- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports the VME64 ETL Specification
- Reduced TTL-Compatible Input Threshold Range
- High-Drive Outputs ($\mathrm{IOH}_{\mathrm{O}}=-60 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{OL}}=90 \mathrm{~mA}$) Support Equivalent $25-\Omega$ Incident-Wave Switching
- $V_{C C}$ BIAS Pin Minimizes Signal Distortion During Live Insertion
- Internal Pullup Resistor on $\overline{O E}$ Keeps Outputs in High-Impedance State During Power Up or Power Down
- Distributed $V_{C C}$ and GND Pins Minimize High-Speed Switching Noise
- Equivalent $25-\Omega$ Series Damping Resistor on B Port
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors

description/ordering information

The SN74ABTE16246 is an 11-bit noninverting transceiver designed for asynchronous two-way communication between buses. This device has open-collector and 3 -state outputs. The device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so that the buses are effectively isolated. When $\overline{\mathrm{OE}}$ is low, the device is active.
The B port has an equivalent $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs on the B port hold unused or floating inputs at a valid logic level.
The A port provides for the precharging of the outputs via $\mathrm{V}_{\mathrm{CC}} \mathrm{BIAS}$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DL	Tube	SN74ABTE16246DL	ABTE16246
		Tape and reel	SN74ABTE16246DLR	
	TSSOP - DGG	Tape and reel	SN74ABTE16246DGGR	ABTE16246

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^0]| FUNCTION TABLE | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUTS | | | | | OPERATION |
| $\overline{\mathrm{OE}}$ | 9DIR | 10DIR | 11DIR | | |
| H | X | X | X | X | Isolation |
| L | X | X | X | X | $1 \mathrm{BI}-8 \mathrm{BI}$ data to $1 \mathrm{~A}-8 \mathrm{~A}$ bus (OCt), 1A-8A data to 1BO-8BO bus |
| L | L | X | X | X | 9A data to 9B bus |
| L | H | X | X | X | 9 B data to 9A bus |
| L | X | L | X | X | 10A data to 10B bus |
| L | X | H | X | X | 10B data to 10A bus |
| L | X | X | L | L | 11A data to 11B bus |
| L | X | X | L | H | $11 \mathrm{~A}, 11 \mathrm{~B}$ isolation |
| L | X | X | H | X | 11 B data to 11A bus |

\dagger OC = Open-collector outputs
logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Current into any output in the low state, IO . } 128 \mathrm{~mA} \\
& \text { Input clamp current, } l_{I K}\left(V_{I}<0\right) \text {. }-18 \mathrm{~mA} \\
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0\right) \text {. } 50 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{J A} \text { (see Note 2): DGG package . 70²} \mathrm{C} / \mathrm{W} \\
& \text { DL package } 63^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \text {. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{CC}} \mathrm{BIAS} \end{aligned}$	Supply voltage		4.5	5	5.5	V
V_{IH}	High-level input voltage	$\overline{\mathrm{OE}}$	2			V
		Except $\overline{\text { OE }}$	1.6			
VIL	Low-level input voltage	$\overline{\text { OE }}$			0.8	V
		Except $\overline{\mathrm{OE}}$			1.4	
V_{OH}	High-level output voltage	1A-8A	0		5.5	V
V_{1}	Input voltage		0		V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current	B bus			-12	mA
		9A-11A			-64	
${ }^{\text {IOL }}$	Low-level output current	B bus			12	mA
		A bus			90	
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled			10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{C} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{IOH}=-100 \mu \mathrm{~A}$			-0.2	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{OH}=-1 \mathrm{~mA}$	2.4			
			$\mathrm{IOH}=-12 \mathrm{~mA}$	2			
	$9 \mathrm{~A}-11 \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{OH}=-1 \mathrm{~mA}$	4.5			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OH}=-32 \mathrm{~mA}$	2.4			
			$\mathrm{IOH}=-64 \mathrm{~mA}$	2			
${ }^{\text {OH }}$	1A-8A	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			20	$\mu \mathrm{A}$
VOL	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=1 \mathrm{~mA}$			0.4	V
			$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$			0.8	
	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$			0.55	
			$\mathrm{l} \mathrm{OL}=90 \mathrm{~mA}$	0.9			
$\mathrm{V}_{\text {hys }}$				100			mV
$l_{1(\text { hold })}$	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	100			$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$	-100			
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0$ to 5.5 V			± 500	
I	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 1	$\mu \mathrm{A}$
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$				± 20	
IOZH^{\ddagger}	9A-11A	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			10	$\mu \mathrm{A}$
IozL ${ }^{\ddagger}$	9A-11A	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Io	A port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50		-180	mA
	B port			-25		-90	
$\mathrm{I}_{\text {ff }}$		$\mathrm{V}_{\mathrm{CC}}=0, \mathrm{~V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$,	$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=0$	± 100			$\mu \mathrm{A}$
${ }^{\text {I CC }}$	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		28	36	mA
			Outputs low		38	48	
			Outputs disabled		20	32	
ICCD	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\overline{\mathrm{OE}}$ high		0.02		$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$
			$\overline{\mathrm{OE}}$ low		0.33		
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V			2.5	4	pF
C_{io}	I/O ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			4.5	8	pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
live-insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
ICC (VCCBIAS)		$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V ,	$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{I}(\mathrm{DC})=0$		250	700	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} \ddagger$,	$\mathrm{V}_{\text {CC }}$ BIAS $=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{I}(\mathrm{DC})=0$			20	
V_{O}	A port	$\mathrm{V}_{\mathrm{CC}}=0$	$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=4.5 \mathrm{~V}$ to 5.5 V		1.1	1.5	1.9	V
			$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 \mathrm{~V}$ to 5.25 V		1.3	1.5	1.7	
Io	A port	$V_{C C}=0$,	$\mathrm{V}_{C C} \mathrm{BIAS}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0$	-20		-100	$\mu \mathrm{A}$
				$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$	20		100	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \mathrm{BIAS}$
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
tPLH	A	B	1.5	3.1	4.2	1.5	5.2	ns
tPHL			1.5	3.5	4.6	1.5	5.2	
tPLH	9B-11B	9A-11A	1.5	3	3.8	1.5	4.5	ns
tPHL			1.5	3.2	4	1.5	4.5	
${ }_{\text {tPLH }}{ }^{\text {§ }}$	1B-8B	1A-8A	1.5	3.2	4	1.5	4.5	ns
${ }_{\text {tPLH }}{ }^{\text {I }}$			7.5	8.9	9.7	7.5	10.3	
tPHL			1.5	3.2	4	1.5	4.5	
tPZH	$\overline{\mathrm{OE}}$	9A-11A	2	4.3	5.3	2	6.2	ns
tPZL		1A-11A	2	4.4	5.4	2	6.8	
tPZH	$\overline{\mathrm{OE}}$	B	2	4.3	6	2	7.1	ns
tPZL			2	4.5	6.4	2	7.3	
tphz	$\overline{\mathrm{OE}}$	9A-11A	2	4.2	5.9	2	6.7	ns
tplZ		1A-11A	2	3.5	4.6	2	5.1	
tPHZ	$\overline{\mathrm{OE}}$	B	2.5	4.3	6.2	2.5	7	ns
tplZ			2	3.6	5	2	5.5	

\S Measurement point is $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$.
II Measurement point is $\mathrm{V}_{\mathrm{OL}}+1.5 \mathrm{~V}$.
extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	UNIT
				MIN	TYP	MAX			
tPLH	9B-11B	9A-11A	$\mathrm{RX}=13 \Omega$	1.5	3.2	4	1.5	4.8	ns
tPHL				1.5	3.8	4.7	1.5	5.6	
tPHL	1B-8B	1A-8A	$\mathrm{RX}=13 \Omega$	1.5	3.3	4.2	1.5	4.8	ns
tPLH	9B-11B	9A-11A	$\mathrm{RX}=26 \Omega$	1.5	3.1	4	1.5	4.6	ns
tPHL				1.5	3.5	4.4	1.5	4.9	
tPHL	1B-8B	1A-8A	$\mathrm{RX}=26 \Omega$	1.5	3.1	4	1.5	4.4	ns
tPLH	9B-11B	1A-8A	$\mathrm{RX}=56 \Omega$	1.5	3	3.8	1.5	4.5	ns
tPHL				1.5	3.3	4.2	1.5	4.7	
tPHL	1B-8B	1A-8A	$\mathrm{RX}=56 \Omega$	1.5	3	4	1.5	4.4	ns
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	B	A	$\mathrm{R}_{\mathrm{X}}=$ Open		0.1	0.6		2	ns
	A	B	RX $=$ Open		0.4	0.8		2	
	B	A	$\mathrm{R}_{\mathrm{X}}=26 \Omega$		0.3	0.8		2	
$t_{\text {sk }}(0)$	B	A	$\mathrm{R}_{\mathrm{X}}=$ Open		0.3	0.7		1.3	ns
	A	B	RX $=$ Open		0.7	1.1		1.3	
	B	A	RX $=26 \Omega$		0.5	1		1.3	
$\mathrm{t}_{\mathrm{t}}{ }^{\dagger}$	B	A	$\mathrm{R}_{\mathrm{X}}=26 \Omega$	0.5	0.8	1.5	0.5	1.5	ns
$t_{t} \ddagger$	A	B	RX = Open	3.5	5.5	7.3	3.5	7.9	ns

\dagger_{t} is measured between 1 V and 2 V of the output waveform.
$\ddagger t_{t}$ is measured between 10% and 90% of the output waveform.
extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	LOAD	MIN MAX	UNIT
${ }^{\text {tsk }}$ (temp)	A	B	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { constant }, \\ \Delta \mathrm{T}_{\mathrm{A}}=20^{\circ} \mathrm{C} \end{gathered}$		2.5	ns
	B	A		$\mathrm{RX}=56 \Omega$	4	
${ }^{\text {sts }}$ (load)	B	A	$\mathrm{V}_{\mathrm{CC}}=$ constant, Temperature $=$ constant	$R \mathrm{R}=13,26$, or 56Ω	4	ns

NOTES: A. Pulse skew, $\mathrm{t}_{\mathrm{sk}(\mathrm{p})}$, is defined as the difference in propagation-delay times tPLH1 and tPHL^{2} on the same terminal at identical operating conditions.
B. Output skew, $\mathrm{t}_{\text {sk }}(0)$, is defined as the difference in propagation delay of any two outputs of the same device switching in the same direction (e.g., |tpLH1 - tpLH2|) .
C. Temperature skew, $\mathrm{t}_{\mathrm{sk}(\mathrm{temp})}$, is the output skew of two devices, both having the same value of $\mathrm{V}_{\mathrm{CC}} \pm 1 \%$ and with package temperature differences of $20^{\circ} \mathrm{C}$.
D. Load skew, $\mathrm{t}_{\text {sk }(\text { load }), ~ i s ~ m e a s u r e d ~ w i t h ~} \mathrm{RX}$ in Figure 2 at 13Ω for one unit and 56Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics

PARAMETER MEASUREMENT INFORMATION

$R X=13,26$, or 56Ω
LOAD CIRCUIT

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

SWITCHING TABLE LOADS	S1	S2
tPLH $/$ tPHL (9A-11A and B port)	Up	Open
tPLH/tPHL (1A-8A)	Up	7 V
tplz/tpzL	Up	7 V
tPHZ/tpZH (except 1A-8A)	Up	Open

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. t_{t} is measured between 1 V and 2 V of the output waveform.
F. t_{t} is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking $(4 / 5)$	Samples
SN74ABTE16246DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples
SN74ABTE16246DL	ACTIVE	SSOP	DL	48	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples
SN74ABTE16246DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples
SN74ABTE16246DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS \& no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: |
| SN74ABTE16246DGGR | TSSOP | DGG | 48 | 2000 | 330.0 | 24.4 | 8.6 | 13.0 | 1.8 | 12.0 | 24.0 | Q1 |
| SN74ABTE16246DLR | SSOP | DL | 48 | 1000 | 330.0 | 32.4 | 11.35 | 16.2 | 3.1 | 16.0 | 32.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABTE16246DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ABTE16246DLR	SSOP	DL	48	1000	367.0	367.0	55.0

DL (R-PDSO-G48)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

[^0]: Widebus is a trademark of Texas Instruments.

