0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

\qquad
General Description
The MAX4715/MAX4716 are low on-resistance, lowvoltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6 V to +3.6 V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC). These devices also have fast switching speeds (ton $=18$ ns max, toff $=12 n s$ max).
When powered from a +3 V supply, the MAX4715/ MAX4716 offer 0.4Ω max on-resistance (RoN) with 0.1Ω \max RoN flatness. Their digital logic inputs are +1.8 V CMOS compatible when using a single +3 V supply.
The MAX4715 is pin compatible with the MAX4594, and the MAX4716 is pin compatible with the MAX4595. The MAX4715/MAX4716 are available in SC70-5 packages.

Applications
Power Routing
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems
Hard Drives

- Low Ron
$0.4 \Omega \max$ (+3 V Supply)
$1.2 \Omega \mathrm{max}(+1.8 \mathrm{~V}$ Supply)
- 0.1Ω max Ron Flatness (+3V Supply)
- +1.6V to +3.6V Single-Supply Operation
- Available in 5-Pin SC70 Packages
- Fast Switching: ton $=18 n s$ max, toff $=12 n s$ max
- +1.8V CMOS Logic Compatible (+3V Supply)
- Pin Compatible with MAX4594 (MAX4715)

Pin Compatible with MAX4595 (MAX4716)

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4715EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SC} 70-5$	ACJ
MAX4716EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SC} 70-5$	ACK

Pin Configurations/Functional Diagrams/Truth Tables

0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range MAX471_EXK
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range .. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Signals on NO, NC, or COM exceeding V+ or GND are clamped by internal diodes.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$V_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance (Note 6)	Ron	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.3	0.4	Ω
			TMin to TMAX			0.45	
On-Resistance Flatness (Note 4)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.6,1.5 \mathrm{~V}, 2.1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.09	Ω
			TMin to TMAX			0.1	
NO, NC Off-Leakage Current	InO(OFF) or InC(OFF) or	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			TMin to $\mathrm{T}_{\text {max }}$	-10		10	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			TMin to $\mathrm{T}_{\text {max }}$	-10		10	
COM On-Leakage Current	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V} \mathrm{~V} \text { CM }=0.3 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \text { or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2		2	nA
			TMIN to $\mathrm{T}_{\text {MAX }}$	-10		10	
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		12	18	ns
			TMIn to TMAX			20	
Turn-Off Time	toFF	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		6	12	ns
			TMIN to TMAX			15	
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, R_{G E N}=0, \\ & C_{L}=1.0 \mathrm{nF}, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20		pC
Off-Isolation (Note 5)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{R M S}, \\ & R L=50 \Omega, C L=5 p F \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-54		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, R_{L}}=32 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.01		\%
NC or NO Off-Capacitance	$\mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}$ $\mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}$	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		55		pF
COM Off-Capacitance	CCOM(OFF)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		55		pF
COM On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		80		pF

0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

ELECTRICAL CHARACTERISTICS—Single $+3 V$ Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.5	V
Input Voltage High	V_{IH}			1.4			V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1		1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	$1+$	$\mathrm{V}+=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	$+25^{\circ} \mathrm{C}$		0.04	0.2	$\mu \mathrm{A}$
			TMIN to TMAX			2	

ELECTRICAL CHARACTERISTICS—Single +1.8V Supply

$\left(\mathrm{V}+=+1.8 \mathrm{~V}, \mathrm{~V}_{I H}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNTTS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}} \end{gathered}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & I_{\text {COM }}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.9 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	1.2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2.5	
NO or NC Off-Leakage Current	$\begin{aligned} & \text { INO(OFF)or } \\ & \text { INC(OFF) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
COM On-Leakage Current	ICOM(ON)	$\mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, 0.3 \mathrm{~V}$, or floating	$+25^{\circ} \mathrm{C}$	-2		2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DYNAMIC							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		18	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Turn-Off Time	toFF	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=35 p F$, Figure 1	$+25^{\circ} \mathrm{C}$		9	20	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			25	
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C_{L}=1 n F \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		40		pC

0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

ELECTRICAL CHARACTERISTICS—Single +1.8 V Supply (continued)
$\left(\mathrm{V}+=+1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
LOGIC INPUT							
Input Voltage Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Voltage High	V_{IH}			1			V
Input Leakage Current	IIN	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$
SUPPLY							
Positive Supply Current	I+	V IN $=0$ or $\mathrm{V}+$	$+25^{\circ} \mathrm{C}$		0.04	0.2	$\mu \mathrm{A}$
			$T_{\text {MIN }}$ to TMAX			2	

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: SC70-packaged parts are 100% tested at $+25^{\circ} \mathrm{C}$. Limits across the full temperature range are guaranteed by design and correlation.
Note 4: Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal range.
Note 5: Off-Isolation = 20log10 [$\mathrm{V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right], \mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 6: Guaranteed by design.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

vs. TEMPERATURE

TOTAL HARMONIC DISTORTION vs. FREQUENCY

CHARGE INJECTION vs. COM VOLTAGE

LOGIC THRESHOLD VOLTAGE
vs. SUPPLY VOLTAGE

Pin Description

PIN		NAME	FUNCTION
MAX4715	MAX4716		
1	1	COM	Analog Switch—Common
2	-	NO	Analog Switch-Normally Open
-	2	NC	Analog Switch—Normally Closed
3	3	GND	Ground
4	4	IN	Digital Control Input
5	5	V+	Positive Supply Input

0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

___Detailed Description
The MAX4715/MAX4716 are low on-resistance (Ron), low-voltage, single-pole/single-throw (SPST) analog switches that operate from a +1.6 V to +3.6 V single supply. The MAX4715 is normally open (NO), and the MAX4716 is normally closed (NC).
When powered from a +3 V supply, their 0.4Ω RON allows high continuous currents to be switched in a variety of applications.

Applications Information

Logic Inputs

The MAX4715/MAX4716 logic inputs can be driven up to +3.6 V regardless of the supply voltage. For example,
with a +3.3 V supply, IN may be driven low to GND and high to +3.6 V . Driving IN Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Analog Signal Levels
Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) can be passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd

Test Circuits/Timing Diagrams

Figure 1. Switching Time

IN DEPENDS ON SWITCH CONFIGURATION; INPUT POLARITY DETERMINED BY SENSE OF SWITCH.

Figure 2. Charge Injection

0.4 , Low-Voltage, Single-Supply SPST Analog Switches in SC70

Figure 3. On-Loss and Off-Isolation

Figure 4. Channel Off/On-Capacitance

Chip Information
TRANSISTOR COUNT: 135
PROCESS: CMOS

0.4 ${ }^{2}$, Low-Voltage, Single-Supply SPST Analog Switches in SC70

\qquad

\qquad

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{\text { MAX4715EXK }+\mathrm{T}}$ MAX4716EXK+T MAX4716EXK+TG104

