Bits/Pii ol. Ref	selection ns tab fer to the							
CLKin0, CLKin0*, FBCLKin*/CLKin1*	A	AC coupled Input Clock Swing Levels											
CLKin2, CLKin2*	Analog, Input	Input Differential	Bipolar or	0.5	3.1	Vpp							
<u>Not Populated:</u> FBCLKin/CLKin1	input	input	input	Single Ended	CMOS	0.25	2.4	Vpp					
											External Feedback CLKin1 is share external feedback mode. See sect not found. Error for more details evaluation board software.	ed for use wit ck clock inpu tion, Error! I or! Reference on using 0-c	th FBC ut to PL Refere ce sourd delay m
		Dual PLL	shared for us al VCO mode J3) or add-o L mode with ers must be p (3) Dual PLI ., Ext VCO, (e with e using n VCO Extern property	the on board. al VCC y config /CO (F	board To), the gured in in), (5)							
16 SNAU126A	I MK04906 Family:	Ext VCO	、 /	<u> </u>	Revised	- December 201							

Connector Name	Signal Type, Input/Output	Description
<u>Not populated:</u> OSCin, OSCin*	Analog, Input	Feedback VCXO clock input to PLL1 and Reference clock input to PLL2. By default, these SMAs are not connected to the traces going to the OSCin/OSCin* pins of the LMK04906B. Instead, the single-ended output of the onboard VCXO (U2) drives the OSCin* input of the device and the OSCin input of the device is connected to GND with 0.1 uF. A VCXO add-on board may be optionally attached via these SMA connectors with minor modification to the components going to the OSCin/OSCin* pins of device. This is useful if the VCXO footprint does not accommodate the desired VCXO device. A single-ended or differential signal may be used to drive the OSCin/OSCin* pins and must be AC coupled. If operated in single-ended mode, the unused input must be connected to GND with 0.1 uF. Refer to the LMK04906 Family Datasheet section "Electrical Characteristics" for PLL2 Reference Input (OSCin) specifications.
<u>Test point:</u> VTUNE1_TP	Analog, Output	Tuning voltage output from the loop filter for PLL1.
<u>Test point:</u> VTUNE2_TP	Analog, Output	Tuning voltage output from the loop filter for PLL2.
<u>Populated:</u> uWire <u>Test points:</u> DATAuWire_TP CLKuWIRE_TP LEuWIRE_TP	CMOS, Input/Output	 10-pin header for uWire programming interface and programmable logic I/O pins for the LMK04906B. The uWire interface includes CLKuWire, DATAuWire, and LEuWire signals. The programmable logic I/O signals accessible through this header include: SYNC, Status_Holdover, Status_LD, Status_CLKin0, and Status_CLKin1. These logic I/O signals also have dedicated SMAs and test points.

Connector Name	Signal Type, Input/Output	Description
	CMOS, Output	Programmable status output pin. By default, set to output the digital lock detect status signal for PLL1 and PLL2 combined.
		In the default CodeLoader modes, LED D5 will illuminate green when PLL lock is detected by the LMK04906B (output is high) and turn off when lock is lost (output is low).
<u>Test point:</u> LD_TP <u>Not populated:</u> Status_LD		The status output signal for the Status_LD pin can be selected on the Bits/Pins tab via the LD_MUX control.
Olulu3_ED		Refer to the <u>LMK04906 Family Datasheet</u> section "Status Pins" and "Digital Lock Detect" for more information.
		Note: Before a high-frequency internal signal (e.g. PLL divider output signal) is selected by LD_MUX, it is suggested to first remove the 270 ohm resistor to prevent the LED from loading the output.
		Programmable status output pin. By default, set to the output holdover mode status signal.
<u>Test point:</u> Holdover_TP		In the default CodeLoader mode, LED D8 will illuminate red when holdover mode is active (output is high) and turn off when holdover mode is not active (output is low).
	CMOS, Output	Refer to the <u>LMK04906 Family Datasheet</u> section "Status Pins" and "Holdover Mode" for more information.
		Note: Before a high-frequency internal signal (e.g. PLL divider output signal) is selected by HOLDOVER_MUX, it is suggested to first remove the 270 ohm resistor to prevent the LED from loading the output.

Connector Name	Signal Type, Input/Output		Description			
		Programmable status I/O pins. By default, set as input pins for controlling input clock switching of CLKin0 and CLKin1.				
		These inputs will no CLKin_Select_MOI default in the Bits/I input clock switchin or 6 and Status_CL enabled as an input	(in0 Manual) by bader. To enable MODE must be 3			
		Input Clock Switching – Pin Select Mode When CLKin_SELECT_MODE is 3, the Status_CLKinX pins select which clock input is as follows:				
		Status CLKin1	Status CLKin0	Active Clock		
			0	CLKin0		
		0	1	CLKin1		
		1	0	CLKin2		
Test point:		1	1	Holdover		
CLKin0_SEL_TP CLKin1_SEL_TP	CMOS, Input/Output	Input Clock Switc When CLKin_SELE selected using the clock switch event	ECT_MODE is 6, the status_CLKinX pir	ne active clock is is upon an input		
		Status_CLKin1	Status_CLKin0	Active Clock		
		Х	0	CLKin0		
		1	0	CLKin1		
		0	0	Reserved		
		Refer to the <u>LMK04</u> "Input Clock Switch				
		Status Outputs When Status_CLKi an output), the stat corresponding Stat on the Bits/Pins ta control.	us output signal for us_CLKinX pin car	r the h be programmed		
		Refer to the <u>LMK04906 Family Datasheet</u> section "Status Pins" for more information.				

Connector Name	Signal Type, Input/Output	Description
Connector Name		DescriptionProgrammable status I/O pin. By default, set as an input pin for synchronize the clock outputs with a fixed and known phase relationship between each clock output selected for SYNC. A SYNC
		Refer to the <u>LMK04906 Family Datasheet</u> section "Clock Output Synchronization" for more information.
		Status Output When SYNC_MUX is 3 to 6 (pin enabled as output), a status signal for the SYNC pin can be selected on the Bits/Pins tab via the SYNC_MUX control.

Recommended Test Equipment

Power Supply

The Power Supply should be a low noise power supply, particularly when the devices on the board are being directly powered (onboard LDO regulators bypassed).

Phase Noise / Spectrum Analyzer

To measure phase noise and RMS jitter, an Agilent E5052 Signal Source Analyzer is recommended. An Agilent E4445A PSA Spectrum Analyzer with the Phase Noise option is also usable although the architecture of the E5052 is superior for phase noise measurements. At frequencies less than 100 MHz the local oscillator noise of the E4445A is too high and measurements will reflect the E4445A's internal local oscillator performance, not the device under test.

Oscilloscope

To measure the output clocks for AC performance, such as rise time or fall time, propagation delay, or skew, it is suggested to use a real-time oscilloscope with at least 1 GHz analog input bandwidth (2.5+ GHz recommended) with 50 ohm inputs and 10+ Gsps sample rate. To evaluate clock synchronization or phase alignment between multiple clock outputs, it's recommended to use phase-matched, 50-ohm cables to minimize external sources of skew or other errors/distortion that may be introduced if using oscilloscope probes.

Appendix A: CodeLoader Usage

Code Loader is used to program the evaluation board via USB using the USB2ANY-uWIRE interface. .

Port Setup Tab

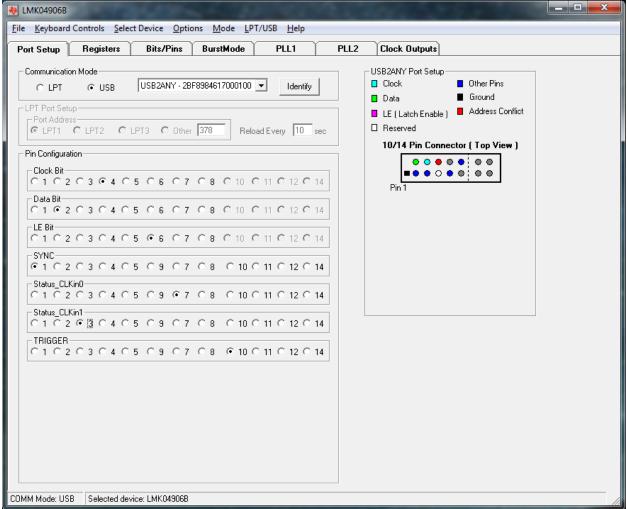


Figure 8: Port Setup tab

On the Port Setup tab, the user may select the type of communication port (LPT or USB) that will be used to program the device on the evaluation board. If parallel port is selected, the user should ensure that the correct port address is entered.

The Pin Configuration field is hardware dependent and needs to be configured for use with the USB2ANY-uWIRE interface. Figure 8 shows the settings required for this configuration. Legacy board or use with a LPT cable can be configured with the use of Appendix G: Properly Configuring LPT Port.

Clock Outputs Tab

	5. M S + 10				
<u>File K</u> eyboard Controls <u>Select Device Options Mode LPT/USB H</u> elp					
Port Setup Registers Bits/Pins BurstMode PLL1 PLL2 Clock Ou	utputs				
Reference Reference (OSCin) Sync PLL2 External Prequency Plus R= 1 PDF = 50000 kHz N = 25	Internal R3 200 ohms C3 10 pF R4 200 ohms C4 10 pF	Internal VCO Internal O VCO Frequency 2500 MHz			
VCO Divider Delay Delay Delay Select	Clock Output				
2 VCO Divider Mux	LVPECL (1600 mVpj 💌	CLKout0 156.25 MHz			
VCO V 5 4 5 500 ps V Bypassed V Half step Powerdown	LVPECL (1600 mVpl 💌	CLKout1 625 MHz			
Dual PLL, Int VCO ▼ 5 ↓ 10 ↓ 500 ps ■ Bypassed ● Fin/Fin* □ □ ■ ○ ■ ■ ■	Powerdown	CLKout2 MHz			
OSC Mux1 VCD VCD Powerdown	LVPECL (1600 mVp	CLKout3 125 MHz			
OSC Mux2 VCD VCD VCD VCD VCD VCD VCD VCD VCD VCD	LVDS	CLKout4MHz			
5 100 100 500 ps V Bypassed V Half step V Powerdown Divider	LVPECL (1600 mVpj -	CLKout5MHz			
	LVDS	OSCout0 MHz			
COMM Mode: USB Selected device: LMK04906B					
		//			

Figure 9: Clock Outputs Tab

The **Clock Outputs** tab allows the user to control the output channel blocks, including:

- Clock Group Source from either VCO or OSCin (via OSC Mux1 and OSC Mux2)
- Channel Powerdown (affects digital and analog delay, clock divider, and buffer blocks)
- Digital Delay value and Half Step
- Clock Divide value
- Analog Delay value and Delay bypass/enable (per output)
- Clock Output format (per output)

This tab also allows the user to select the VCO Divider value (2 to 8). Note that the *total* PLL2 N divider value is the product of the VCO Divider value and the PLL N Prescaler and N Counter values (shown in the **PLL2** tab), and is given by:

PLL2 N Total = VCO Divider * PLL2 N Prescaler * PLL2 N Counter

Clicking on the cyan-colored PLL2 block that contains R, PDF and N values will bring the **PLL2** tab into focus where these values may be modified, if needed.

Clicking on the values in the box containing the Internal Loop Filter component (R3, C3, R4, C4) allow one to step through the possible values. Left click to increase the component value, and right click to decrease the value. These values can also be changed in the **Bits/Pins** tab.

The Reference Oscillator value field may be changed in either the **Clock Outputs** tab or the **PLL2** tab. The PLL2 Reference frequency should match the frequency of the onboard VCXO or Crystal (i.e., VCO frequency in the **PLL1** tab); if not, a warning message will appear to indicate that the PLL(s) may be out of lock, as highlighted by the red box in Figure 10.

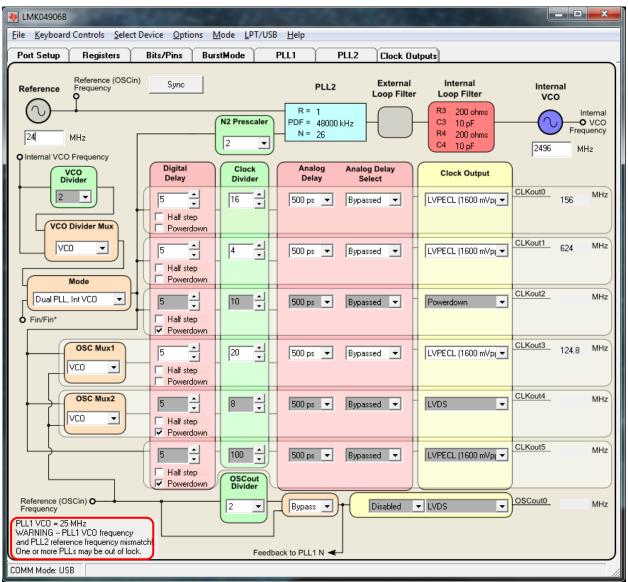
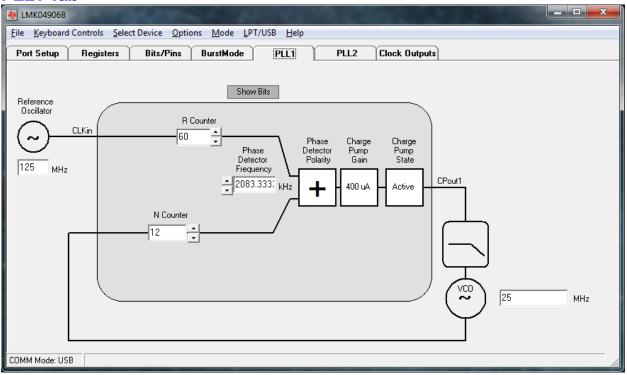



Figure 10: Warning message indicating mismatch between

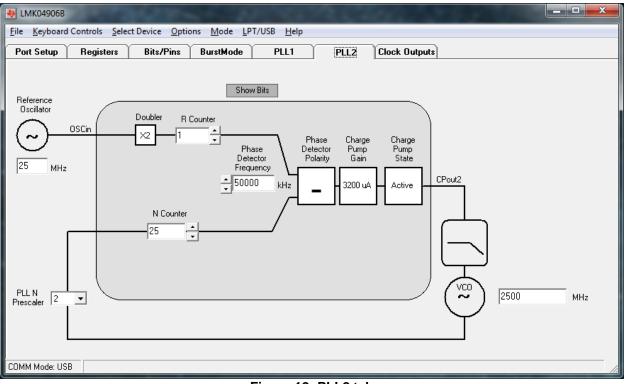
PLL1 VCO frequency (25 MHz) and PLL2 reference frequency (25 MHz)

PLL1 Tab

Figure 11: PLL1 tab

The PLL1 tab allows the user to change the following parameters in Table 7.

Control Name	Register Name	Description
Reference Oscillator	n/a	CLKin frequency of the selected
Frequency (MHz)		reference clock.
Phase Detector	n/a	PLL1 Phase Detector Frequency (PDF).
Frequency (MHz)		This value is calculated as:
		PLL1 PDF = CLKin Frequency / (PLL1_R
		* CLKinX_PreR_DIV), where
		CLKinX_PreR_DIV is the predivider
		value of the selected input clock.


VCO Frequency (MHz)	n/a	The VCO Frequency should be the OSCin frequency, except when operating in Dual PLL with 0-delay feedback. This value is calculated as: VCO Freq (OSCin freq) = PLL1 PDF * PLL1_N. In Dual PLL mode with 0-delay feedback, the VCO frequency should be set to the feedback clock input frequency. See the section Setting the PLL1 VCO Frequency and PLL2 Reference Frequency for details.
R Counter	PLL1_R	PLL1 R Counter value (1 to 16383).
N Counter	PLL1_N	PLL1 N Counter value (1 to 16383).
Phase Detector Polarity	PLL1_CP_POL	PLL1 Phase Detector Polarity. Click on the polarity sign to toggle polarity "+" or "–".
Charge Pump Gain	PLL1_CP_GAIN	PLL1 Charge Pump Gain. Left-click/right-click to increase/decrease charge pump gain (100, 200, 400, 1600 uA).
Charge Pump State	PLL1_CP_TRI	PLL1 Charge Pump State. Click to toggle between Active and Tri- State.

Setting the PLL1 VCO Frequency and PLL2 Reference Frequency

When operating in Dual PLL mode <u>without</u> 0-delay feedback, the VCO frequency value on the **PLL1** tab must match the Reference Oscillator (OSCin) frequency value on the **PLL2** tab; otherwise, the one or both PLLs may be out of lock. Updating the Reference Oscillator frequency on the **PLL2** tab will automatically update the value of OSCin_FREQ on the **Bits/Pins** tab.

PLL2 Tab

Figure 12: PLL2 tab

The PLL2 tab allows the user to change the following parameters in Table 8.

Control Name	Register Name	Description
Reference Oscillator	OSCin_FREQ	OSCin frequency from the External
Frequency (MHz)		VCXO or Crystal.
Phase Detector	n/s	PLL2 Phase Detector Frequency (PDF).
Frequency (MHz)		This value is calculated as:
		PLL2 PDF = OSCin Frequency
		*(2 ^{EN_PLL2_REF_2X}) / PLL2_R.
VCO Frequency (MHz)	n/a	Internal VCO Frequency should be
		within the allowable range of the
		LMK04906B device.
		This value is calculated as:
		VCO Frequency = PLL2 PDF * (PLL2_N
		* PLL2_P * VCO divider value).
Doubler	EN_PLL2_REF_2X	PLL2 Doubler.
		0 = Bypass Doubler
		1 = Enable Doubler
R Counter	PLL2_R	PLL2 R Counter value (1 to 4095).
N Counter	PLL2_N	PLL2 N Counter value (1 to 262143).
PLLN Prescaler	PLL2_P	PLL2 N Prescaler value (2 to 8).

Table 8: Registers	Controls and D	escriptions in	PLL2 tab
	•••••••		

Phase Detector Polarity	PLL2_CP_POL	PLL2 Phase Detector Polarity. Click on the polarity sign to toggle polarity "+" or "–".
Charge Pump Gain	PLL2_CP_GAIN	PLL2 Charge Pump Gain. Left-click/right-click to increase/decrease charge pump gain (100, 400, 1600, 3200 uA).
Charge Pump State	PLL2_CP_TRI	PLL2 Charge Pump State. Click to toggle between Active and Tri- State.

Changes made on this tab will be reflected in the **Clock Outputs** tab. The VCO Frequency should conform to the specified internal VCO frequency range for the LMK04906B device (per Table 2).

Bits/Pins Tab

4 LMK04906B				
Eile Keyboard Controls Sele	ct Device <u>O</u> ptions <u>M</u> ode <u>L</u> l	PT/USB <u>H</u> elp		
Port Setup Register	s Bits/Pins Burs	stMode PLL1	PLL2 Clock Outp	puts
Port Setup Register Mode Control RESET POWERDOWN MODE Doug PLL, Int VCO Image: Control PD_OSCin EN_FEEDBACK_MUX FEEDBACK_MUX Image: Control Reserved Image: Control Image: Control Image: Control Image: Cont	Bits/Ping Bur D Control LD_MUX PLL2 DLD • LD_TYPE Output Enabled (puth-pu, • HOLDOVER_MUX PLL1 DLD • HOLDOVER_TYPE Output Enabled (puth-pu • Status_CLKin0_MUX Active Low • Status_CLKin0_TYPE Input Enabled w/ pull-do • Status_CLKin1_TYPE Input Enabled w/ pull-do • Status_CLKin1_TYPE Input Enabled w/ pull-do •	INOde PLL1 ID Control - Sync. SYNC_MUX Active Low ▼ SYNC_TYPE Input Enabled w/ pull-up_▼ SYNC_TYPE SYNC_TUL_DLD SYNC_PL2_DLD SYNC_PL2_DLD SYNC_CLKout2_3 NO_SYNC_CLKout2_3 NO_SYNC_CLKout2_1 NO_SYNC_CLKout2_3 NO_SYNC_CLKout4_5 NO_SYNC_CLKout6_5 SYNC_PLA SYNC_PLA DS_SYNC_CLKout6_5 SYNC_PLA SYNC_NC_CLKout7 NO_SYNC_CLKout8_9 SYNC_QUAL SYNC_PLA SYNC_PLA SYNC_PLA DAC/HOROVER SYNC_PLA HOLDOVER_MODE DInabled DInabled ▼ SIZ_ DAC_LOUVER HOLDOVER_HOLD_CNT SIZ_ DAC_LOW_TRIP 11 _ DAC_LOW_TRIP 0 _ DAC_LOW_TRIP 0 _	PLL2 Clock Outp PLL1VND_SIZE 40 ns • 40 ns • PLL1VND_SIZE 40 ns • PLL1_DLD_CNT CLKin0_PreR_DIV 1 • CLKin1_PreR_DIV 1 • CLKin2_PreR_DIV 1 • PLL1N_DLY 0ps • PLL1_R_DLY 0ps •	PLL2 Program Pins 37 ns ▼ PLL2_UND_SIZE Status_CLKin0 Status_CLKin1 Status_CLKin1 ▼ EN_PLL2_REF_2X PLL2_N_CAL PLL2_R3_LF TRIGGER 200 ohms ▼ PLL2_C3_LF T0.pF 10.pF ▼ PLL2_C4_LF ▼ 10.pF ▼ PLL2_FAST_PDF ▼
4				
COMM Mode: USB	1			

Figure 13: Bits/Pins tab

The **Bits/Pins** tab allows the user to program bits directly, many of which are not available on other tabs. Brief descriptions for the controls on this tab are provided in Table 9 to supplement the datasheet. Refer to the <u>LMK04906 Family Datasheet</u> for more information.

Revised - December 2013

<u>TIP:</u> Right-clicking any register name in the **Bits/Pins** tab will display a Help prompt with the register address, data bit location/length, and a brief register description.

-	Pogistor Namo	Description	
Group	Register Name		
	RESET	Resets the device to default register values.	
		RESET must be cleared for normal operation to	
		prevent an unintended reset every time R0 is	
		programmed.	
	POWERDOWN	Places the device in powerdown mode.	
	MODE	Selects the operating mode (topology) for the	
		LMK04906 device.	
	PD_OSCin	Powers down the OSCin buffer. For use in Clock	
0		Distribution mode if OSCin path is not used.	
Mode Control	FEEDBACK_MUX	Selects the feedback source for 0-delay mode.	
ŏ	OSCin_FREQ	Must be set to the OSCin frequency range for	
de		PLL2. Used for proper operation of the internal	
Чõ		VCO calibration routine.	
2		Entering a reference oscillator frequency on PLL2	
		tab will automatically update OSCin_FREQ to the	
		proper frequency range.	
	VCO_MUX	Selects between VCO and VCO divider to drive the	
		clock distribution path. The VCO divider is only	
		valid if MODE is selecting the Internal VCO.	
	uWire_LOCK	When checked, no other uWire programming will	
		have effect. Must be unchecked to enable uWire	
		programming of registers R0 to R30.	
	CLKin_Select_MODE	Selects operational mode for how the device	
		selects the reference clock for PLL1.	
	EN_CLKin1	Enables CLKin1 as a usable reference input during	
		auto switching mode.	
	EN_CLKin0	Enables CLKin0 as a usable reference input during	
.⊆		auto switching mode.	
CLKin			
C	CLKinX_BUF_TYPE	Selects the CLKinX input buffer to Bipolar (internal	
		0 mV offset) or MOS (internal 55 mV offset).	
	EN_LOS	Enable the Loss-Of-Signal (LOS) detect circuitry.	
	LOS_TIMEOUT	Sets the timeout value for the LOS detect circuitry	
		to assert a loss of signal state on a clock input.	
Crystal	EN PLL2 XTAL	Enables Crystal Oscillator	
	XTAL LVL	Sets peak amplitude on the tunable crystal.	
		Values listed are for a 20.48 MHz crystal.	
	LD MUX	Sets the selected signal on the Status_LD pin.	
lo		-	
IO Control	LD_TYPE	Sets I/O pin type on the Status_LD pin.	
ပိ	HOLDOVER_MUX	Sets the selected signal on the	
õ		Status_HOLDOVER pin.	
<u> </u>	HOLDOVER_TYPE	Sets I/O pin type on the Status_Holdover pin.	

Table 9: Register Controls and Descriptions on Bits/Pins tab

	Status_CLKin0 _MUX	Sets the selected signal on the Status_CLKin0 pin.
	Status_CLKin0_TYPE	Sets I/O pin type on the Status_CLKin0 pin.
	Status_CLKin1_MUX	Sets the selected signal on the Status_CLKin1 pin.
	Status_CLKin1_TYPE	Sets I/O pin type on the Status_CLKin1 pin.
	CLKin_Sel_INV	Inverts the Status_CLKin0/1 pin polarity when
		set to an input type. Significant when
		CLKin_SELECT_MODE is 3 or 6.
	SYNC_MUX	Sets the selected signal on the SYNC pin.
	SYNC_TYPE	Sets I/O pin type on the SYNC pin.
	SYNC_POL_INV	Sets polarity on SYNC input to active low
		when checked. Toggling this bit will initiate a
		SYNC event.
	SYNC_PLL1_DLD	Engage SYNC mode until PLL1 DLD is true
	SYNC_PLL2_DLD	Engage SYNC mode until PLL2 DLD is true
	NO_SYNC_CLKoutX_Y	Synchronization will not affect selected clock
0		outputs, where X = even-numbered output and
Anc		Y = odd-numbered output.
IO Control – Sync	SYNC_QUAL	Sets the SYNC to qualify mode for dynamic
		digital delay.
ntr	EN_SYNC	Must be set when using SYNC, but may be
ပိ		cleared after the SYNC event. When using dynamic digital delay (SYNC_QUAL = 1),
Õ		EN_SYNC must always be set.
_		Changing this value from 0 to 1 can cause a
		SYNC event, so clocks which should not be
		SYNCed when setting this bit should have the
		NO_SYNC_CLKoutX_Y bit set.
		NOTE: This bit is not a valid method of
		generating a SYNC event. Use one of the
		other SYNC generation methods to ensure a
		proper SYNC occurs.
	SYNC_EN_AUTO	Enable auto SYNC when R0 to R5 is written.
	HOLDOVER_MODE	Sets holdover mode to be disabled or enabled.
DAC/Holdover	FORCE_HOLDOVER	Engages holdover when checked regardless of
		HOLDOVER_MODE value. Turns the DAC
lolc		on.
	EN_TRACK	Enables DAC tracking. DAC tracks the PLL1
AC		Vtune to provide for an accurate HOLDOVER
		mode. DAC_CLK_DIV should also be set so
		that DAC update rate is <= 100 kHz.

	EN_VTUNE_RAIL_DET	Allows rail-to-rail operation of VCXO with default of 0. Allows use of DAC_LOW_TRIP, DAC_HIGH_TRIP. Must be used with EN_MAC_DAC = 1. CLKin_SELECT_MODE must be 4 or 6 (auto mode) to use.
	HOLD_DLD_CNT	In HOLDOVER mode, wait for this many clocks of PLL1 PDF within the tolerances of PLL1_WND _SIZE before exiting holdover mode.
	DAC_CLK_DIV	DAC update clock is the PLL1 phase detector divided by this divisor. For proper operation, DAC update clock rate should be <= 100 kHz. DAC update rate = PLL1 phase detector frequency / DAC_CLK_DIV
	EN_MAN_DAC	Enables manual DAC mode and set DAC voltage when in holdover.
	MAN_DAC	Sets the value for the DAC when EN_MAN_DAC is 1 and holdover is engaged. Readback from this register is the current DAC value whether in manual DAC mode or DAC tracking mode
	DAC_LOW_TRIP	Value from GND in ~50mV steps at which a clock switch event is generated. If Holdover mode is enabled, it will be engaged upon the clock switch event. NOTE: EN_VTUNE_RAIL_DET must be enabled for this to be valid.
	DAC_HIGH_TRIP	Value from VCC (3.3V) in ~50mV steps at which clock switch event is generated. If Holdover mode is enabled, it will be engaged upon the clock switch event. NOTE: EN_VTUNE_RAIL_DET must be enabled for this to be valid.
	PLL1_WND_SIZE	If the phase error between the PLL1 reference and feedback clocks is less than specified time, then the PLL1 lock counter increments. NOTE: Final lock detect valid signal is determined when the PLL1 lock counter meets or exceeds the PLL1_DLD_CNT value.
PLL1	PLL1_DLD_CNT	The reference and feedback of PLL1 must be within the window of phase error as specified by PLL1_WND_SIZE for this many cycles before PLL1 digital lock detect is asserted.
	CLKinX_PreR_DIV	The PreR dividers divide the CLKinX reference before the PLL1_R divider. Unique divides on individual CLKinX signals allows switchover from one clock input to another clock input without needing to reprogram the PLL1_R divider to keep the device in lock.

	PLL1_N_DLY	N delay causes clock outputs to lead clock input when in a 0-delay mode. Increasing the N delay value increases the output phase lead relative to the input.
	PLL1_R_DLY	R delay causes clock outputs to lag clock input when in a 0-delay mode. Increasing the R delay value increases the output phase lag relative to the input.
	PLL2_WND_SIZE	If the phase error between the PLL2 reference and feedback clock is less than specified time, then the PLL2 lock counter increments.
	PLL2_DLD_CNT	The reference and feedback of PLL2 must be within the window of phase error as specified by PLL2_WND_SIZE for this many cycles before PLL2 digital lock detect is asserted.
PLL2	EN_PLL2_REF_2X	Enables the doubler block to doubles the reference frequency into the PLL2 R counter. This can allow for frequency of 2/3, 2/5, etc. of OSCin to be used at the phase detector of PLL2.
α.	PLL2_N_CAL	The PLL2_N_CAL register contains the N value used for the VCO calibration routine. Except during 0-delay modes, the PLL2_N and PLL2_N_CAL registers will be exactly the same.
	PLL2_R3_LF	Set the corresponding integrated PLL2 loop filter
	PLL2_R4_LF	values: R3, R4, C3, and C4.
	PLL2_C3_LF	It is also possible to set these values by clicking on
	PLL2_C4_LF	the loop filter values on the Clock Outputs tab.
	PLL2_FAST_PDF	Enable this bit when using a PLL2 phase detector frequency > 100 MHz.
Program Pins	SYNC Status_CLKin0 Status_CLKin1	Sets these pins on the uWire header to logic high (checked) or logic low (unchecked).

Registers Tab

UMK04906B		Sec. 1	1000		Sec.	100	- C - C - C - C - C - C - C - C - C - C	
<u>File K</u> eyboard Cor	ntrols <u>S</u> elect Devic	e <u>O</u> ptions <u>M</u> o	ode <u>L</u> PT/USB	<u>H</u> elp				
Port Setup	Registers	Bits/Pins	BurstMode	PLL1	PLL2	Clock Outputs		
Export regi	ster values in hex to te	xt file						
MSB>				0000000000				
				876543210		Hex Value		
RO (INIT)				101000000		NIT) 0x8016 0140		
RO				0000000000	Load	R0 0x0014 0200		
R1	00000000				Load	R1 0x0014 0081		
R2				101000010	Load	R2 0x8014 0142		
R3	00000000				Load	R3 0x0014 0283		
R4				100000100	Load	R4 0x8014 0104		
R5	1			010000101	Load	R5 0x8014 0C85		
R6				000000110	Load	R6 0x0444 0006		
R7	1			000000111	Load	R7 0x0401 0007		
R8 R9	0101010101			000001000	Load	R8 0x0401 0008 R9 0x5555 5549		
R9 R10	10010001				Load	RA 0x9102 410A		
R10				000001011	Load	RB 0x0401 100B		
B12				001101100	Load	RC 0x130C 006C		
R12	00001011				Load	RD 0x0802 826D		
B14				000001110	Load	RE 0x0200 000E		
R15	10000000				Load	RF 0x8000 800F		
R16	11000001					R10 0xC155 0410		
B24				011011000		R18 0x0000 00D8		
R25	00000010	11001001	1100010	000011001		R19 0x02C9 C419		
R26	10101111	10101000	000000000	000011010	Load	R1A 0xAFA8 001A		
B27	00011000	0 0 0 0 0 0 0 0 0	0000111	100011011	Load	R1B 0x1800 0F1B		
R28	000000000	0 0 0 1 0 0 0 0	0000001	100011100	Load	R1C 0x0010 031C		
R29	000000000	10000000	0000001	100111101		R1D 0x0080 033D		
R30				100111110	Load	R1E 0x0200 033E		
R31	000000000	00011111	0000000	000011111	Load	R1F 0x001F 001F		
OMM Mode: USB								

Figure 14: Registers Tab

The Registers tab shows the value of each register. This is convenient for programming the device to the desired settings, then exporting to a text file the register values in hexadecimal for use in your own application.

By clicking in the "bit field" it is possible to manually change the value of registers by typing '1' and '0.'

Appendix B: Typical Phase Noise Performance Plots

PLL1

The LMK04906B's dual PLL architecture achieves ultra low jitter and phase noise by allowing the external VCXO or Crystal's phase noise to dominate the final output phase noise at low offset frequencies and the internal VCO's phase noise to dominate the final output phase noise at high offset frequencies. This results in the best overall noise and jitter performance.

Table 10 lists the test conditions used for output clock phase noise measurements with the Epson 25 MHz VCXO.

Deremeter	
Parameter	Value
PLL1 Reference clock input	CLKin1 single-ended input, CLKin1* AC-coupled to
· ·	GND
PLL1 Reference Clock	125 MHz
frequency	
PLL1 Phase detector frequency	2083.33 MHz
PLL1 Charge Pump Gain	400 uA
VCXO frequency	25 MHz
PLL2 phase detector frequency	50 MHz
PLL2 Charge Pump Gain	3200 uA
PLL2 REF2X mode	Disabled

Table 10: LMK04906B Test Conditions

25 MHz VCXO Phase Noise

The phase noise of the reference is masked by the phase noise of this VCXO by using a narrow loop bandwidth for PLL1 while retaining the frequency accuracy of the reference clock input. This VCXO sets the reference noise to PLL2. Figure 15 shows the open loop typical phase noise performance of the Epson VG-4231CA 25.0000M-FGRC3 VCXO.

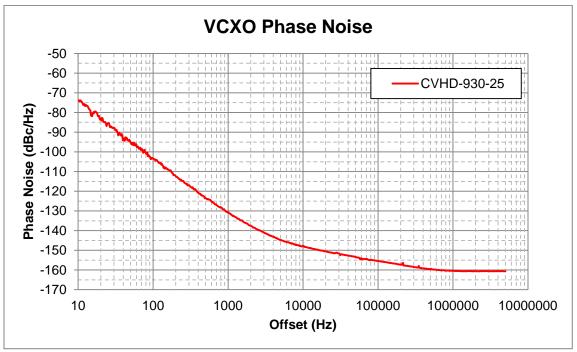


Figure 15: Epson VG-4231CA 25 MHz VCXO Phase Noise at 25 MHz

Table 11: VCXO Phase Noise at 25 MHz (dBc/Hz)

Offset	Phase	
Oliset	Noise	
10 Hz	-73.6	
100 Hz	-103.7	
1 kHz	-130.8	
10 kHz	-147.6	
100 kHz	-155.42	
1 MHz	-160.4	
10 MHz	-168.1	
40 MHz	-168.1	

Table 12: VCXO RMS Jitter to high offset of 20 MHz at 25 MHz (rms fs)

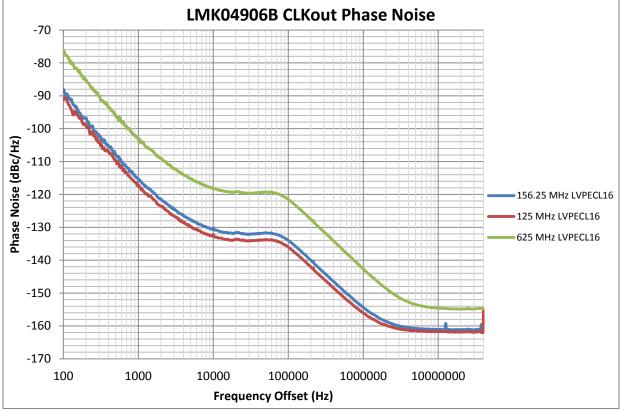
at 25 Will 2 (1115 15)			
Low Offset	Jitter		
10 Hz	515.4		
100 Hz	60.5		
1 kHz	36.2		
10 kHz	35.0		
100 kHz	34.5		
1 MHz	32.9		
10 MHz	22.7		

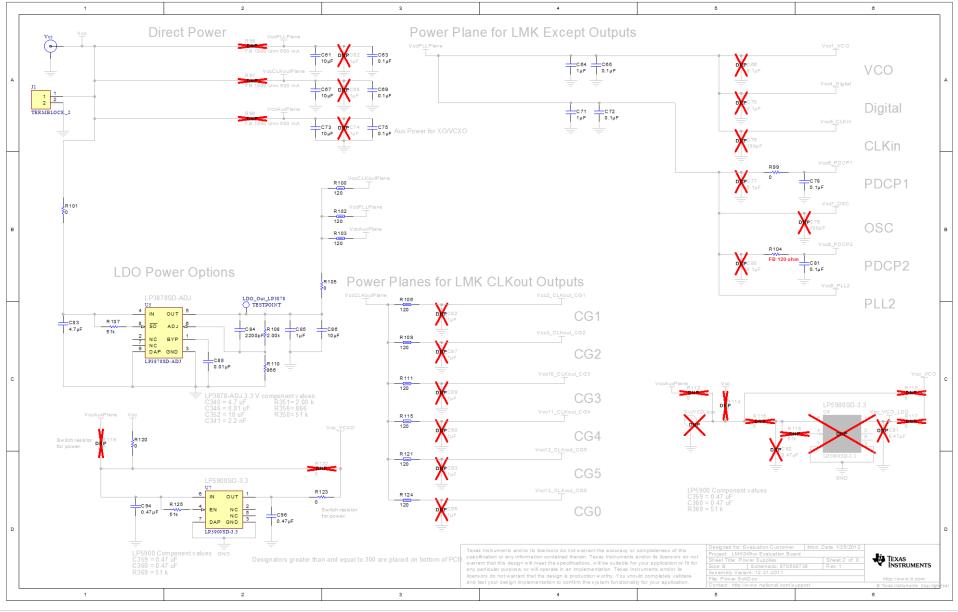
Clock Output Measurement Technique

The same technique was used to measure phase noise for all three output types available on the programmable OSCout and CLKout buffers. This was achieved by connection the differential outputs to a Prodyn GXXX Balun and measuring the side single-ended using an Agilent E5052B Source Signal Analyzer.

Clock Outputs (CLKout)

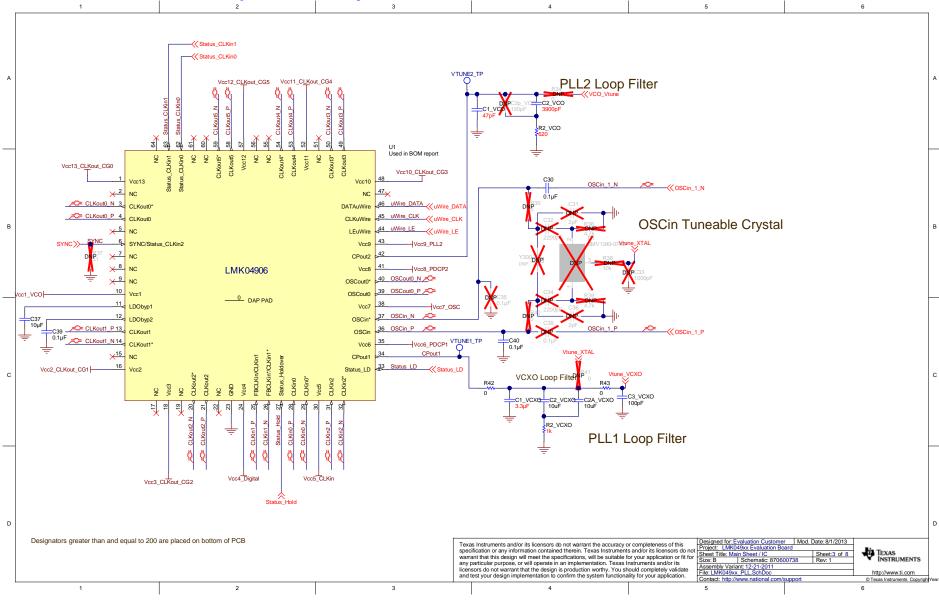
The LMK04906 Family features programmable LVDS, LVPECL, and LVCMOS buffer modes for the CLKoutX and OSCout0 output pairs. Included below are various phase noise measurements for each output format. For the LMK04906B, the internal VCO frequency is 2500 MHz. The divide-by-4 CLKout frequency is 625 MHz, the divide-by-16 CLKout frequency is 156.25 MHz, and the divide-by-20 CLKout frequency is 125 MHz.




Figure 16: LMK04906B CLKout Phase Noise

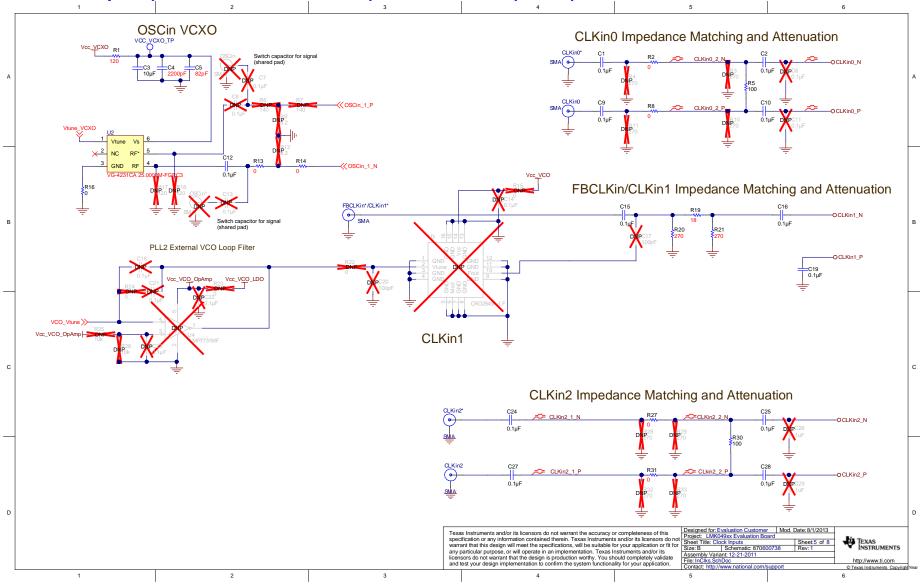
Offset	625 MHz LVPECL 1.6	156.25 MHz LVPECL 1.6	125 MHz LVPECL 1.6	
100 Hz	-76.0	-88.0	-90.8	
1 kHz	-103.2	-115.6	-117.1	
10 kHz	-118.1	-130.2	-132.2	
100 kHz	-121.5	-134.0	-136.0	
800 kHz	-140.5	-152.5	-154.3	
1 MHz	-142.7	-154.4	-156.1	
10 MHz	-154.6	-161.1	-161.7	
20 MHz	-154.8	-161.1	-161.8	
RMS Jitter (fs) 12 kHz to 20 MHz	146.0	147.4	149.5	
RMS Jitter (fs) 1 kHz to 5 MHz	166.4	160.6	159.8	

TEXAS INSTRUMENTS


Appendix C: Schematics

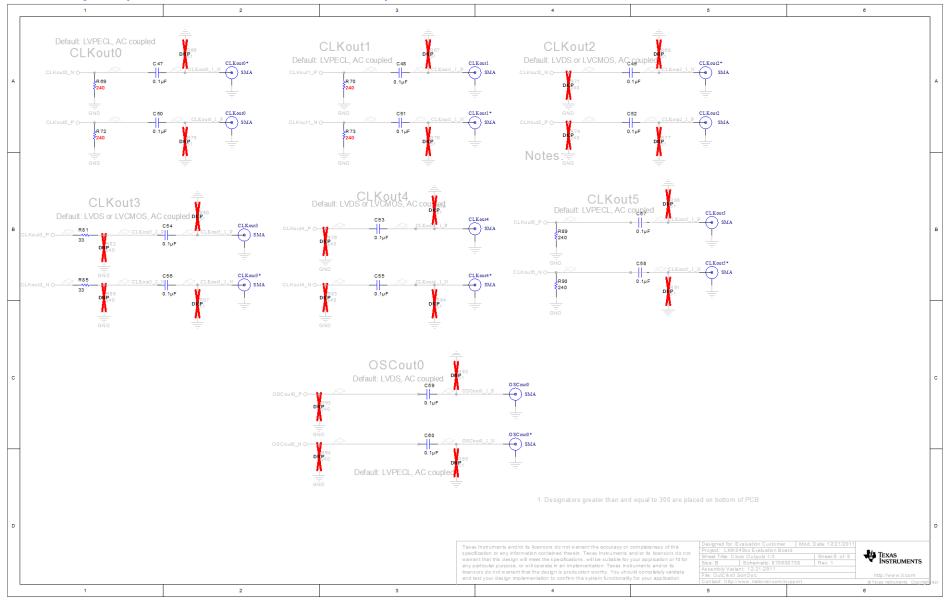
Power Supplies

LMK04906 Family: Low-Noise Clock Jitter with Dual Loop PLLs Copyright © 2013, Texas Instruments Incorporated

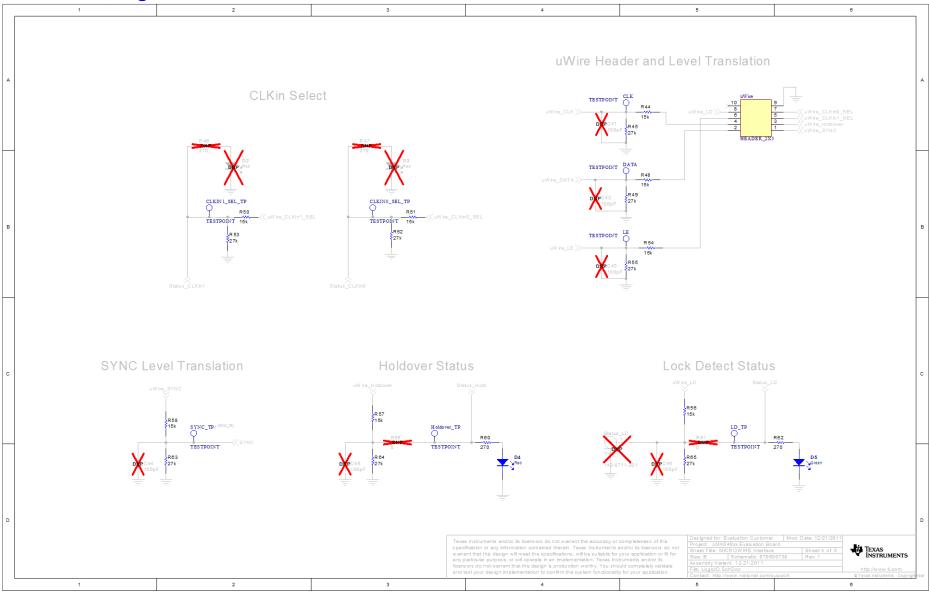

LMK04906B Device with Loop Filter and Crystal Circuits

Revised - December 2013

LMK04906 Family: Low-Noise Clock Jitter with Dual Loop PLLs Copyright © 2013, Texas Instruments Incorporated SNAU126A 39



Reference Inputs (CLKin0, CLKin1 & CLKin2), External VCXO (OSCin) & VCO Circuits


Clock Outputs (OSCout0, CLKout0 to CLKout5)

SNAU126A 41

TEXAS INSTRUMENTS

uWire Header, Logic I/O Ports and Status LEDs

Appendix D: Bill of Materials

Table 14: Bill of Materials for LMK04906 Evaluation Boards

ltem	Designator	Description	Manufacturer	PartNumber	Qty		
1	C1, C2, C9	CAP, CERM, 0.1uF, 16V, +/-10%, X7R, 0603	Kemet	C0603C104K4RACTU	3		
2	C1_VCO	CAP, CERM, 82pF, 50V, +/-5%, C0G/NP0, 0603	MuRata	GRM1885C1H820JA01D	1		
3	C1_VCXO	CAP, CERM, 3.3uF, 10V, +/-10%, X5R, 0805	Kemet	C0805C335K8PACTU	1		
4	C2_VCO	CAP, CERM, 5600pF, 50V, +/-10%, X7R, 0603	MuRata	GRM188R71H562KA01D	1		
5	C3	CAP, CERM, 10µF, 10V, +/-20%, X5R, 0805	Kemet	C0805C106M8PACTU	1		
6	C3_VCXO	CAP, CERM, 100pF, 50V, +/-5%, C0G/NP0, 0603	Kemet	C0603C101J5GACTU	1		
7	C4	CAP, CERM, 2200pF, 50V, +/-10%, X7R, 0603	Kemet	C0603C222K5RACTU	1		
8	C5	CAP, CERM, 82pF, 50V, +/-10%, C0G/NP0, 0603	Kemet	C0603C820K5GACTU	1		
9	C10, C15, C16, C19, C24, C25, C27, C28, C30, C39, C40, C47, C48, C49, C50, C51, C52, C53, C54, C55, C57, C58, C59, C60, C63, C69, C78, C81	CAP, CERM, 0.1uF, 25V, +/-5%, X7R, 0603	Kemet	C0603C104J3RACTU	28		
10	C12	CAP, CERM, 0.1µF, 25V, +/-10%, X7R, 0603	Kemet	C0603C104K3RACTU	1		
11	C37, C61, C67, C73, C86, C2_VCXO, C2A_VCXO	CAP, CERM, 10uF, 10V, +/-10%, X5R, 0805	Kemet	C0805C106K8PACTU	7		
12	C56, C65, C72, C75	CAP, CERM, 0.1uF, 25V, +/-10%, X7R, 0603	Kemet	C0603C104K3RACTU	4		
13	C64, C71	CAP, CERM, 1uF, 10V, +/-10%, X5R, 0603	Kemet	C0603C105K8PACTU	2		
14	C83	CAP, CERM, 4.7uF, 10V, +/-10%, X5R, 0603	Kemet	C0603C475K8PACTU	1		
15	C84	CAP, CERM, 2200pF, 100V, +/-5%, X7R, 0603	AVX	06031C222JAT2A	1		
16	C85	CAP, CERM, 1uF, 16V, +/-10%, X7R, 0603	TDK	C1608X7R1C105K	1		
17	C88	CAP, CERM, 0.01uF, 25V, +/-5%, C0G/NP0, 0603	TDK	C1608C0G1E103J	1		
18	C94, C96	CAP, CERM, 0.47uF, 25V, +/-10%, X7R, 0603	MuRata	GRM188R71E474KA12D	2		
19	CLKin0, CLKin0*, CLKin2, CLKin2*, CLKout0,	Connector, SMT, End launch SMA 50 Ohm					

	XAS ISTRUMENTS							
	CLKout0*, CLKout1, CLKout2, CLKout2, CLKout2*, CLKout3, CLKout3*, CLKout4, CLKout4, CLKout5, CLKout5*, FBCLKin*/CLKin1*, OSCout0, OSCout0*, Vcc							
20	D4	LED 2.8X3.2MM 565NM RED CLR SMD	Lumex Opto/Components Inc.	SML-LX2832IC	1			
21	D5	LED 2.8X3.2MM 565NM GRN CLR SMD Lumex SML-LX2832GC Opto/Components Inc.						
22	J1	CONN TERM BLK PCB 5.08MM 2POS OR	1594540000	1				
23	R1, R100, R102, R103, R106, R109, R111, R115, R121, R124	FB, 120 ohm, 500 mA, 0603 Murata BLM18AG121SN1D						
24	R2, R8, R13, R14, R16, R27, R31, R42, R43, R99, R101, R105, R120, R123	RES, 0 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW06030000Z0EA	14			
25	R2_VCO	RES, 680 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603680RJNEA	1			
26	R2_VCXO	RES, 1k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW06031K00JNEA	1			
27	R5, R30	RES, 100 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603100RJNEA	2			
28	R19	RES, 18 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060318R0JNEA	1			
29	R20, R21, R60, R62	RES, 270 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603270RJNEA	4			
30	R44, R48, R50, R51, R54, R56, R57, R58	RES, 15k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060315K0JNEA	8			
31	R45, R49, R52, R53, R55, R63, R64, R65	RES, 27k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060327K0JNEA	8			
32	R69, R70, R72, R73, R89, R90	RES, 240 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603240RJNEA	6			

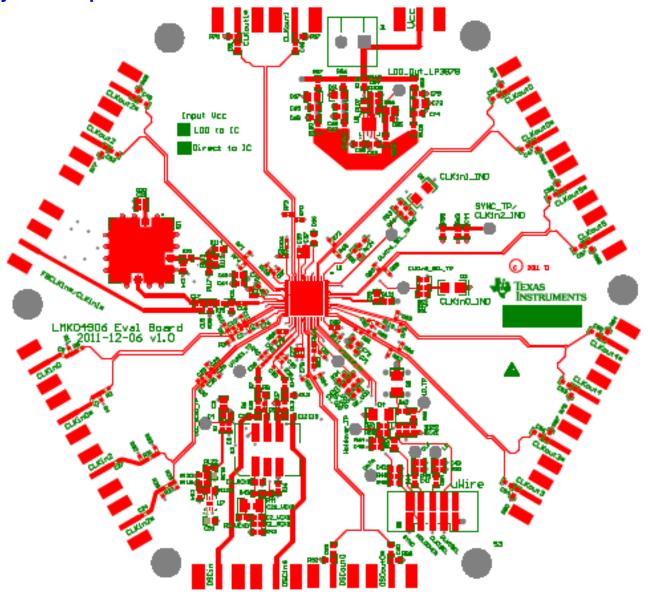
LMK04906 Family: Low-Noise Clock Jitter with Dual Loop PLLs Copyright © 2013, Texas Instruments Incorporated

33	R81, R85	RES, 33 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060333R0JNEA	2
34	R104	Ferrite	Murata	BLM18AG121SN1D	1
35	R107, R125	RES, 51k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060351K0JNEA	2
36	R108	RES, 2.00k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06032K00FKEA	1
37	R110	RES, 866 ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603866RFKEA	1
38	S1, S2, S3, S4, S5, S6	0.875" Standoff	VOLTREX	SPCS-14	6
39	U1	LMK04906	Texas Instruments	LMK04906	1
40	U2	25 MHz VCXO	Epson-Toyocom	VG-4231CA 25.0000M- FGRC3	1
41	U5	Micropower 800mA Low Noise 'Ceramic Stable' Adjustable Voltage Regulator for 1V to 5V Applications	National Semiconductor	LP3878SD-ADJ	1
42	U7	Ultra Low Noise, 150mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor	National Semiconductor	LP5900SD-3.3	1
43	uWire	Low Profile Vertical Header 2x5 0.100"	FCI	52601-G10-8LF	1
44	C2p_VCO, C17, C20, C41, C42, C43, C44, C45, C46, C76, C79	CAP, CERM, 100pF, 50V, +/-5%, C0G/NP0, 0603	Kemet	C0603C101J5GACTU	0
45	C6, C38	CAP, CERM, 0.1uF, 25V, +/-5%, X7R, 0603	Kemet	C0603C104J3RACTU	0
46	C7, C8, C11, C13, C14, C18, C21, C22, C23, C35, C66, C70, C77, C80	CAP, CERM, 0.1uF, 16V, +/-10%, X7R, 0603	Kemet, TDK	C0603C104K4RACTU, C1608X7R1C104K	0
47	C26	CAP, CERM, xxxF, xxV, [Dielectric], xx%, [Package]	Kemet	C0603C104K4RACTU	0
48	C29, R71, R74, R79, R82, R83, R86, R93, R94	RES, 240 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603240RJNEA	0
49	C31, C36	CAP, CERM, 2pF, 50V, +/-12.5%, C0G/NP0, 0603	Kemet	C0603C209C5GACTU	0
50	C32, C34	CAP, CERM, 2200pF, 50V, +/-10%, X7R, 0603	Kemet	C0603C222K5RACTU	0
51	C33	CAP, CERM, 1000pF, 50V, +/-5%, C0G/NP0, 0603	Kemet	C0603C102J5GACTU	0
52	C62, C68, C74, C82, C87, C89, C90, C93, C95	CAP, CERM, 1uF, 10V, +/-10%, X5R, 0603	Kemet	C0603C105K8PACTU	0
53	C91, C92	CAP, CERM, 0.47uF, 25V, +/-10%, X7R, 0603	MuRata	GRM188R71E474KA12D	0
54	D1	Common Cathode Tuning Varactor	Skyworks	SMV1249-074LF	0
55	D2, D3	LED 2.8X3.2MM 565NM RED CLR SMD	Lumex Opto/Components Inc.	SML-LX2832IC	0

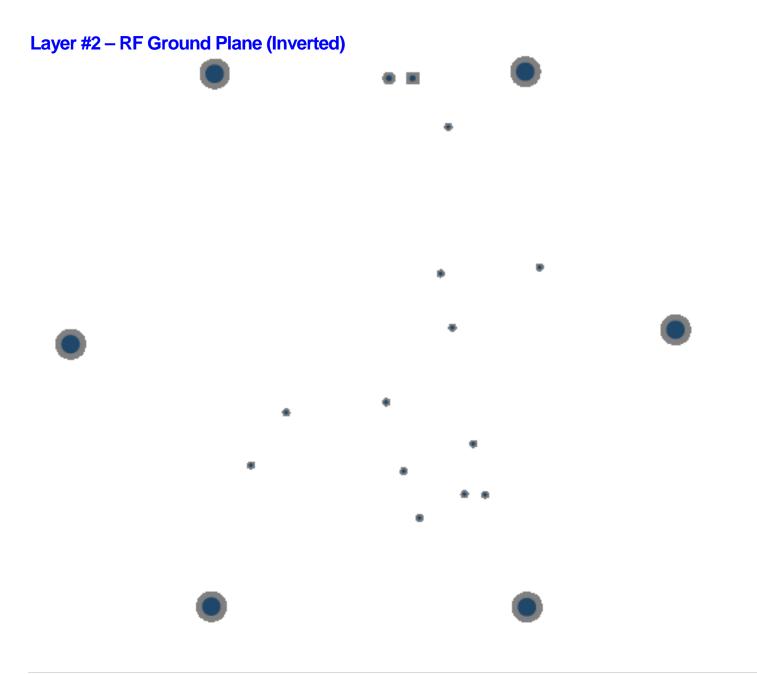
56	OSCin, OSCin*, VccVCO/Aux	Connector, SMT, End launch SMA 50 Ohm	Emerson Network Power	142-0701-851	0
57	R3, R4, R10, R11, R28, R29, R32, R33, R46, R47	RES, 270 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603270RJNEA	0
58	R6, R7	RES, 140 ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603140RFKEA	0
59	R9, R12	RES, 8.2 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW06038R20JNEA	0
60	R15, R22, R23, R24, R34, R35, R40, R41, R59, R61, R112, R113, R114, R116, R117, R119, R122	RES, 0 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW06030000Z0EA	0
61	R17, R18	RES, 120 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW0603120RJNEA	0
62	R25, R26, R38	RES, 10k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060310K0JNEA	0
63	R36, R39	RES, 4.7k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW06034K70JNEA	0
64	R37, R66, R67, R68, R75, R76, R77, R78, R80, R84, R87, R88, R91, R92, R95	RES, 51 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060351R0JNEA	0
65	R96, R97, R98	Ferrite	Murata	BLM18HE102SN1D	0
66	R118	RES, 51k ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060351K0JNEA	0
67	Status_LD	Connector, SMA Jack, Vertical, Gold, SMD	Emerson Network Power Connectivity	142-0711-201	0
68	U3	VCO		CRO2949A-LF	0
69	U4	Precison Single Low Noise, Low 1/F corner Op Amp	National Semiconductor	LMP7731MF	0
70	U6	Ultra Low Noise, 150mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor	National Semiconductor	LP5900SD-3.3	0
71	Y300			DNP_XTAL	0

Appendix E: PCB Layers Stackup

6-layer PCB Stackup includes:

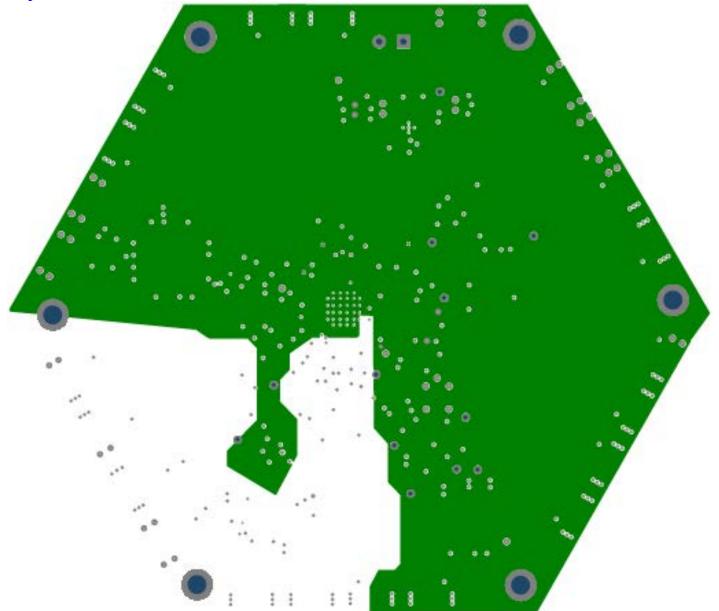

- Top Layer for high-priority high-frequency signals (2 oz.)
- RO4003 Dielectric, 16 mils
- RF Ground plane (1 oz.)
- FR4, 4 mils
- Power plane #1 (1 oz.)
- FR4, 12.6 mils
- Ground plane (1 oz.)
- FR4, 8 mils
- Power Plane #2 (1 oz.)
- FR4, 12 mils
- Bottom Layer copper clad for thermal relief (2 oz.)

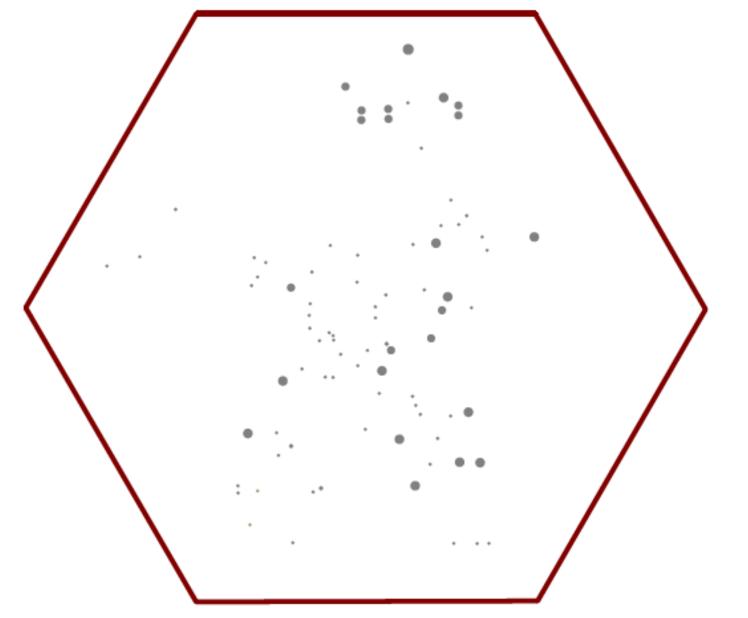
Top Layer [LMK049xxENG.GTL]	
RO4003 (Er = 3.3) 16 mil	
RF Ground plane [LMK049xxENG.G1]	
FR4 (Er = 4.8) 4 mil	•
Power plane #1 [LMK049xxENG.G2]	52.2 m
FR4 12.6 mil	62.2 mil thick
Ground plane [LMK049xxENG.GP1]	
FR4 8 mil	
Power plane #2 [LMK049xxENG.G3]	
FR4 12 mil	
Bottom Layer [LMK049xxENG.GBL]	



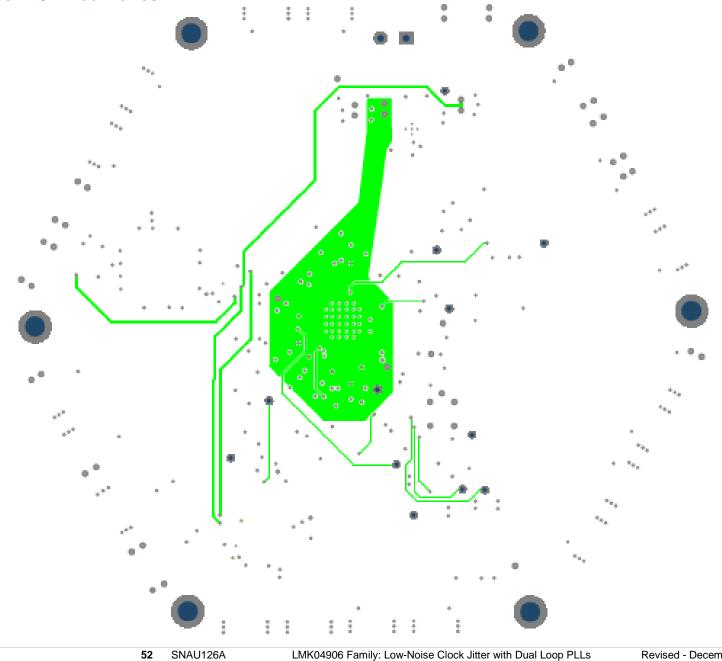
Appendix F: PCB Layout

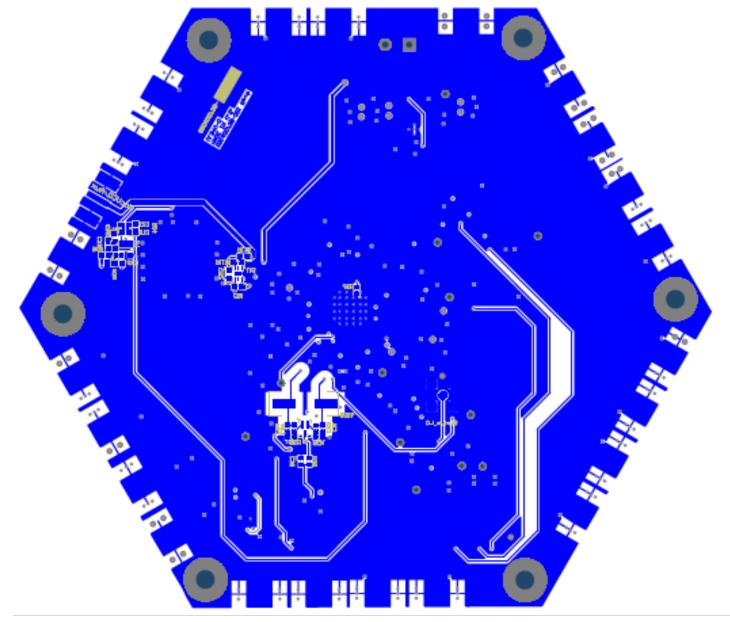
Layer #1 – Top

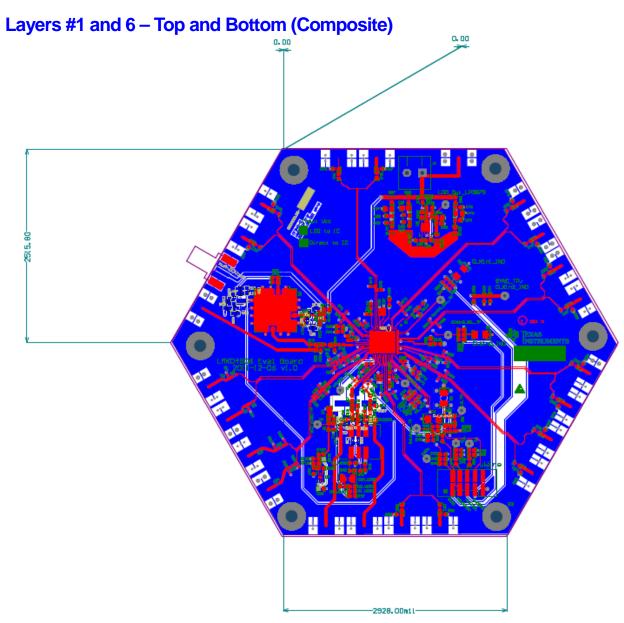




Layer #3 – Vcc Planes




Layer # 5 – Vcc Planes 2


LMK04906 Family: Low-Noise Clock Jitter with Dual Loop PLLs Copyright © 2013, Texas Instruments Incorporated

Layer #6 – Bottom

www.ti.com

Appendix G: Properly Configuring LPT Port

When trying to solve any communications issue, it is most convenient to verify communication by programming the POWERDOWN bit to confirm normal or low supply current consumption of the evaluation board.

LPT Driver Loading

The parallel port must be configured for proper operation. To confirm that the LPT port driver is successfully loading click "LPT/USB" \rightarrow "Check LPT." If the driver properly loads then the following message is displayed:

CodeLoader4x 🛛 🔀
Successfully opened LPT driver.
This does not confirm proper selection of LPT port.
OK

Figure 17: Successfully Opened LPT Driver

Successful loading of LPT driver does not mean LPT communications in CodeLoader are setup properly. The proper LPT port must be selected and the LPT port must not be in an improper mode.

The PC must be rebooted after install for LPT support to work properly.

Correct LPT Port/Address

To determine the correct LPT port in Windows, open the device manager (On Windows XP, Start \rightarrow Settings \rightarrow Control Panel \rightarrow System \rightarrow Hardware tab \rightarrow Device Manager) and check the LPT port under the Ports (COM & LPT) node of the tree. It can be helpful to confirm that the LPT port is mapped to the expected port address, for instance to confirm that LPT1 is really mapped to address 0x378. This can be checked by viewing the Properties of the LPT1 port and viewing Resources tab to verify that the I/O Range starts at 0x378. CodeLoader expects the traditional port mapping:

	Port	Address
L	.PT1	0x378
L	PT2	0x278
L	.PT3	0x3BC

If a non-standard address is used, use the "Other" port address in CodeLoader and type in the port address in hexadecimal. It is possible to change the port address in the computer's BIOS settings. The port address can be set in CodeLoader in the Port Setup tab as shown in Figure 18.

- LPT Port Setup			
- Port Address			
LPT1 C LPT2	O LPT3	O Other 378	Reload Every 10 sec
			10000021009 100

Figure 18: Selecting the LPT Port Address

Correct LPT Mode

If communications are not working, then it is possible the LPT port mode is set improperly. It is recommended to use the simple, Output-only mode of the LPT port. This can be set in the BIOS of the computer. Common terms for this desired parallel port mode are "Normal," "Output," or "AT." It is possible to enter BIOS setup during the initial boot up sequence of the computer.

Legacy Board Port Setup

If LPT communication with the LMK04906B EVM is required, then the following configuration should be followed for proper operation. Ensure the LPT port is configured correctly as well.

LMK04906B	
<u>File K</u> eyboard Controls <u>S</u> elect Device <u>O</u> ptions <u>M</u> ode <u>L</u> PT/USB <u>H</u> elp	
Port Setup Registers Bits/Pins BurstMode PLL1	PLL2 Clock Outputs
Communication Mode © LPT © USB USB2ANY - 2BF8984617000100 v Identify LPT Port Setup Port Address © LPT1 © LPT2 © LPT3 © Other 378 Reload Every 10 sec	LPT Port Setup Clock Other Pins Data Ground LE (Latch Enable) Address Conflict Reserved
Pin Configuration	10/14 Pin Connector (Top View)
$ \begin{array}{c} Clock Bit \\ C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 10 C 11 C 12 C 14 \\ Data Bit \\ C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 10 C 11 C 12 C 14 \\ LE Bit \\ C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 10 C 11 C 12 C 14 \end{array} $	
SYNC • 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 10 C 11 C 12 C 14	
Status_CLKin0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ● 7 ○ 8 ○ 10 ○ 11 ○ 12 ○ 14	DB 25 Connector
Status_CLKin1 C 1 C 2 © 3 C 4 C 5 C 6 C 7 C 8 C 10 C 11 C 12 C 14 TRIGGER	
COMM Mode: LPT Changed communications mode.	li.

www.ti.com

Appendix H: Troubleshooting Information

If the evaluation board is not behaving as expected, the most likely issues are...

- 1) Board communication issue
- 2) Incorrect Programming of the device
- 3) Setup Error

Refer to this checklist for a practical guide on identifying/exposing possible issues.

1) Confirm Communications

Refer to Appendix G: Properly Configuring LPT Port to troubleshoot this item.

Remember to load device with Ctrl+L.

2) Confirm PLL1 operation/locking

- 1) Program LD_MUX = "PLL1_R/2"
- Confirm that LD pin output is half the expected phase detector frequency of PLL1.
 - i. If not, examine CLKin_SEL programming.
 - ii. If not, examine CLKin0_BUFTYPE / CLKin1_BUFTYPE.
 - iii. If not, examine PLL1 register R programming.
 - iv. If not, examine physical CLKin input.
- 3) Program LD_MUX = "PLL1_N /2"
- 4) Confirm that LD pin output is half the expected phase detector frequency of PLL1.
 - i. If not, examine PLL1 register N programming.
 - ii. If not, examine physical OSCin input.

Naturally, the output frequency of the above two items, PLL 1 R Divider/2 and PLL 1 N Divider /2, on LD pin should be the same frequency.

- 5) Program LD_MUX = "PLL1_DLD"
- 6) Confirm the \overline{LD} pin output is high.
 - i. If high, then PLL1 is locked, continue to PLL2 operation/locking.
- 7) If LD pin output is low, but the frequencies are the same, it is possible that excessive leakage on Vtune pin is causing the digital lock detect to not activate. By default PLL2 waits for the digital lock detect to go high before allowing PLL2 and the integrated VCO to lock. Different VCXO models have different input leakage specifications. High leakage, low PLL1 phase detector frequencies, and low PLL1 charge pump current settings can cause the PLL1 charge pump to operate longer than the digital lock detect from activating.
 - i. Redesign PLL1 loop filter with higher phase detector frequency
 - ii. Redesign PLL1 loop filter with higher charge pump current
 - iii. Isolate VCXO tuning input from PLL1 charge pump with an op amp.

3) Confirm PLL2 operation/locking

- 1) Program LD_MUX = "PLL2_R/2"
- Confirm that LD pin output is half the expected phase detector frequency of PLL2.
 - i. If not, examine PLL2_R programming.
 - ii. If not, examine physical OSCin input.
- 3) Program LD_MUX = "PLL2_N/2"
- 4) Confirm that LD pin output is half the expected phase detector frequency of PLL2.
 - i. If not, confirm OSCin_FREQ is programmed to OSCin frequency.
 - ii. If not, examine PLL2_N programming.

Naturally, the output frequency of the above two items should be the same frequency.

- 5) Program LD_MUX = "PLL2 DLD"
- 6) Confirm the LD pin output is high.
- 7) Program LD_MUX = "PLL1 & PLL2 DLD"
- 8) Confirm the LD pin output is high.

Appendix I: EVM Software and Communication

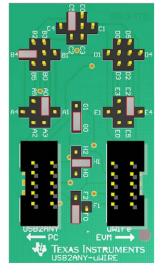
Codeloader is the software used to communicate with the EVM (Please download the latest version from TI.com - http://www.ti.com/tool/codeloader). This EVM can be controlled through the uWire interface on board. There are two options in communicating with the uWire interface from the computer.

OPTION 1

Open Codeloader.exe → Click "Select Device" → Click "Port Setup" tab → Click "LPT" (in Communication Mode)

USB2ANY-uWire Cabl

OPTION 2


www.ti.com

The Adapter Board

This table describes the pins configuration on the adapter board for each EVM board (See examples below table)

EVM		Jumper Bank							Code Loader Configuration
EVIVI	Α	В	С	D	Е	F	G	Н	
LMX2581	A4	B1	C2		E5	F1	G1	H1	BUFEN (pin 1), Trigger (pin 7)
LMX2541	A4		C3		E4	F1	G1	H1	CE (pin 1), Trigger (pin 10)
LMK0400x	A0		C3		E5	F1	G1	H1	GOE (pin 7)
LMK01000	A0		C1		E5	F1	G1	H1	GOE (pin 7)
LMK030xx	A0		C1		E5	F1	G1	H1	SYNC (pin 7)
LMK02000	A0		C1		E5	F1	G1	H1	SYNC (pin 7)
LMK0480x	A0	B2	C3		E5	F0	G0	H1	Status_CLKin1 (pin 3)
LMK04816/4906	A0	B2	C3		E5	F0	G0	H1	Status_CLKin1 (pin 3)
LMK01801	A0	B4	C5		E2	F0	G0	H1	Test (pin 3), SYNC0 (pin 10)
LMK0482x (prelease)	A0	B5	C3	D2	E4	F0	G0	H1	CLKin1_SEL (pin 6), Reset (pin 10)
LMX2531	A0				E5	F2	G1	H2	Trigger (pin 1)
LMX2485/7	A0		C1		E5	F2	G1	H0	ENOSC (pin 7), CE (pin 10)
LMK03200	A0				E5	F0	G0	H1	SYNC (pin 7)
LMK03806	A0		C1		E5	F0	G0	H1	
LMK04100	A0		C1		E5	F1	G1	H1	

Example adapter configuration (LMK01801)

Open Codeloader.exe \rightarrow Click "Select Device" \rightarrow Click "Port Setup" Tab \rightarrow Click "USB" (in Communication Mode)

*Remember to also make modifications in "Pin Configuration" Section according to Table above

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated