0.8』, Low-Voltage, 4-Channel Analog Multiplexer

General Description

The MAX4734 is a low on-resistance, low-voltage, 4-channel CMOS analog multiplexer that operates from a single 1.6 V to 3.6 V supply. This device has fast switching speeds (t ON $=25 \mathrm{~ns}$, toFF $=20 \mathrm{~ns}$ max), handles rail-to-rail analog signals, and consumes less than $4 \mu \mathrm{~W}$ of quiescent power. The MAX4734 has break-before-make switching.
When powered from a 3 V supply, the MAX4734 features low 0.8Ω (max) on-resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$, with 0.2Ω (max) R_{ON} matching and 0.1Ω RON flatness. The digital logic input is 1.8 V CMOS compatible when using a single 3 V supply.
The MAX4734 is available in space-saving 12-pin TQFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) and 10-pin μ MAX packages.

Applications

- Power Routing
- Battery-Powered Systems
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- PCMCIA Cards
- Cellular Phones
- Modems
- Hard Drives

Features

- Low RON
- 0.8Ω (max) (3V Supply)
- 2Ω (max) (1.8V Supply)
- 0.1Ω (max) RON Flatness (3V Supply)
- 1.6 V to 3.6 V Single-Supply Operation
- Available in Thin QFN (3mm x 3mm) Package
- High-Current Handling Capacity (150mA Continuous)
- 1.8V CMOS-Logic Compatible (3V Supply)
- Fast Switching: $\mathrm{t}_{\mathrm{ON}}=25 \mathrm{~ns}$, tOFF $=20 \mathrm{~ns}$

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4734EUB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4734EUB +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4734ETC +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 TQFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$
MAX4734ETC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 TQFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$

T = Tape and reel.
+Denotes a lead (Pb)-free/RoHS-compliant package.

Pin Configurations/Functional Diagrams/Truth Table

```
TOP VIEW
```


0.8 , Low-Voltage, 4-Channel Analog Multiplexer

Absolute Maximum Ratings

(Voltages Referenced to GND)	
V+, A_, EN	to +4 V
COM, NO_ (Note 1)	-0.3V to (V+ + 0.3V)
Continuous Current COM, NO	$\ldots . . . \pm 150 \mathrm{~mA}$
Continuous Current (all other pins)	$\pm 20 \mathrm{~mA}$
Peak Current COM, NO_ (pulsed at $1 \mathrm{~ms} 10 \%$ duty cycle).	$\ldots \pm 300 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
	10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 444 mW
	12-Pin Thin QFN (derate $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. 1176 mW
Operating Temperature Range........................ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
	Maximum Junction Temperature $150^{\circ} \mathrm{C}$
	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	ead Temperature (soldering,

Note 1: Signals on COM or NO_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics-Single 3V Supply

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{I H}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}},$ $\mathrm{V}_{\mathrm{NO}_{2}}$			0		V+	V
On-Resistance (Note 4)	R_{ON}	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	0.8	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			1	
On-Resistance Match Between Channels (Notes 4, 5)	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			$\mathrm{T}_{\text {MIN }}$ to TMAX			0.3	
On-Resistance Flatness (Note 6)	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.1	Ω
			TMIN to TMAX			0.2	
NO_ Off-Leakage Current (Note 7)	${ }^{\text {INO_(OFF) }}$	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	± 0.002	+1	nA
			TMIN to TMAX	-5		+5	
COM Off-Leakage Current (Note 7)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	± 0.002	+1	nA
			TMIN to TMAX	-5		+5	
COM On-Leakage Current (Note 7)	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3.3 \mathrm{~V} \text {, } \\ & 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \text {, } \\ & \text { or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	± 0.002	+2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		+10	

0.8 , Low-Voltage, 4-Channel Analog Multiplexer

Electrical Characteristics (continued)

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{I H}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$ Figure 1	$+25^{\circ} \mathrm{C}$		20	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$ Figure 1	$+25^{\circ} \mathrm{C}$		15	20	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			25	
Break-Before-Make (Note 8)	${ }_{\text {tBBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		5		ns
			TMIN to TMAX	1			
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		60		pC
NO_ Off-Capacitance	COFF	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		33		pF
COM Off-Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		117		pF
COM On-Capacitance	$\mathrm{C}_{\text {COM }}$ (ON)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		171		pF
-3dB On-Channel Bandwidth	BW	$\begin{aligned} & \text { Signal }=0, R_{I N}=R_{\text {OUT }}= \\ & 50 \Omega, C_{L}=5 p F, \text { Figure } 5 \end{aligned}$			90		MHz
Off-Isolation (Note 9)	VISO	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \\ & \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \\ & \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
Crosstalk (Note 10)	V_{CT}	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \\ & \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \\ & \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
Total Harmonic Distortion	THD	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}} \\ & =2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.018		\%
LOGIC INPUT (A_, EN)							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	V_{IL}					0.5	V
Input Leakage Current	IN	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \text { or } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}_{-}}=0 \\ & \text { or } 3.6 \mathrm{~V} \end{aligned}$		-1	0.005	+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}, \mathrm{~A}_{-}}=0 \mathrm{or}$ $\mathrm{V}+$, all channels on or off			0.004	1	$\mu \mathrm{A}$

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Electrical Characteristics—Single 1.8V Supply

$\left(\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}, \\ & \mathrm{~V}_{\mathrm{NO}} \end{aligned}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			3	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \square \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		25	30	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			35	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \square \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		18	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			28	
Break-Before-Make (Note 8)	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \square \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		7		ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		35		pC
Off-Isolation (Note 9)	VISO	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}} 50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
Crosstalk (Note 10)	V_{CT}	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
LOGIC INPUT (A_, EN)							
Input Logic High	$\mathrm{V}_{\text {IH }}$			1			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Leakage Current	IN	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}-}=0 \text { or } 3.6 \mathrm{~V} \end{aligned}$				1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.
Note 4: R_{ON} and $\Delta \mathrm{R}_{\mathrm{ON}}$ matching specifications for thin QFN packaged parts are guaranteed by design.
Note 5: $\quad \Delta R_{O N}=R_{O N(M A X)}-R_{O N(M I N)}$.
Note 6: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Leakage parameters are 100% tested at hot temperature and guaranteed by correlation at room temperature.
Note 8: Guaranteed by design.
Note 9: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 10: Between two switches.

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	
$\boldsymbol{\mu M A X}$	QFN		
1	12	A0	Address 0 Input
2	1	NO1	Analog Switch 1—Normally Open Terminal
3	2	GND	Ground
4	3	NO3	Analog Switch 3—Normally Open Terminal
5	4	EN	Enable Logic Input
6	6	V+	Positive-Supply Voltage Input
7	7	NO4	Analog Switch 4—Normally Open Terminal
8	8	COM	Analog Switch Common Terminal
9	9	NO2	Analog Switch 2-Normally Open Terminal
10	10	A1	Address 1 Input
-	5,11	N.C.	No Connection. Not internally connected.
-	-	EP	Exposed Pad. Connect to Ground.

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Detailed Description

The MAX4734 is a low 0.8Ω (max) (at $\mathrm{V}+=2.7 \mathrm{~V}$) onresistance, low-voltage, 4-channel CMOS analog multiplexer that operates from a 1.6 V to 3.6 V single supply. CMOS switch construction allows switching analog signals that range from GND to $V+$.
When powered from a 2.7 V supply, the 0.8Ω (max) RON allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, followed by NO_{2} or COM.
Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the $\mathrm{V}+$ supply to other components. A $0.1 \mu \mathrm{~F}$ capacitor, connected from $\mathrm{V}+$ to GND , is adequate for most applications.

Logic Inputs

The MAX4734 logic inputs can be driven up to 3.6 V regardless of the supply voltage. For example, with a 1.8 V supply, A and EN may be driven low to GND and high to 3.6 V . Driving $\mathrm{A}_{\text {_ }}$ and EN rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) can be passed with very little change in onresistance (see the Typical Operating Characteristics). The switches are bidirectional, so the NO_ and COM_ pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Test Circuits/Timing Diagrams (continued)

Figure 2. Break-Before-Make Interval

$\Delta V_{\text {out }}$ IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
$\mathrm{Q}=\Delta \mathrm{V}_{\text {OUT }} \times C_{L}$
Figure 3. Charge Injection

Figure 4. Channel Off/On-Capacitance

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/On-Channel/Crosstalk Bandwidth

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PKG	8L 3x3			12L 3x 3			16L 3x3		
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
b	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30
D	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
E	2.90	3.00	3.10	2.90	3.00	3.10	2.90	3.00	3.10
e	0.65 BSC .			0.50 BSC .			0.50 BSC .		
L	0.35	0.55	0.75	0.45	0.55	0.65	0.30	0.40	0.50
N	8			12			16		
ND	2			3			4		
NE	2			3			4		
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A2	0.20 REF			0.20 REF			RE		
k	0.25	-	-	0.25	-	-	0.25	-	-

EXPOSED PAD VARIATIONS								
PKG.	D2			E2			PIN ID	JEDEC
	MIN.	NOM.	MAX	MIN.	NOM.	MAX.		
TQ833-1	0.25	0.70	1.25	0.25	0.70	1.25	$0.35 \times 45^{\circ}$	WEEC
T1233-1	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-3	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1233-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-1
T1633-2	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633F-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633FH-3	0.65	0.80	0.95	0.65	0.80	0.95	$0.225 \times 45^{\circ}$	WEED-2
T1633-4	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633-4C	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633-5	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2
T1633MK-5	0.95	1.10	1.25	0.95	1.10	1.25	$0.35 \times 45^{\circ}$	WEED-2

NOTES:
. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994,
2. ALL DIMENSIONS ARE IN MILLIMETERS. A
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO ESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED ITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.
10 MARKING SHOWN IS FOR PACKAGE ORIENTATION REFERENCE ONLY
12. WARPAGE NOT TO EXCEED 0.10 mm .
13. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND Pb FREE (+) PARTS.

0.8Ω, Low-Voltage, 4-Channel Analog Multiplexer

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

0.8Ω, Low-Voltage, 4-Channel
Analog Multiplexer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	$10 / 16$	Updated Ordering Information table and clarified package options	1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{M A X 4734 E G C+} \underline{M A X 4734 E G C+T}$ MAX4734ETC+ MAX4734ETC+T MAX4734EUB+ MAX4734EUB+T

