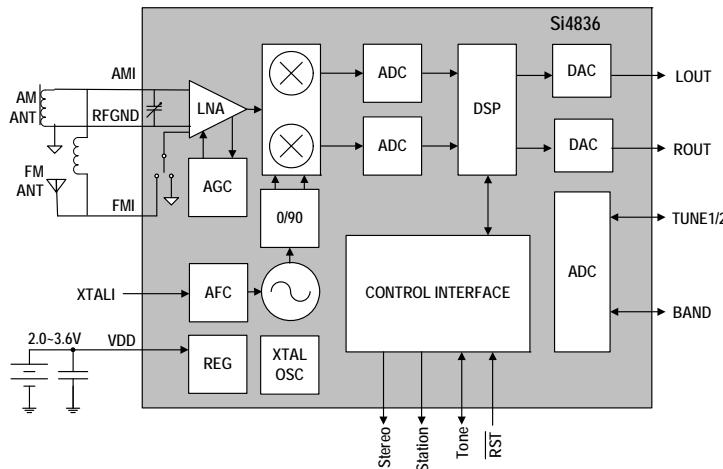


BROADCAST MECHANICAL TUNING AM/FM/SW RADIO RECEIVER

Features

- Worldwide FM band support (64–109 MHz)
- Worldwide AM band support (504–1750 kHz)
- SW band support (2.3–28.5 MHz)
- No manual alignment necessary
- Stereo audio output
- Selectable support AM/FM/SW regional bands
- Enhanced FM/SW band coverage
- Station and stereo LED indicators
- China TV channels audio carrier reception in FM band
- Automatic frequency control (AFC)
- Integrated LDO regulator
- 2.0 to 3.6 V supply voltage
- Wide range of ferrite loop sticks and air loop antennas supported
- 16-pin SOIC
- RoHS-compliant
- Bass/Treble control
- EN55020 compliant

Ordering Information:
See page 14.


Applications

- Table and portable radios
- Mini/micro systems
- CD/DVD players
- Boom boxes
- Modules
- Clock radios
- Mini HiFi
- Entertainment systems

Description

The Si4836 is the high performance receiver function from antenna input to audio output. The Si4836 extends Silicon Laboratories multi-band tuner family, and further increases the ease and attractiveness of design radio reception to audio devices through small size and board area, minimum component count, and superior, proven performance. Si4836 enhances the FM and SW band coverage, further supports China TV channels audio reception in FM band. The Si4836 removes any requirements for manually tuning components during the manufacturing process. The receiver has very low power consumption, runs off two AAA batteries, and delivers the performance benefits of digital tuning to the analog radio market.

Functional Block Diagram

Pin Assignments

Si4836-A10 (SOIC)

LOUT	1	●	ROUT
TUNE1	2		GND
TUNE2	3		VDD
BAND	4		XTALI
NC	5		XTALO
FMI	6		STATION
RFGND	7		STEREO/LNA_EN
AMI	8		RST

This product, its features, and/or its architecture is covered by one or more of the following patents, as well as other patents, pending and issued, both foreign and domestic: 7,127,217; 7,272,373; 7,272,375; 7,321,324; 7,355,476; 7,426,376; 7,471,940; 7,339,503; 7,339,504.

TABLE OF CONTENTS

Section	Page
1. Electrical Specifications	4
2. Typical Application Schematic	9
3. Bill of Materials	10
4. Functional Description	11
4.1. Overview	11
4.2. FM Receiver	11
4.3. AM Receiver	12
4.4. SW Receiver	12
4.5. Frequency Tuning	12
4.6. Band Select	12
4.7. Bass and Treble	12
4.8. Reset, Powerup, and Powerdown	12
5. Pin Descriptions: Si4836-A10	13
6. Ordering Guide	14
7. Package Outline: Si4836-A10	15
8. PCB Land Pattern: Si4836-A10	17
9. Top Marking	18
9.1. Si4836-A10 Top Marking	18
9.2. Top Marking Explanation	18
10. Additional Reference Resources	19
Document Change List	20
Contact Information	21

1. Electrical Specifications

Table 1. Recommended Operating Conditions^{1,2}

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply Voltage ³	V_{DD}		2	—	3.6	V
Power Supply Powerup Rise Time	V_{DDRISE}		10	—	—	μs
Ambient Temperature Range	T_A		-15	25	85	$^{\circ}C$

Note:

1. Typical values in the data sheet apply at $V_{DD} = 3.3$ V and $25^{\circ}C$ unless otherwise stated.
2. All minimum and maximum specifications in the data sheet apply across the recommended operating conditions for minimum $V_{DD} = 2.7$ V.
3. Operation at minimum V_{DD} is guaranteed by characterization when V_{DD} voltage is ramped down to 2.0 V. Part initialization may become unresponsive below 2.3 V.

Table 2. DC Characteristics

($V_{DD} = 2.7$ to 3.6 V, $T_A = -15$ to $85^{\circ}C$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
FM Mode						
Supply Current*	I_{FM}		—	20.0	—	mA
AM/SW Mode						
Supply Current*	I_{AM}		—	19.0	—	mA
Supplies and Interface						
V_{DD} Powerdown Current	I_{DDPD}		—	10	—	μA

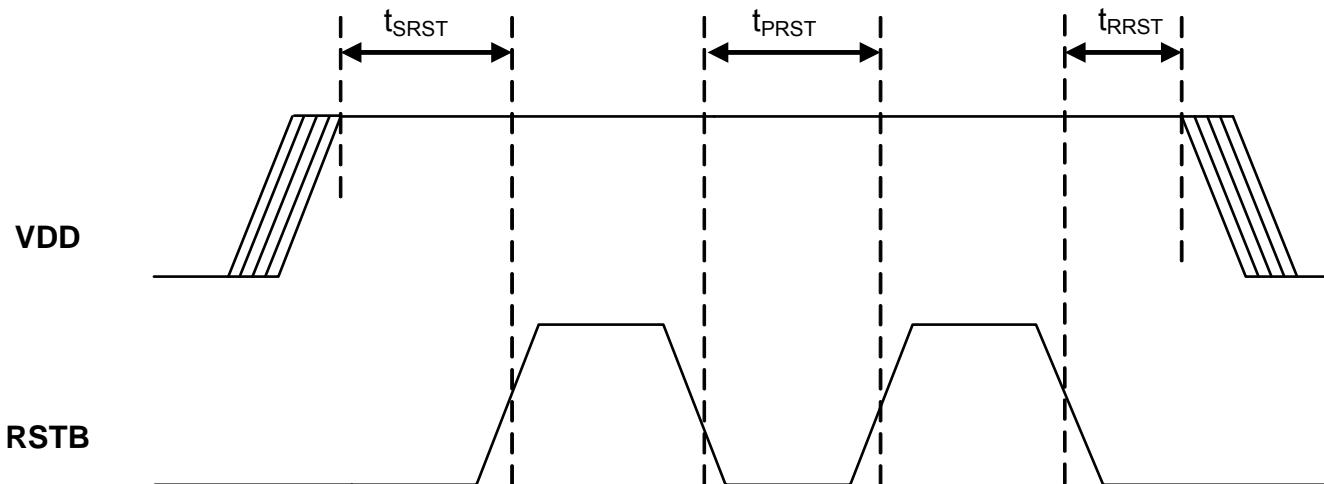

*Note: Specifications are guaranteed by characterization.

Table 3. Reset Timing Characteristics(V_{DD} = 2.7 to 3.6 V, TA = -15 to 85 °C)

Parameter	Symbol	Min	Typ	Max	Unit
RSTB Pulse Width	t _{PRST}	100	—	—	μs
VDD Valid Time Before RSTB Rises	t _{SRST}	100	—	—	μs
RSTB Low Time Before VDD Becomes Invalid	t _{RRST}	0	—	—	μs

Notes:

1. RSTB must be held low for at least 100 μs after the voltage supply has been ramped up.
2. RSTB needs to be asserted (pulled low) prior to the supply voltage being ramped down.

Table 4. FM Receiver Characteristics^{1,2}

(V_{DD} = 2.7 to 3.6 V, TA = -15 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Frequency	f _{RF}		64	—	109	MHz
Sensitivity with Headphone Network ³		(S+N)/N = 26 dB	—	2.2	—	µV EMF
LNA Input Resistance ^{4,5}			—	4	—	kΩ
LNA Input Capacitance ^{4,5}			—	5	—	pF
AM Suppression ^{4,5,6,7}		m = 0.3	—	50	—	dB
Input IP3 ^{4,8}			—	105	—	dBµV EMF
Adjacent Channel Selectivity ⁴		±200 kHz	—	50	—	dB
Alternate Channel Selectivity ⁴		±400 kHz	—	65	—	dB
Audio Output Voltage ^{5,6,7,12}			—	80	—	mV _{RMS}
Audio Mono S/N ^{5,6,7,9,10}			—	55	—	dB
Audio Stereo S/N ^{3,4,5,7,9,10}			—	55	—	dB
Audio Frequency Response Low ⁴		-3 dB	—	—	30	Hz
Audio Frequency Response High ⁴		-3 dB	15	—	—	kHz
Audio THD ^{6,5,11}			—	0.1	0.5	%
Audio Output Load Resistance ^{4,10}	R _L	Single-ended	10	—	—	kΩ
Audio Output Load Capacitance ^{4,10}	C _L	Single-ended	—	—	50	pF

Notes:

1. Additional testing information is available in “AN569: Si4831/35/36/20/24/25-DEMO Board Test Procedure.” Volume = maximum for all tests. Tested at RF = 98.1 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in “AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.
3. Frequency is 64~109 MHz.
4. Guaranteed by characterization.
5. V_{EMF} = 1 mV.
6. F_{MOD} = 1 kHz, MONO, and L = R unless noted otherwise.
7. Δf = 22.5 kHz.
8. |f₂ - f₁| > 2 MHz, f₀ = 2 x f₁ - f₂.
9. B_{AF} = 300 Hz to 15 kHz, A-weighted.
10. At A_{OUT} pin.
11. Δf = 75 kHz.
12. The test is done with Bass/Treble feature not enabled.

Table 5. AM/SW Receiver Characteristics^{1, 2}(V_{DD} = 2.7 to 3.6 V, T_A = -15 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input Frequency	f _{RF}	Medium Wave (AM)	504	—	1750	kHz
		Short Wave (SW)	2.3	—	28.5	MHz
Sensitivity ^{3,4,5}		(S+N)/N = 26 dB	—	30	—	µV EMF
Large Signal Voltage Handling ⁵		THD < 8%	—	300	—	mV _{RMS}
Power Supply Rejection Ratio ⁵		ΔV _{DD} = 100 mV _{RMS} , 100 Hz	—	40	—	dB
Audio Output Voltage ^{3,6,8}			—	60	—	mV _{RMS}
Audio S/N ^{3,4,6}			—	55	—	dB
Audio THD ^{3,6}			—	0.1	0.5	%
Antenna Inductance ^{5,7}			180	—	450	µH

Notes:

1. Additional testing information is available in "AN569: Si4831/35/36/20/24/25-DEMO Board Test Procedure." Volume = maximum for all tests. Tested at RF = 520 kHz and RF = 6 MHz.
2. To ensure proper operation and receiver performance, follow the guidelines in "AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines." Silicon Laboratories will evaluate schematics and layouts for qualified customers.
3. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter.
4. B_{AF} = 300 Hz to 15 kHz, A-weighted.
5. Guaranteed by characterization.
6. V_{IN} = 5 mVrms.
7. Stray capacitance on antenna and board must be < 10 pF to achieve full tuning range at higher inductance levels.
8. The test is done with Bass/Treble feature not enabled.

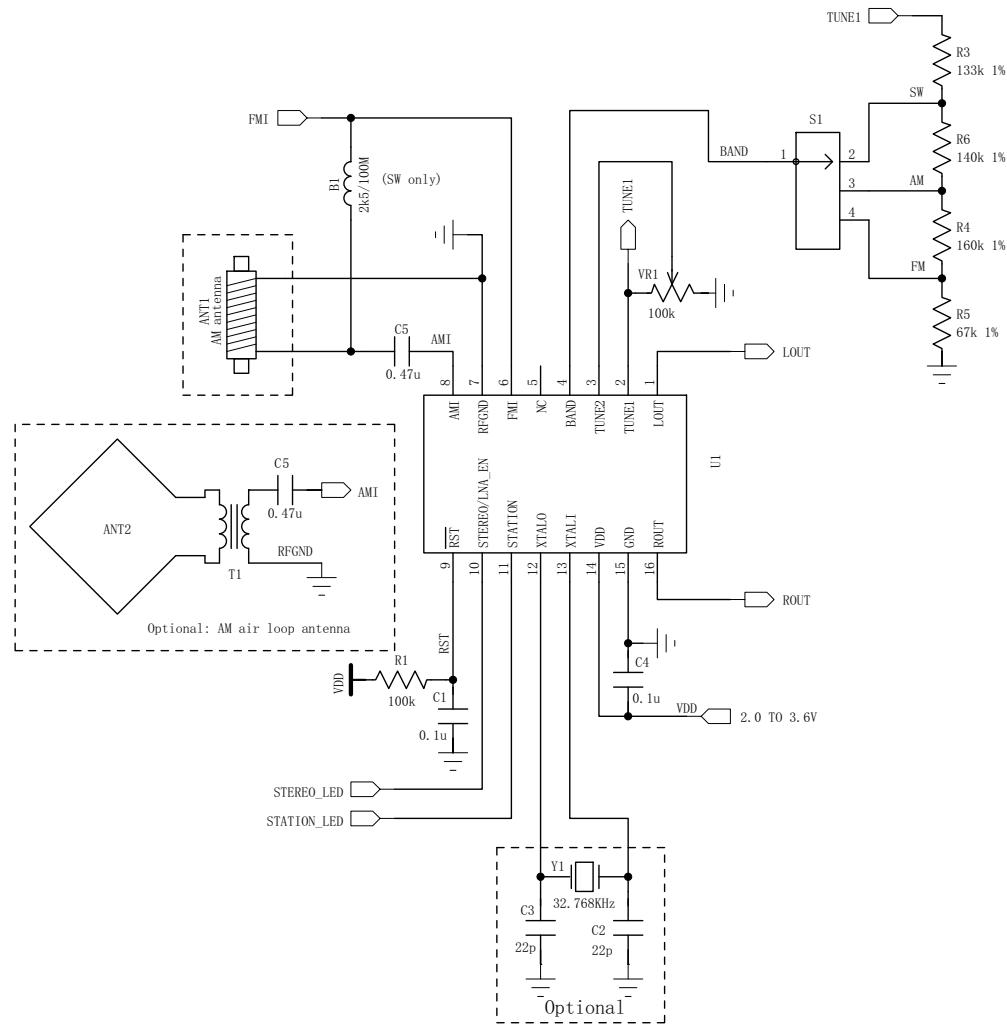
Table 6. Reference Clock and Crystal Characteristics(V_{DD} = 2.7 to 3.6 V, T_A = -15 to 85 °C)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Reference Clock						
XTAL1 Supported Reference Clock Frequencies			—	32.768	—	kHz
Reference Clock Frequency Tolerance for XTAL1			-100	—	100	ppm
Crystal Oscillator						
Crystal Oscillator Frequency			—	32.768	—	kHz
Crystal Frequency Tolerance			-100	—	100	ppm
Board Capacitance			—	—	3.5	pF

Table 7. Thermal Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Thermal Resistance*	θ_{JA}	—	80	—	°C/W
Ambient Temperature	T_A	-15	25	85	°C
Junction Temperature	T_J	—	—	92	°C

*Note: Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.


Table 8. Absolute Maximum Ratings^{1,2}

Parameter	Symbol	Value	Unit
Supply Voltage	V_{DD}	-0.5 to 5.8	V
Input Current ³	I_{IN}	10	mA
Operating Temperature	T_{OP}	-40 to 95	°C
Storage Temperature	T_{STG}	-55 to 150	°C
RF Input Level ⁴		0.4	V_{PK}

Notes:

1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended operating conditions for extended periods may affect device reliability.
2. The Si4836 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.
3. For input pins RST, STATION, STEREO/LNA_EN, XTAL0, XTAL1, BAND, TUNE2, TUNE1.
4. At RF input pins, FMI and AMI.

2. Typical Application Schematic

Notes:

1. Place C_4 close to V_{DD} and GND pins.
2. Pin 15 GND connects directly to GND plane on PCB.
3. Pin 5 leave floating.
4. To ensure proper operation and receiver performance, follow the guidelines in "AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines." Silicon Labs will evaluate the schematics and layouts for qualified customers.
5. Pin 6 connects to the FM antenna interface and pin 8 connects to the AM antenna interface.
6. Place Si4836 as close as possible to antenna jack and keep the FMI and AMI traces as short as possible.
7. Recommend keeping the AM ferrite loop antenna at least 5 cm away from the tuner chip.
8. Keep the AM ferrite loop antenna at least 5 cm away from MCU, audio AMP, and other circuits which have AM interference.
9. Place the transformer T1 away from any sources of interference and even away from the I/O signals of the Si4836.

3. Bill of Materials

Table 9. Si4836-A Bill of Materials

Component(s)	Value/Description	Supplier
C1	Reset capacitor 0.1 μ F, $\pm 20\%$, Z5U/X7R	Murata
C4	Supply bypass capacitor, 0.1 μ F, $\pm 20\%$, Z5U/X7R	Murata
C5	Coupling capacitor, 0.47 μ F, $\pm 20\%$, Z5U/X7R	Venkel
B1	Ferrite bead 2.5 k/100 MHz	Murata
VR1	Variable resistor (POT), 100 k Ω , $\pm 10\%$	Kennon
R1	Reset timing resistor, 100 k Ω , $\pm 5\%$	Venkel
R3	Resistor, 133 k Ω , $\pm 1\%$	Venkel
R4	Resistor, 160 k Ω , $\pm 1\%$	Venkel
R5	Resistor, 67 k Ω , $\pm 1\%$	Venkel
R6	Resistor, 140 k Ω , $\pm 1\%$	Venkel
U1	Si4836-A AM/FM/SW Analog Tune Analog Display Radio Tuner	Silicon Laboratories
S1	Band switch	Any, depends on customer
ANT1	Ferrite stick, 180–450 μ H	Jiaxin
Optional Components		
C2, C3	Crystal load capacitors, 22 pF, $\pm 5\%$, COG (Optional: for crystal oscillator option)	Venkel
Y1	32.768 kHz crystal (Optional: for crystal oscillator option)	Epson or equivalent
ANT2	Air loop antenna, 10–20 μ H	Various

4. Functional Description

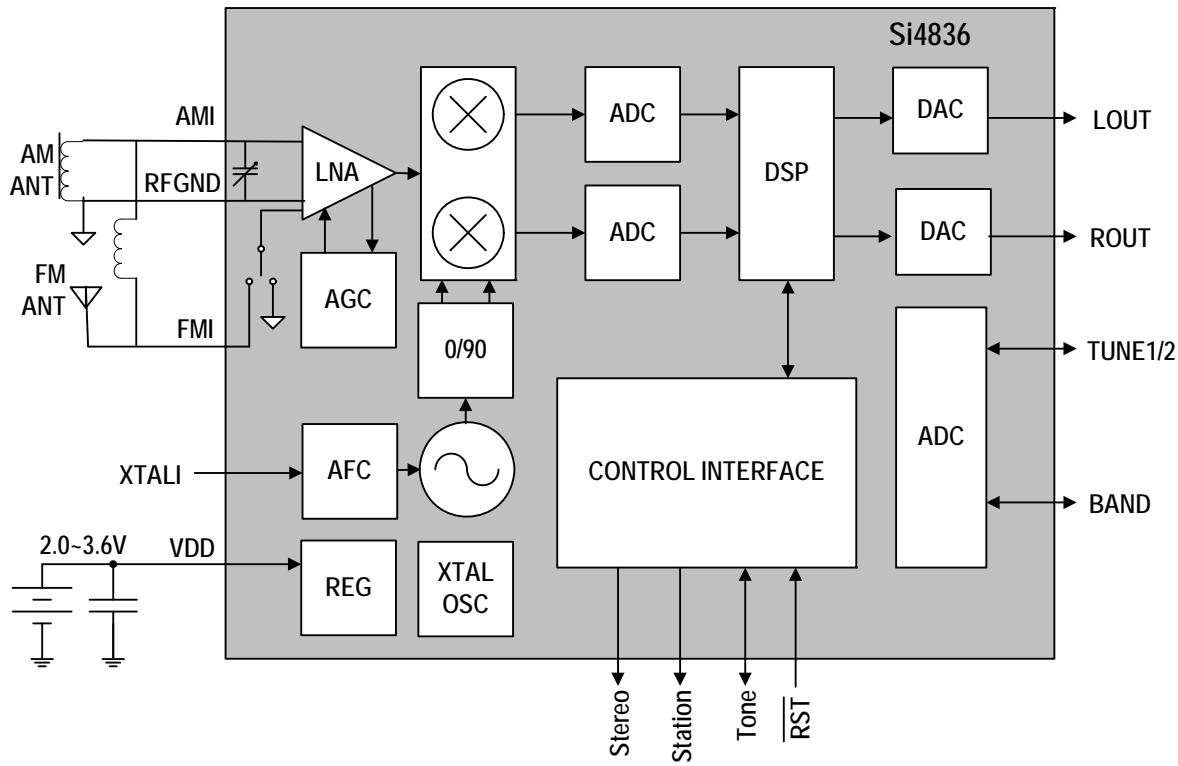


Figure 2. Si4836 Functional Block Diagram

4.1. Overview

The Si4836 is the high performance mechanical-tuned digital CMOS AM/FM/SW radio receiver IC that integrates the complete receiver function from antenna input to audio output. The Si4836 extends Silicon Laboratories multi-band tuner family, and further increases the ease and attractiveness of design radio reception to audio devices through small size and board area, minimum component count, and superior, proven performance. The Si4836 enhances the FM and SW band coverage and further supports China TV channels audio reception in FM band. The Si4836 removes any requirements for manually tuning components during the manufacturing process.

Leveraging Silicon Laboratories' proven and patented digital low intermediate frequency (low-IF) receiver architecture, the Si4836 delivers desired RF performance and interference rejection in AM, FM, and SW bands. The high integration and complete system production test simplifies design-in, increases system quality, and improves manufacturability.

4.2. FM Receiver

The Si4836 integrates a low noise amplifier (LNA) supporting the worldwide FM broadcast band (64 to 109 MHz) and the TV audio stations within the frequency range in China area are also supported.

Pre-emphasis and de-emphasis is a technique used by FM broadcasters to improve the signal-to-noise ratio of FM receivers by reducing the effects of high frequency interference and noise. When the FM signal is transmitted, a pre-emphasis filter is applied to accentuate the high audio frequencies. All FM receivers incorporate a de-emphasis filter which attenuates high frequencies to restore a flat frequency response. Two time constants are used in various regions. The de-emphasis time constant can be chosen to be 50 or 75 μ s. Refer to "AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines."

The Si4836 also has advanced stereo blending that employs adaptive noise suppression. As a signal quality degrades, the Si4836 gradually combines the stereo left and right audio channels to a mono audio signal to maintain optimum sound fidelity under varying reception conditions. The Si4836 can drive a stereo light with the stereo/mono information so that the user can easily

discern the signal quality.

The stereo light up criteria are defined using both RSSI and the Left and Right separation levels as these two specifications are the primary factors for stereo listening. The criteria can be set between two conditions: the Left and Right channels are separated by more than 6 dB with RSSI at >20 dB or they are separated by more than 12 dB with RSSI at >28 dB. The selection can be set up using different values of the external resistor. Refer to "AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines."

4.3. AM Receiver

The highly integrated Si4836-A10 supports worldwide AM band reception from 504 to 1750 kHz with five sub-bands using a digital low-IF architecture with a minimum number of external components and no manual alignment required. This patented architecture allows for high-precision filtering, offering excellent selectivity and SNR with minimum variation across the AM band. The Si4836 supports the worldwide AM band with five sub-bands. One of the bands is a universal AM band (AM4, 520–1730 kHz) supporting both 9 kHz and 10 kHz channel spaces for all regional AM standards of the world. Similar to the FM receiver, the Si4836 optimizes sensitivity and rejection of strong interferers, allowing better reception of weak stations.

To offer maximum flexibility, the receiver supports a wide range of ferrite loop sticks from 180–450 μ H. An air loop antenna is supported by using a transformer to increase the effective inductance from the air loop. Using a 1:5 turn ratio inductor, the inductance is increased by 25 times and easily supports all typical AM air loop antennas, which generally vary between 10 and 20 μ H.

4.4. SW Receiver

The Si4836 supports 36 short wave (SW) band receptions from 2.3 to 28.5 MHz, 18 of which are meter wave band (Narrow), and the rest of the SW bands are with wider frequency range that can be used in SW radio with 1 or 2 SW bands. Si4836 supports extensive short wave features such as minimal discrete components and no factory adjustments. The Si4836 supports using the FM antenna to capture short wave signals.

4.5. Frequency Tuning

A valid channel can be found by tuning the potentiometer that is connected to the TUNE1 and TUNE2 pin of the Si4836 chip.

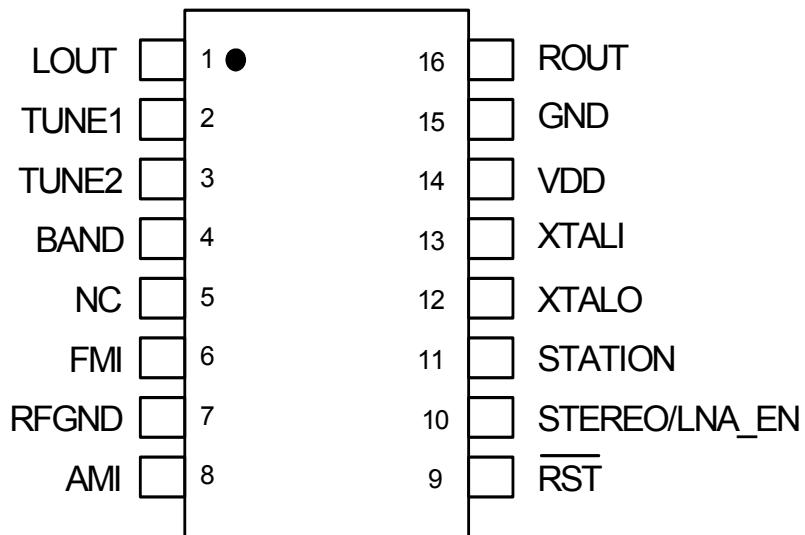
To offer easy tuning, the Si4836 also supports a station LED light. It will light up the LED if the RF signal quality passes the LED sensitivity threshold when tuned to a valid station.

4.6. Band Select

The Si4836 supports worldwide AM band with five sub-bands, US/Europe/Japan/China FM band with five sub-bands, and SW band with 36 sub-bands. For details on band selection, refer to "AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines."

4.7. Bass and Treble

The Si4836 further supports bass and treble tone control for superior sound quality. Pins 12 can be configured for tone control with single push button if the system can provide 32.768 kHz external clock to Pin13, allowing customers to adjust the bass and treble in a cyclic way. For further configuration details, refer to "AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines."


4.8. Reset, Powerup, and Powerdown

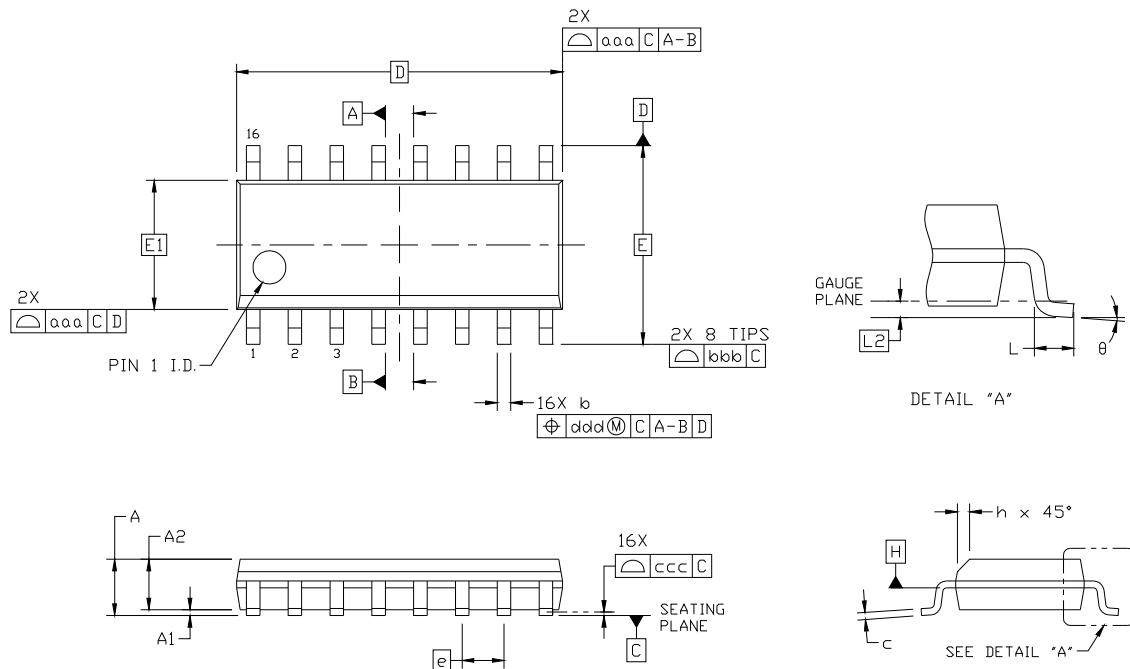
Setting the RSTB pin low will disable analog and digital circuitry, reset the registers to their default settings, and disable the bus. Setting the RSTB pin high will bring the device out of reset.

Figure 1 shows typical reset, startup, and shutdown timings for the Si4836. RSTB must be held low (asserted) during any power supply transitions and kept asserted as specified in Figure 1 after the power supplies are ramped up and stable. Failure to assert RSTB as indicated here may cause the device to malfunction and may result in permanent device damage.

A powerdown mode is available to reduce power consumption when the part is idle. Putting the device in powerdown mode will disable analog and digital circuitry while keeping the bus active.

5. Pin Descriptions: Si4836-A10

Pin Number(s)	Name	Description
1	LOUT	Left audio output
2	TUNE1	Frequency tuning
3	TUNE2	Frequency tuning
4	BAND	Band selection and de-emphasis selection
5	NC	No connect. Leave floating.
6	FMI	FM RF inputs. FMI should be connected to the antenna trace.
7	RFGND	RF ground. Connect to ground plane on PCB.
8	AMI	AM RF input. AMI should be connected to the AM antenna.
9	<u>RST</u>	Device reset (active low) input
10	STEREO/LNA_EN	Stereo indicator, enable the SW external LNA in SW mode.
11	STATION	Station indicator
12	XTALO	Crystal oscillator output
13	XTALI	Crystal oscillator input/external reference clock input
14	VDD	Supply voltage. May be connected directly to battery.
15	GND	Ground. Connect to ground plane on PCB.
16	ROUT	Right audio output


6. Ordering Guide

Part Number*	Description	Package Type	Operating Temperature/Voltage
Si4836-A10-GS	AM/FM/SW Broadcast Radio Receiver	16L SOIC Pb-free	–15 to 85 °C 2.0 to 3.6 V

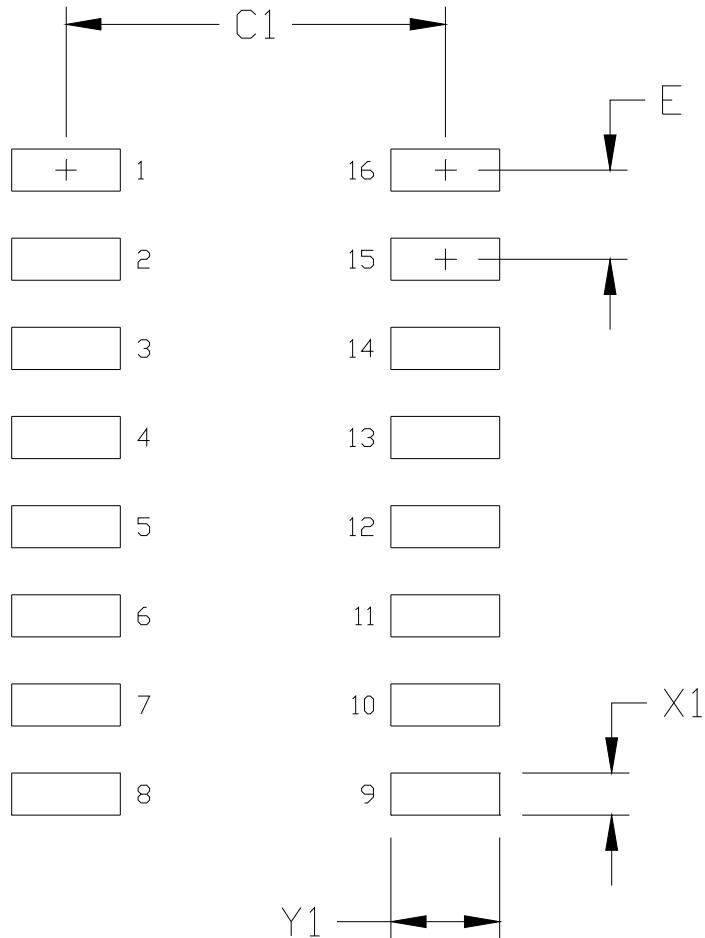
***Note:** Add an "(R)" at the end of the device part number to denote tape and reel option. The devices will typically operate at 25 °C with degraded specifications for V_{DD} voltage ramped down to 2.0 V.

7. Package Outline: Si4836-A10

The 16-pin SOIC illustrates the package details for the Si4836-A10. Table 10 lists the values for the dimensions shown in the illustration.

Figure 3. 16-Pin SOIC

Table 10. Package Dimensions


Dimension	Min	Max
A	—	1.75
A1	0.10	0.25
A2	1.25	—
b	0.31	0.51
c	0.17	0.25
D	9.90 BSC	
E	6.00 BSC	
E1	3.90 BSC	
e	1.27 BSC	
L	0.40	1.27
L2	0.25 BSC	
h	0.25	0.50
θ	0°	8°
aaa	0.10	
bbb	0.20	
ccc	0.10	
ddd	0.25	

Notes:

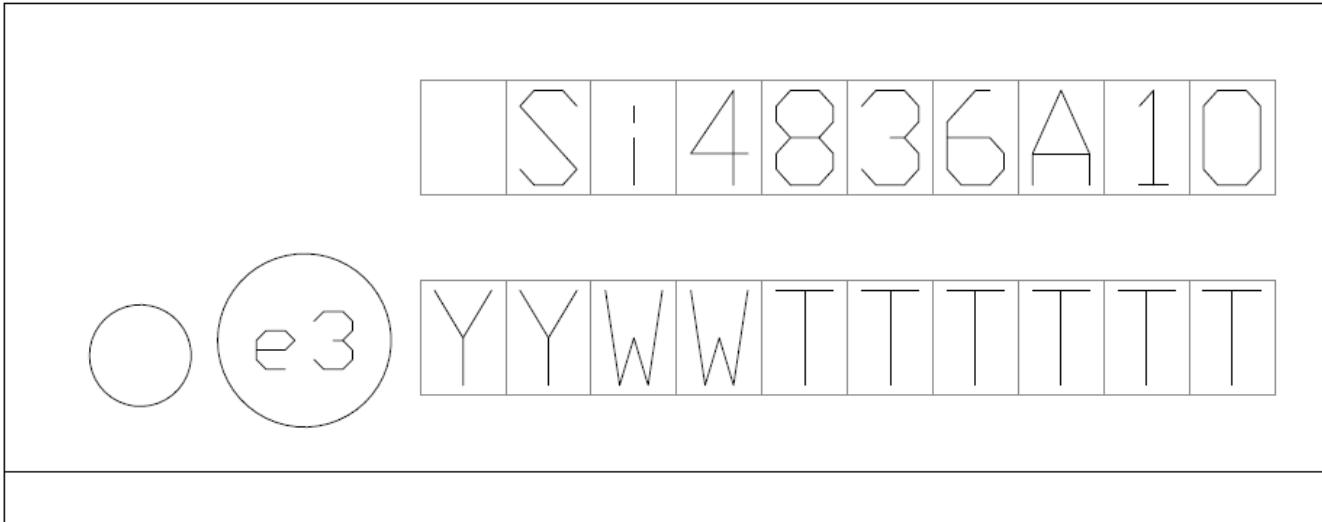
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. PCB Land Pattern: Si4836-A10

Figure 4, “PCB Land Pattern,” illustrates the PCB land pattern details for the Si4836-A10-GS SOIC. Table 11 lists the values for the dimensions shown in the illustration.

Figure 4. PCB Land Pattern

Table 11. PCB Land Pattern Dimensions


Dimension	Feature	(mm)
C1	Pad Column Spacing	5.40
E	Pad Row Pitch	1.27
X1	Pad Width	0.60
Y1	Pad Length	1.55

Notes:

1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.

9. Top Marking

9.1. Si4836-A10 Top Marking

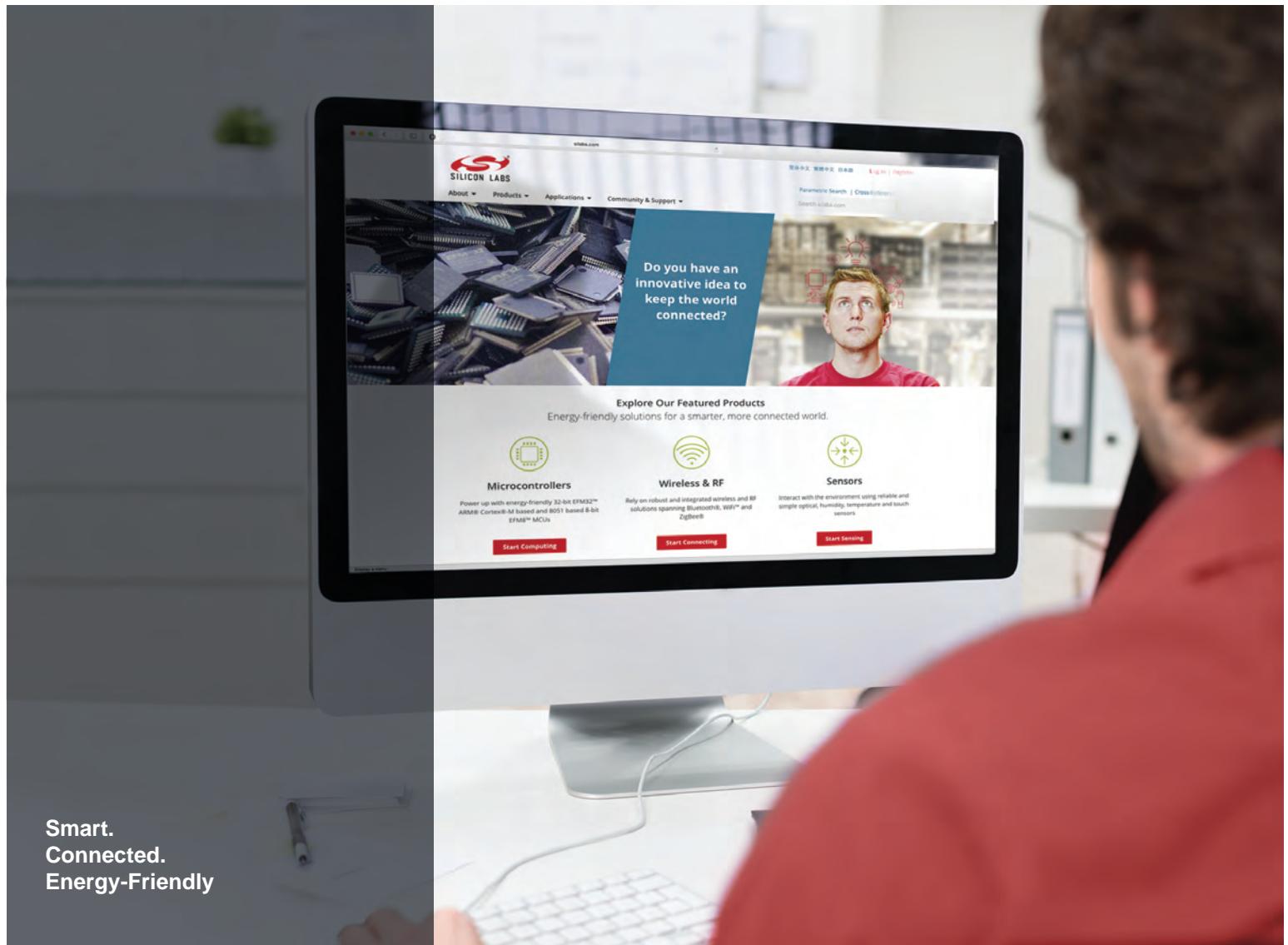
9.2. Top Marking Explanation

Mark Method:	Laser	
Pin 1 Mark:	Mold Dimple (Bottom-Left Corner)	
Font Size:	0.71 mm (2.0 Point) Right-Justified	
Line 1 Mark Format:	Custom Part Number	Si4836A10
Line 2 Mark Format:	Circle = 1.3 mm Diameter YY = Year WW = Work week TTTTTT = Manufacturing code	"e3" Pb-Free Symbol Assigned by the Assembly House. Corresponds to the year and work week of the mold date. Manufacturing Code from the Assembly Purchase Order form.

10. Additional Reference Resources

Contact your local sales representatives for more information or to obtain copies of the following references:

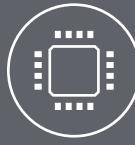
- AN738: Si4825/36-A Antenna, Schematic, Layout, and Design Guidelines
- AN569: Si4831/35/36/20/24/25-DEMO Board Test Procedure
- Si4836-DEMO Board User's Guide


DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.8

- Added ambient temperature range to "Table 1. Recommended Operating Conditions"
- Updated "Functional Block Diagram"
- Updated Table 2, "DC Characteristics"
- Updated Table 4, "FM Receiver Characteristics"
- Updated Table 5, "AM/SW Receiver Characteristics"
- Updated Section "2.Typical Application Schematic"
- Updated Section "4.3. AM Receiver"
- Updated Section "4.7. Bass and Treble"
- Updated Section "5. Pin Descriptions: Si4836-A10"
- Updated Section "6. Ordering Guide"
- Updated Section "10. Additional Reference Resources"

Revision 0.8 to Revision 1.0


- Updated Table 3. "Reset Timing Characteristics"
- Inserted Section 4.8. "Reset, Powerup, and Powerdown"

Smart.
Connected.
Energy-Friendly

Products
www.silabs.com/products

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

<http://www.silabs.com>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Silicon Laboratories:](#)

[Si4836-A10-GS](#) [Si4836-A10-GSR](#) [Si4836-A10-GS](#) [Si4836-A10-GSR](#)