
Radial Leaded > 16R Series

16R Series

Agency Approvals

Agency	Agency File Number
c SN °us	E183209
A	R50119318

Description

Littelfuse 16R Series Radial Leaded PTCs are designed to provide resettable overcurrent protection serving a wide range of electronics applications. With maximum 16 volts and maximum 100-ampere short circuit rating, they offer an ideal solution for USB protection.

Features

- 100A short circuit rating
- 16V Operating voltages
- Fast time-to-trip
- Meets all USB protection requirements
- RoHS compliant, Lead-Free and Halogen-Free*

Applications

- Computers & peripherals
- Any USB application
- General Electronics

Additional Information

Resources

Electrical Characteristics

			V		D turn	Maximum '	Time To Trip	Resis	tance	Agency A	pprovals
Part Number	(A)	(A)	(Vdc)	(A)	P _d typ. (W)	Current (A)	Time (Sec.)	R _{min} (Ω)	R _{1max} (Ω)	c 71 °us	<u> </u>
16R250G	2.5	4.7	16	100	1.0	12.5	5.0	0.0220	0.0530	Х	Х
16R300G	3.0	5.1	16	100	2.3	15.0	1.0	0.0380	0.0975	X	Х
16R400G	4.0	6.8	16	100	2.4	20.0	1.7	0.0210	0.0600	X	Χ
16R500G	5.0	8.5	16	100	2.6	25.0	2.0	0.0150	0.0340	X	Χ
16R700G	7.0	11.9	16	100	3.0	35.0	3.5	0.0077	0.0200	X	Χ
16R800G	8.0	13.6	16	100	3.0	40.0	5.0	0.0056	0.0175	X	Χ
16R900G	9.0	15.3	16	100	3.3	45.0	5.5	0.0047	0.0135	X	Χ
16R1000G	10.0	17.0	16	100	3.6	50.0	6.0	0.0040	0.0102	Х	Χ
16R1400G	14.0	23.8	16	100	4.6	70.0	9.0	0.0026	0.0064	Х	Х

CAUTION: Operation beyond the specified rating may result in damage and possible arcing and flame.

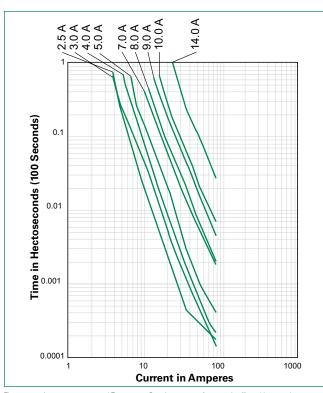
- I hold = Hold current: maximum current device will pass without tripping in 20°C still air.
- hold = 1838 Selection and some device will pass without tripping in 20°C still air.

 I prip current: minimum current at which the device will trip in 20°C still air.

 Viet = Maximum voltage the device can withstand without damage at rated current (I max)
- $\mathbf{V}_{00}^{\text{m}}$ = The device regular operation voltage
- , = Maximum fault current device can withstand without damage at rated voltage (V_{max}
- $\mathbf{P}_{\mathbf{d}}^{\text{max}}$ = Power dissipated from device when in the tripped state at 20°C still air.

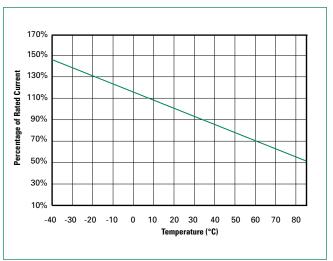
- R min = Minimum resistance of device in initial (un-soldered) state
- = Typical resistance of device in initial (un-soldered) state. $\mathbf{R}_{\text{1max}}^{\text{TP}}$ = Maximum resistance of device at 20°C measured one hour after tripping.
- * Effective February 11, 2010 onward, all 600R PTC products will be manufactured Halogen Free (HF). Existing Non-Halogen Free 600R PTC products may continue to be sold, until supplies are depleted. This change will have no effect on 600R product specifications or performance

WARNING


- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
- These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- . Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
- Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.

Radial Leaded > 16R Series

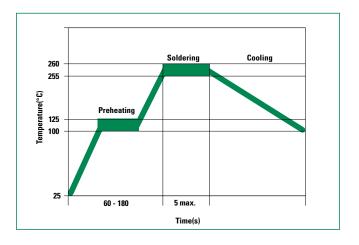
Temperature Rerating


			Aml	bient Operatio	n Temperature				
	-40°C	-20°C	0°C	20°C	40°C	50°C	60°C	70°C	85°C
Part Number				1	Hold Current (A)			
16R250G	3.7	3.3	2.9	2.5	2.2	2.0	1.8	1.6	1.3
16R300G	4.4	4.0	3.5	3.0	2.6	2.4	2.1	1.9	1.6
16R400G	5.9	5.3	4.7	4.0	3.5	3.2	2.9	2.6	2.1
16R500G	7.4	6.6	5.9	5.0	4.4	4.0	3.6	3.2	2.6
16R700G	10.4	9.3	8.2	7.0	6.1	5.6	5.0	4.5	3.7
16R800G	11.8	10.6	9.4	8.0	7.0	6.3	5.7	5.1	4.2
16R900G	13.3	12.0	10.6	9.0	7.8	7.1	6.5	5.8	4.7
16R1000G	14.8	13.3	11.8	10.0	8.7	7.9	7.1	6.4	5.3
16R1400G	20.7	18.6	16.5	14.0	12.2	11.1	10.0	9.0	7.4

Average Time Current Curves

The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Temperature Rerating Curve

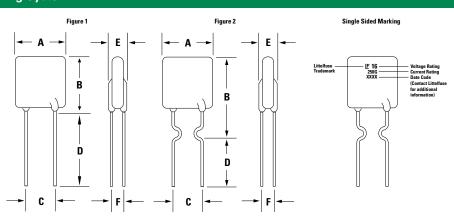

Note:

Typical Temperature rerating curve, refer to table for derating data

Radial Leaded > 16R Series

Soldering Parameters - Wave Soldering

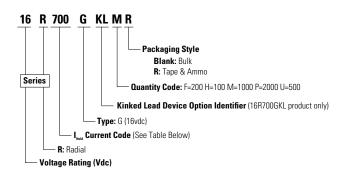
Pre-Heating Zone	Refer to the condition recommended by the flux manufacturer. Max. ramping rate should not exceed 4°C/Sec.
Soldering Zone	Max. solder temperature should not exceed 260°C. Time within 5°C of actual Max. solder temperature within 3 - 5 seconds. Total time from 25°C room to Max. solder temperature within 5 minutes including Pre-Heating time.
Cooling Zone	Cooling by natural convection in air. Max. ramping down rate should not exceed 6°C/Sec.


Physical Specifications

Lead Material	2.5A: Tin-plated Copper clad Steel 3.0 - 14.0A: Tin-plated Copper
Soldering Characteristics	Solderability per MIL-STD-202, Method 208
Insulating Material	Cured, flame retardant epoxy polymer meets UL94V-0 requirements.
Device Labeling	Marked with 'LF', voltage, current rating, and date code.

Environmental Specifications

Operating/Storage Temperature	-40°C to +85°C
Maximum Device Surface Temperature in Tripped State	125°C
Passive Aging	+85°C, 1000 hours -/+5% typical resistance change
Humidity Aging	+85°C, 85% R.H., 1000 hours -/+5% typical resistance change
Thermal Shock	+85°C to -40°C 10 times -/+5% typical resistance change
Solvent Resistance	MIL–STD–202, Method 215 No change
Moisture Resistance Level	Level 1, J-STD-020


Dimensions & Part Marking System

Part		А	V	В	3	C	;	D		Е		F		Physica	al Chara	acteristics
Number	Figure	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Lead (dia)	Material
Number		Max.	Max.	Max.	Max.	Тур.	Тур.	Min.	Min.	Max.	Max.	Typ.	Тур.	Inches	mm	Material
16R250G	2	0.35	8.90	0.50	12.80	0.20	5.1	0.13	3.18	0.12	3.00	0.035	0.9	0.020	0.51	Sn/CuFe
16R300G	1	0.28	7.10	0.43	11.00	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R400G	1	0.35	8.90	0.50	12.80	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R500G	1	0.41	10.40	0.56	14.30	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R700G	1	0.44	11.20	0.78	19.70	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R800G	1	0.50	12.70	0.82	20.90	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R900G	1	0.55	14.00	0.85	21.70	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R1000G	1	0.65	16.50	0.99	25.20	0.20	5.1	0.30	7.6	0.12	3.00	0.047	1.2	0.032	0.81	Sn/Cu
16R1400G	1	0.93	23.50	1.10	27.90	0.40	10.2	0.30	7.6	0.14	3.50	0.055	1.4	0.039	1.00	Sn/Cu

Radial Leaded > 16R Series

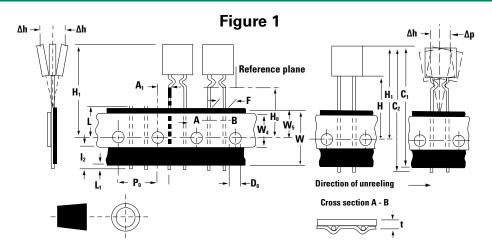
Part Ordering Number System

Packaging Options

Part Number	Ordering Number	I hold (A)	I hold Code	Packaging Option	Quantity	Quantity & Packaging Codes
16R250G	16R250GU	2.50	250	Bulk	500	U
16R300G	16R300GU	3.00	300	Bulk	500	U
IONSOUG	16R300GPR	3.00	300	Tape and Ammo	2000	PR
16B400G	16R400GU	4.00	400	Bulk	500	U
1004000	16R400GPR	4.00	400	Tape and Ammo	2000	PR
16DE00C	16R500GU	E 00	E00	Bulk	500	U
16R500G	16R500GPR	5.00	500	Tape and Ammo	2000	PR
16R700G	16R700GMR	7.00	700	Tape and Ammo	1000	MR
16R800G	16R800GF	8.00	800	Bulk	200	F
16R900G	16R900GF	0.00	000	Bulk	200	F
16H900G	16R900GMR	9.00	900	Tape and Ammo	1000	MR
16R1000G	16R1000GMR	10.00	1000	Tape and Ammo	1000	MR
16R1400G	16R1400GH	14.00	1400	Bulk	100	Н

WARNING

- Users shall independently assess the suitability of these devices for each of their applications
- Operation of these devices beyond the stated maximum ratings could result in damage to the devices and lead to electrical arcing and/or fire
 These devices are intended to protect against the effects of temporary over-current or over-temperature conditions and are not intended to perform as protective devices where such conditions are expected to be repetitive or prolonged in duration
- Exposure to silicon-based oils, solvents, electrolytes, acids, and similar materials can adversely affect the performance of these PPTC devices
- These devices undergo thermal expansion under fault conditions, and thus shall be provided with adequate space and be protected against mechanical stresses
 Circuits with inductance may generate a voltage (L di/dt) above the rated voltage of the PPTC device.


Tape and Ammo Specifications

Devices taped using EIA468-B/IE286-2 standards. See table below and Figure 1 for details.

Dimension	EIA Mark	IEC Mark	Dimensions			
- Dimension	LIA WAIK	ILC IVIAIR	Dim. (mm)	Tol. (mm)		
Carrier tape width	W	W	18	-0.5 /+1.0		
Hold down tape width:	W ₄	w _o	11	min.		
Top distance between tape edges	W ₆	W ₂	3	max.		
Sprocket hole position	W ₅	W ₁	9	-0.5 /+0.75		
Sprocket hole diameter*	D _o	D _o	4	-0.32 /+0.2		
Abscissa to plane(straight lead)	Н	Н	18.5	-/+ 3.0		
Abscissa to plane(kinked lead)	H _o	H _o	16	-/+ 0.5		
Abscissa to top	-	-	45.0	max.		
Overall width w/o lead protrusion	-	-	56	max.		
Overall width w/ lead protrusion	-	-	57	max.		
Lead protrusion	L,	I ₁	1.0	max.		
Protrusion of cut out	L	L	11	max.		
Protrusion beyond hold-down tape	l ₂	l ₂	Not specified			
Sprocket hole pitch	P _o	P _o	25.4	-/+ 0.5		
Device pitch:	-	-	25.4			
Pitch tolerance	-	-	20 consecutive.	-/+ 1		
Tape thickness	t	t	0.9	max.		
Tape thickness with splice	t,	-	2.0	max.		
Splice sprocket hole alignment	-	-	0	-/+ 0.3		
Body lateral deviation	Δh	Δh	0	-/+ 1.0		
Body tape plane deviation	Δр	Δр	0	-/+ 1.3		
Ordinate to adjacent component lead*	P ₁	P ₁	3.81	-/+ 0.7		
Ordinate to adjacent component lead*	-	-	7.62	-/+ 0.7		
Lead spacing:16R250G-16R1000G	F	F	5.08	-/+ 0.8		
Lead spacing:16R1400G	F	F	10.18	-/+ 0.8		

^{*}Differs from EIA specification

Tape and Ammo Diagram

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not $designed \ for, and \ may \ not \ be \ used \ in, \ all \ applications. \ Read \ complete \ Disclaimer \ Notice \ at \ \underline{www.littelfuse.com/disclaimer-electronics}.$