VS-ST730CL Series

Vishay Semiconductors

Phase Control Thyristors (Hockey PUK Version), 990 A

B-PUK (TO-200AC)

PRIMARY CHARACTERISTICS						
I _{T(AV)}	990 A					
V _{DRM} /V _{RRM}	800 V, 1200 V, 1400 V, 1600 V, 1800 V, 2000 V					
V _{TM}	1.62 V					
I _{GT}	100 mA					
TJ	-40 °C to +125 °C					
Package	B-PUK (TO-200AC)					
Circuit configuration	Single SCR					

FEATURES

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case B-PUK (TO-200AC)
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS							
PARAMETER	TEST CONDITIONS	VALUES	UNITS				
		990	А				
I _{T(AV)}	T _{hs}	55	C°				
		2000	A				
IT(RMS)	T _{hs}	25	C°				
	50 Hz	17 800	А				
ITSM	60 Hz	18 700	A				
l ² t	50 Hz	1591	kA ² s				
1-1	60 Hz	1452	KA-S				
V _{DRM} /V _{RRM}		800 to 2000	V				
t _q	Typical	150	μs				
TJ		-40 to 125	C°				

VOLTAGE RATINGS									
TYPE VOLTAGE NUMBER CODE		V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	$I_{DRM}/I_{RRM} MAXIMUM AT T_J = T_J MAXIMUM mA$					
	08	800	900						
	12	1200	1300						
	14	1400	1500	80					
VS-ST730CL	16	1600	1700	00					
	18	1800	1900						
	20	2000	2100						

Revision: 28-Sep-17

1

Document Number: 94414

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

COMPLIANT

VS-ST730CL Series

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATING	5					
PARAMETER	SYMBOL		TEST CONDITIONS			UNITS
Maximum average on-state current	L	180° condu	ction, half sine v	wave	990 (375)	Α
at heatsink temperature	I _{T(AV)}	double side	(single side) co	oled	55 (85)	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 25 °C	heatsink temp	erature double side cooled	2000	
		t = 10 ms	No voltage		17 800	
Maximum peak, one-cycle	L	t = 8.3 ms	reapplied		18 700	А
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		15 000	kA ² s
		t = 8.3 ms	reapplied	Sinusoidal half wave,	15 700	
		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	1591	
Maximum I ² t for fusing	l ² t	t = 8.3 ms			1452	
Maximum tion fusing		t = 10 ms	100 % V _{RRM}		1125	
		t = 8.3 ms	reapplied		1027	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 to 10) ms, no voltage	e reapplied	15 910	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x \ I_{T(AV)} < I < \pi \ x$	$I_{T(AV)}$), $T_J = T_J$ maximum	0.98	v
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$	$(I > \pi x I_{T(AV)}), T_J = T_J maximum$		1.12	v
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), T _J = T _J maximum		0.32	mΩ	
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J maximum$		0.27	1115.2	
Maximum on-state voltage	V_{TM}	$I_{pk} = 2000 \text{ A}, T_J = T_J \text{ maximum, } t_p = 10 \text{ ms sine pulse}$		1.62	V	
Maximum holding current	Ι _Η	T 25 °C	anode supply 1	2 V resistive load	600	mA
Typical latching current	١ _L	1 _J = 25 °C,	anoue supply 1		1000	

SWITCHING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 $\Omega, t_r \leq 1 \; \mu s$ $T_J = T_J$ maximum, anode voltage $\leq 80 \; \% \; V_{DRM}$	1000	A/µs			
Typical delay time	t _d	Gate current 1 A, dl _g /dt = 1 A/ μ s V _d = 0.67 % V _{DRM} , T _J = 25 °C	1.0				
Typical turn-off time	tq	I_{TM} = 750 A, T_J = T_J maximum, dl/dt = 60 A/µs, V_R = 50 V, dV/dt = 20 V/µs, gate 0 V 100 $\Omega,$ t_p = 500 µs	150	μs			

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs		
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$I_1 = I_1 \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{j=1$		mA		

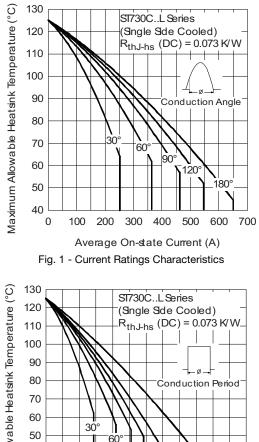
VS-ST730CL Series

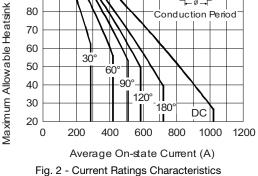
Vishay Semiconductors

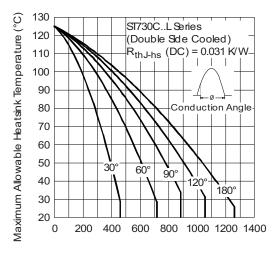
۲RI	GGI	ERING	ì	

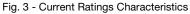
TRIGGERING						
PABAMETER	SYMBOL	те	ST CONDITIONS	VAL	UES	UNITS
		ST CONDITIONS	Тур.	Max.	UNITS	
Maximum peak gate power	P_{GM}	$T_J = T_J$ maximum,	$t_p \le 5 ms$	10	0.0	w
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum,	f = 50 Hz, d% = 50	2	.0	vv
Maximum peak positive gate current	I _{GM}	$T_J = T_J$ maximum,	$t_p \le 5 ms$	3	.0	А
Maximum peak positive gate voltage	$+ V_{GM}$		+ < 5 mg	20		v
Maximum peak negative gate voltage	- V _{GM}	ij = ij maximum,	$T_J = T_J$ maximum, $t_p \le 5$ ms			
		T _J = -40 °C		200	-	
DC gate current required to trigger	I _{GT}	T _J = 25 °C	Maximum required gate	100	200	mA
		T _J = 125 °C	trigger/ current/voltage are the lowest	50	-	
		T _J = -40 °C	value which will trigger all units		-	
DC gate voltage required to trigger	V_{GT}	T _J = 25 °C	12 V anode to cathode applied	1.8	3.0	V
		T _J = 125 °C		1.1	-	
DC gate current not to trigger	I _{GD}		Maximum gate current/voltage not to trigger is the maximum	1	0	mA
DC gate voltage not to trigger	V _{GD}	$T_J = T_J$ maximum	value which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.25		V

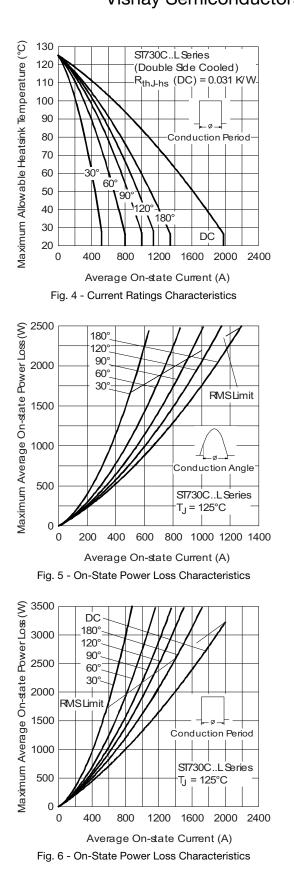
THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum operating junction temperature range	TJ		-40 to 125	℃		
Maximum storage temperature range	T _{Stg}		-40 to 150			
Maximum thermal registerion, junction to heataink	В	DC operation single side cooled	0.073			
Maximum thermal resistance, junction to heatsink	R _{thJ-hs}	DC operation double side cooled	0.031	K/W		
Maximum thermal registeres, sees to besteink	R _{thC-hs}	DC operation single side cooled	0.011	- r√ vv		
Maximum thermal resistance, case to heatsink		DC operation double side cooled	0.006			
Mounting force, ± 10 %			14 700 (1500)	N (kg)		
Approximate weight			255	g		
Case style		See dimensions - link at the end of datasheet	B-PUK (TO-	200AC)		

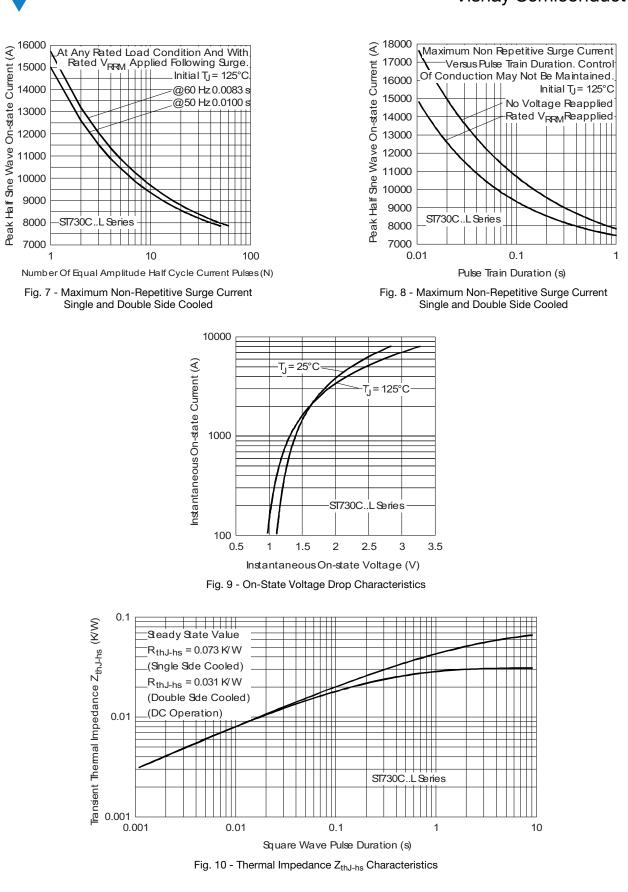

CONDUCTION ANGLE	SINUSOIDAL	CONDUCTION	RECTANGULAR	R CONDUCTION		UNITS		
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS	UNITS		
180°	0.009	0.009	0.006	0.006				
120°	0.011	0.011	0.010	0.011				
90°	0.014	0.014	0.015	0.015	$T_J = T_J maximum$	K/W		
60°	0.020	0.020	0.021	0.021				
30°	0.036	0.036	0.036	0.036				


Note


The table above shows the increment of thermal resistance RthJ-hs when devices operate at different conduction angles than DC ٠


Revision: 28-Sep-17 Document Number: 94414 3 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000




Revision: 28-Sep-17

4

Document Number: 94414

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

www.vishay.com

Revision: 28-Sep-17 5 Document Number: 94414 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-ST730CL Series www.vishay.com **Vishay Semiconductors** 100 Rectangulargate pulse (1) PGM = 10W, tp = 4ms a) Recommended load line for \mp

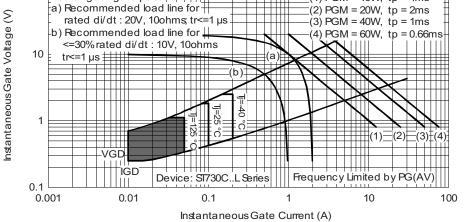
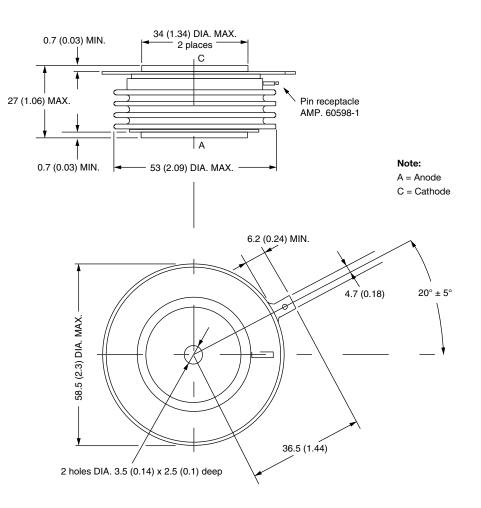


Fig. 11 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code	VS-	ST	73	0	с	20	L	1	-	
	1	2	3	4	5	6	7	8	9	
	1 - 2 -		nay Sen ristor	niconduo	ctors pro	oduct				
	3 - 4 -		•	art numt er grade						
	5 -	C =	0 = converter grade C = ceramic PUK							
	6 - 7 -		Voltage code x 100 = V _{RRM} (see Voltage Ratings table) L = PUK case B-PUK (TO-200AC)							
	8 -		0 = eyelet terminals (gate and auxiliary cathode unsoldered leads) 1 = fast-on terminals (gate and auxiliary cathode unsoldered leads)							
									oldered le	,
				terminal dt: ● No			-		oldered I	eads)
	9 -	Chi			: 1000 V		-			

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95076			


Vishay Semiconductors

B-PUK (TO-200AC)

DIMENSIONS in millimeters (inches)

Creepage distance: 36.33 (1.430) minimum Strike distance: 17.43 (0.686) minimum

Quote between upper and lower pole pieces has to be considered after application of mounting force (see thermal and mechanical specification)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

ST730C12L0L
ST730C12L1L
ST730C14L0L
ST730C14L1L
ST730C16L0L
ST730C16L1L
ST730C18L1L
VS

ST730C12L0
VS-ST730C14L0
VS-ST730C16L0
VS-ST730C18L0
VS-ST730C12L1
VS-ST730C14L1
VS

ST730C08L0
VS-ST730C18L1
VS-ST730C16L1
VS-ST730C08L1
VS-ST730C14L1L
VS

ST730C12L1L
VS-ST730C18L1
VS-ST730C16L1
VS-ST730C08L1
VS-ST730C14L1L
VS

ST730C12L1L
VS-ST730C12L0L
VS-ST730C18L1L
VS-ST730C20L1L
VS-ST730C16L1L
VS

ST730C14L0L
VS-ST730C16L0L
VS-ST730C18L1L
VS-ST730C20L1L
VS-ST730C20L1
VS