

0.5 A high-side driver intelligent power switch

SO20

Features

- 0.5 A output current
- 8 to 35 V supply voltage range
- Internal current limit
- Non-dissipative short-circuit protection
- Thermal shutdown
- Undervoltage lockout with hysteresis
- Internal negative voltage clamping for fast demagnetization
- Differential inputs with large common mode range and threshold hysteresis
- Open load detection
- Two diagnostic outputs
- Open ground protection
- Output status LED driver
- Immunity against burst transient (IEC 61000-4-4)
- ESD protection (human body model $\pm 2\text{ kV}$)

Description

The L6375D is a monolithic intelligent power switch in multipower BCD technology to drive inductive, capacitive or resistive loads with controlled output voltage slew rate and short-circuit protection. An internal clamping diode enables the fast demagnetization of inductive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device robust and suitable for industrial automation applications.

Product status link			
L6375D			

Order code	Temperature range	Package	Packing
L6375D	-25 to +125 °C		Tube
L6375D013TR		SO20	Tape and reel

1 Pin configuration

Figure 1. Pin connections (top view)

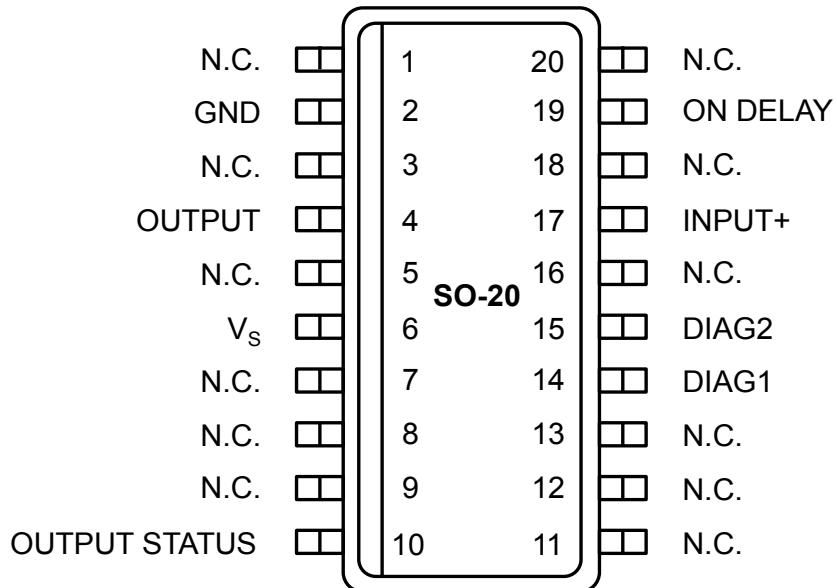


Table 1. Pin description

Pin	Pin name	Function
2	GND	Ground
4	OUTPUT	High side output with built-in current limitation
6	VS	Supply voltage input; the value of the supply voltage is monitored to detect undervoltage condition
10	Output status	This current source output is capable of driving an LED to signal the status of the output pin. The pin is active (source current) when the output pin is considered high
14	DIAG1	DIAGNOSTIC 1 output. This open drain reports the IC working conditions (see Table 6: Diagnostic truth table)
15	DIAG2	DIAGNOSTIC 2 output. This open drain reports the IC working conditions (see Table 6: Diagnostic truth table)
17	IN+	Comparator inverting input
19	ON-DELAY	Programmable ON time interval duration during short-circuit operation
1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 18, 20	N.C.	Not connected

2 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_s	Supply voltage ($t_w \leq 10$ ms)	50	V
	Supply voltage (DC)	40	V
$V_{S-V_{OUT}}$	Supply to output differential voltage	Internally limited	V
V_{od}	ON DELAY pin voltage	-0.3 to 7	V
I_{od}	ON DELAY pin current	± 1	mA
I_{out}	Output current	Internally limited	A
V_{out}	Output voltage	Internally limited	V
E_I	Energy inductive load: $T_J = 85$ °C	200	mJ
P_{tot}	Power dissipation	Internally limited	W
V_{diag}	DIAGx pin voltage	-0.3 to 40	V
I_{diag}	DIAGx pin current	-10 to 10	mA
I_i	IN+ pin current	20	mA
V_i	IN+ pin voltage	-10 to $V_s+0.3$	V
T_{op}	Ambient temperature, operating range	-25 to 85	°C
T_J	Junction temperature, operating range	-25 to 125	°C
T_{stg}	Storage temperature	-55 to 150	°C

Table 3. Thermal data

Symbol	Parameter	Value	Unit
$R_{th(JA)}$	Thermal resistance junction-ambient	65 max. ⁽¹⁾	°C/W
$R_{th(JP)}$	Thermal resistance junction-pins	15 max.	

1. When mounted on an FR4 printed circuit board with 0.5 cm² of Cu (at least 35 mm thick).

3 Electrical characteristics

$V_S = 24 \text{ V}$; $T_J = -25 \text{ to } 125 \text{ }^\circ\text{C}$, unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit	
V_{smin}	Supply voltage for valid diagnostic	$I_{diag} \geq 0.5 \text{ mA}$; $V_{diag} = 1.5 \text{ V}$	4		35	V	
V_S	Operative supply voltage		8	24	35	V	
V_{sth1}	Undervoltage threshold 1		7	7.5	8	V	
V_{sth2}	Undervoltage threshold 2		6.5	7	7.5	V	
V_{shys}	Undervoltage hysteresis		300	500	700	mV	
I_q	Quiescent current	Output open		800		μA	
I_{qo}		Output on		1.6		mA	
V_{ith}	IN+ pin threshold voltage		0.8	1.3	2	V	
V_{iths}	IN+ pin threshold hysteresis		50		400	mV	
V_{il}	IN+ pin low level voltage		-7		0.8	V	
V_{ih}	IN+ pin high level voltage	$V_S < 18 \text{ V}$	2		V_{S-3}	V	
		$V_S > 18 \text{ V}$	2		15		
I_{ib}	IN+ pin bias current	$V_i = -7 \text{ to } 15 \text{ V}$	-250		250	μA	
I_{dch}	Delay capacitor charging current	ON DELAY pin shorted-to-ground		2.5		μA	
V_{don}	Output voltage drop	$I_{out} = 500 \text{ mA}$; $T_J = 25 \text{ }^\circ\text{C}$		200	280	mV	
		$T_J = 125 \text{ }^\circ\text{C}$		320	440		
		$I_{out} = 625 \text{ mA}$; $T_J = 25 \text{ }^\circ\text{C}$		250	350		
		$T_J = 125 \text{ }^\circ\text{C}$		400	550		
I_{olk}	Output leakage current	$V_i = \text{low}$; $V_{out} = 0$			100	μA	
V_{ol}	Output low-state voltage	$V_i = \text{high}$; pin floating		0.8	1.5	V	
V_{cl}	Internal voltage clamp ($V_S - V_{out}$)	$I_o = 200 \text{ mA}$ single pulsed = 300 ms	48	53	58	V	
I_{sc}	Short-circuit output current	$V_S = 8 \text{ to } 35 \text{ V}$; $R_L = 2 \Omega$	0.75	1.1	1.5	A	
I_{old}	Open load detection current	$V_i = V_{ih}$; $T_A = 0 \text{ to } +85 \text{ }^\circ\text{C}$	1	3	6	mA	
V_{oth1}	Output status threshold 1 voltage			4.5	5	5.5	V
V_{oth2}	Output status threshold 2 voltage			4	4.5	5	V
V_{ohys}	Output status threshold hysteresis		300	500	700	mV	
I_{osd}	Output status source current	$V_{out} > V_{oth1}$; $V_{OS} = 2.5 \text{ V}$	2		4	mA	
V_{osd}	Active output status driver drop voltage	$V_S - V_{OS}$; $I_{os} = 2 \text{ mA}$; $T_A = 0 \text{ to } +85 \text{ }^\circ\text{C}$		1.5	3	V	
I_{oslk}	Output status driver leakage current	$V_{out} < V_{oth2}$; $V_{OS} = 0 \text{ V}$; $V_S = 18 \text{ to } 35 \text{ V}$			25	μA	

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{dg1}	Diagnostic drop voltage	$D1 / D2 = L; I_{diag} = 0.5 \text{ mA}$		40		mV
		$D1 / D2 = L; I_{diag} = 3 \text{ mA}$		250		
I_{dg1k}	Diagnostic leakage current	$D1 / D2 = H;$ $0 < V_{dg} < V_S$ $V_S = 15.6 \text{ to } 35 \text{ V}$			5	μA
$T_{max.}$	Overtemperature upper threshold			150		°C
T_{hys}	Overtemperature hysteresis			20		°C
AC operation						
$t_r - t_f$	Rise or fall time	$V_S = 24 \text{ V}; R_I = 70 \Omega; R_I \text{ to ground}$		20		μs
t_d	Delay time			5		
dV/dt	Slew rate (rising and falling edge)		0.7	1	1.5	V/μs
t_{ON}	On-time during short-circuit condition	$50 \text{ pF} < C_{DON} < 2 \text{ nF}$		1.28		μs/pF
t_{OFF}	Off-time during short-circuit condition			64		t_{ON}
$f_{max.}$	Maximum operating frequency			25		kHz
Source drain NDMOS diode						
V_{fsd}	Forward on voltage	$I_{fsd} = 625 \text{ mA}$		1	1.5	V
I_{fp}	Forward peak current	$t_p = 10 \text{ ms}; \text{duty cycle} = 20\%$			2	A
t_{rr}	Reverse recovery time	$I_{fsd} = 625 \text{ mA}; dI_{fsd}/dt = 25 \text{ A}/\mu\text{s}$		200		ns
t_{fr}	Forward recovery time			50		ns

3.1 Schematic diagram

Figure 2. Block diagram

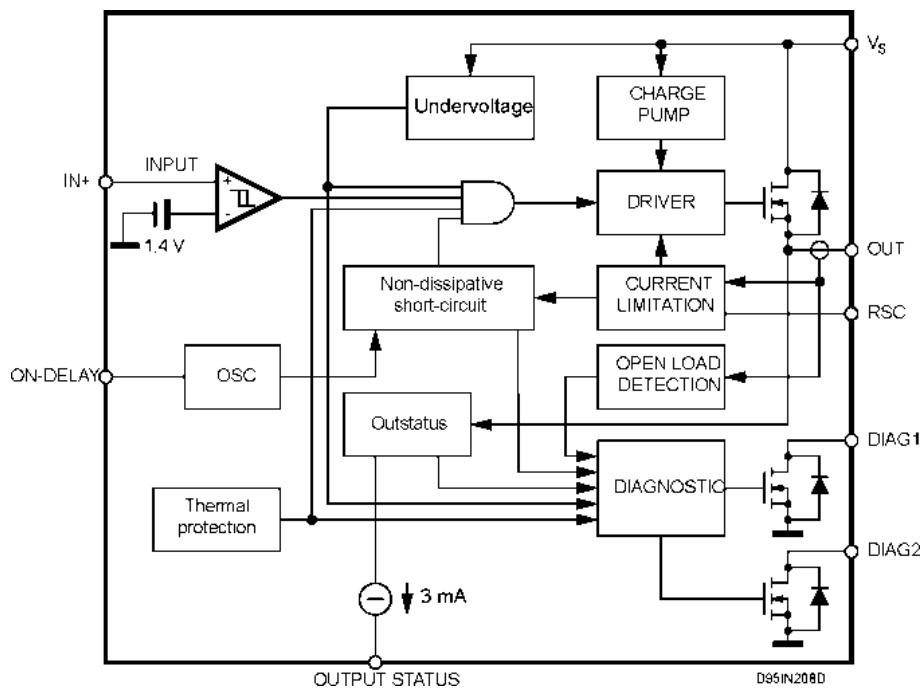
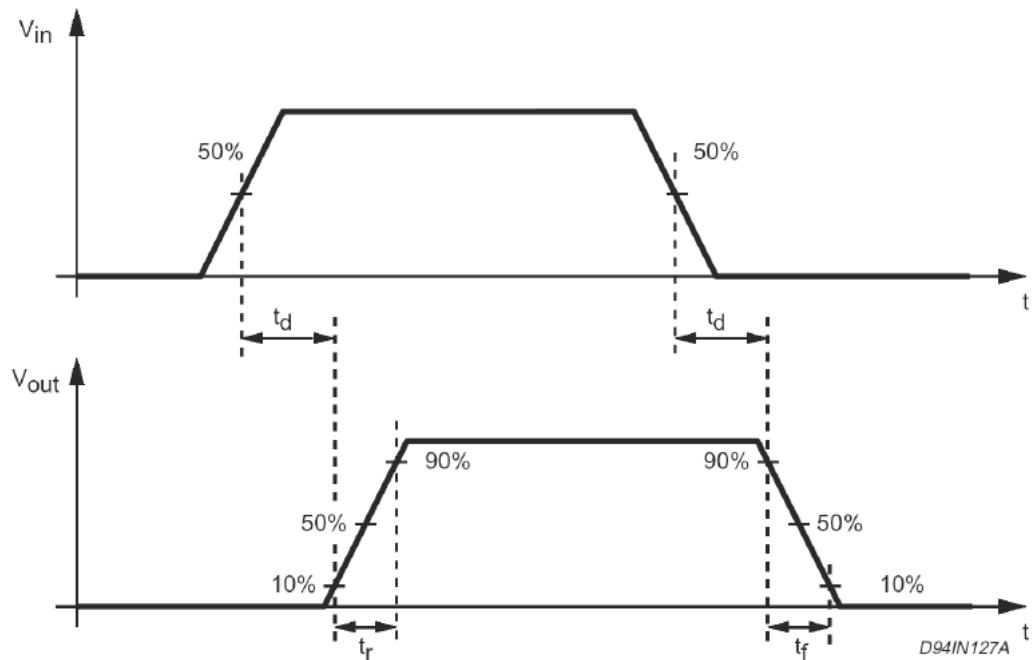



Figure 3. Switching waveforms

3.2 Input section

A single ended input TTL/CMOS compatible with a wide voltage range and high noise immunity (thanks to a built-in hysteresis) is available.

3.3 Overtemperature protection (OVT)

On-chip overtemperature protection provides an excellent protection of the device in extreme conditions. Whenever the temperature, measured on a central portion of the chip, exceeds $T_{max.} = 150^{\circ}\text{C}$ (typical value) the device shuts down, and the DIAG2 output goes low. Normal operation is resumed as the chip temperature (normally after few seconds) falls below $T_{max.} - T_{hys} = 130^{\circ}\text{C}$ (typical value). The hysteresis avoids that an intermittent behavior occurs.

3.4 Undervoltage protection (UV)

The supply voltage operates correctly in a range from 8 to 35 V. Below 8 V the overall system has to be considered not reliable. To avoid any malfunctioning, the supply voltage is continuously monitored to provide an undervoltage protection. As V_s falls below $V_{sth} - V_{shys}$ (typically 7.5 V) the output power MOSFET switches off and DIAG1 and DIAG2 output go low. Normal operation is resumed as soon as V_s exceeds V_{sth} . The hysteretic behavior prevents intermittent operation at low supply voltage.

3.5 Overcurrent operation

In order to implement a short-circuit protection, the output power MOSFET is driven to linear mode to limit the output current to the I_{SC} value (1.1 A typical value).

This condition (current limited to the I_{SC} value) lasts for a t_{ON} time interval that can be set by a capacitor (C_{DON}) connected to the ON DELAY pin according to the following formula:

Equation 1:


$$t_{ON} = 1.28 \mu\text{s/pF} \text{ for } 50 \text{ pF} < C_{DON} < 2 \text{ nF}$$

After the t_{ON} interval has expired the output power MOSFET switches off for the t_{OFF} time interval:

Equation 2:

$$t_{OFF} = 64 \cdot t_{ON}$$

Figure 4. Short-circuit operation waveforms

When the t_{OFF} interval has expired, the output power MOSFET switches on. In this manner two conditions may occur:

- the overload is still present. In this case, the output power MOSFET is again driven to linear mode (limiting the output current to I_{SC}) for another t_{ON} , starting a new cycle
- the overload condition is removed, and the output power MOSFET is no longer driven to linear mode

This unique feature is called no-dissipative short-circuit protection and it ensures a very safe operation even in permanent overload conditions. The choice of the most appropriate value for the t_{ON} interval (the value of the

C_{DON} capacitor) is very important, a delay (the t_{ON} itself) prevents the misleading short-circuit information is presented on the DIAG output, when capacitive loads are driven or incandescent lamp, a cold filament, has a very low resistive value. The non-dissipative short-circuit protection can be disabled (keeping $t_{ON} = 0$ but with the output current still limited to I_{SC} , and diagnostic disabled) by shorting to ground the ON DELAY pin.

3.6 Diagnostic logic

The operating conditions of the device are permanently monitored and the following occurrences are indicated by DIAG1/DIAG2 open drain output pins, see [Section 3.8 Diagnostic truth table](#).

- Short-circuit vs. ground
- Short-circuit vs. VS
- Undervoltage (UV)
- Overtemperature (OVT)
- Open load, if the output current is less than 3 mA (typical value)

3.7 Demagnetization of inductive loads

An internal Zener diode, limiting the voltage across the power MOSFET between 50 and 60 V (V_{cl}), provides safe and fast demagnetization of inductive loads without the external clamping devices. The maximum energy absorbed by an inductive load is specified as 200 mJ (at $T_J = 85^\circ\text{C}$).

3.8 Diagnostic truth table

Table 5. Diagnostic truth table

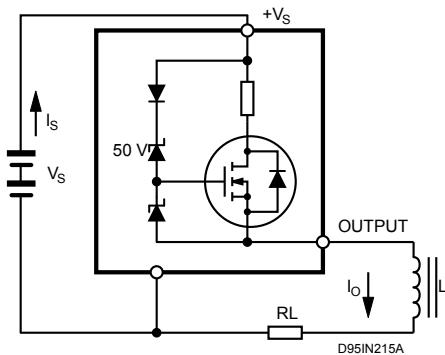
Diagnostic conditions	Input	Output	DIAG1	DIAG2
Normal operation	L	L	H	H
	H	H	H	H
Open load condition ($I_o < I_{old}$)	L	L	H	H
	H	H	L	H
Short to V_S	L	H	L	H
	H	H	L	H
Short-circuit to ground ($I_O = I_{sc}$) (ON DELAY pin grounded) ⁽¹⁾	H	X	H	H
	L	L	H	H
Output DMOS open	L	L	H	H
	H	L	L	H
Overtemperature	L	L	H	L
	H	L	H	L
Supply undervoltage ($V_S < V_{sth2}$)	L	L	L	L
	H	L	L	L

1. A cold lamp filament or a capacitive load activates the current limiting circuit of the IPS, when the IPS is initially turned on.

4

Application circuits

Figure 5. Input comparator hysteresis



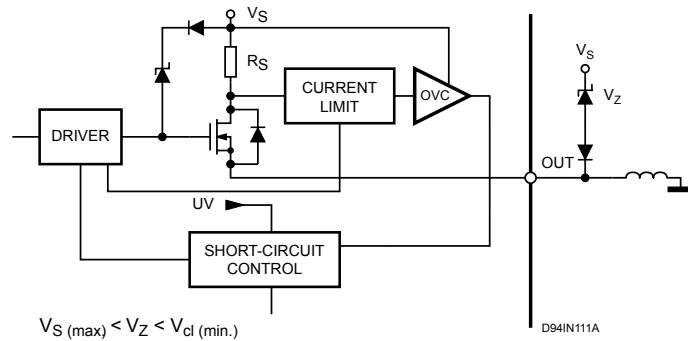


Figure 6. External demagnetization circuit (versus ground)

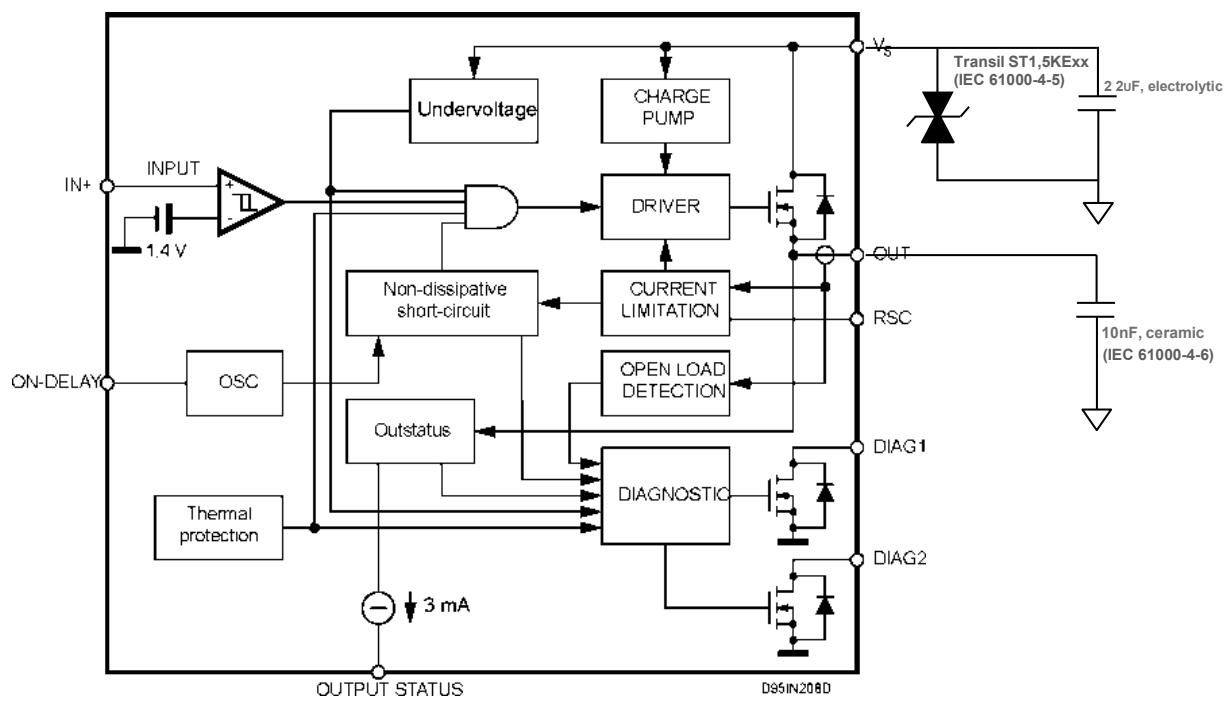

GIPG2007151545LM

Figure 7. External demagnetization circuit (versus VS)

GIPG2007151551LM

Figure 8. Application diagram

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

5.1 SO-20 package information

Figure 9. SO-20 package outline

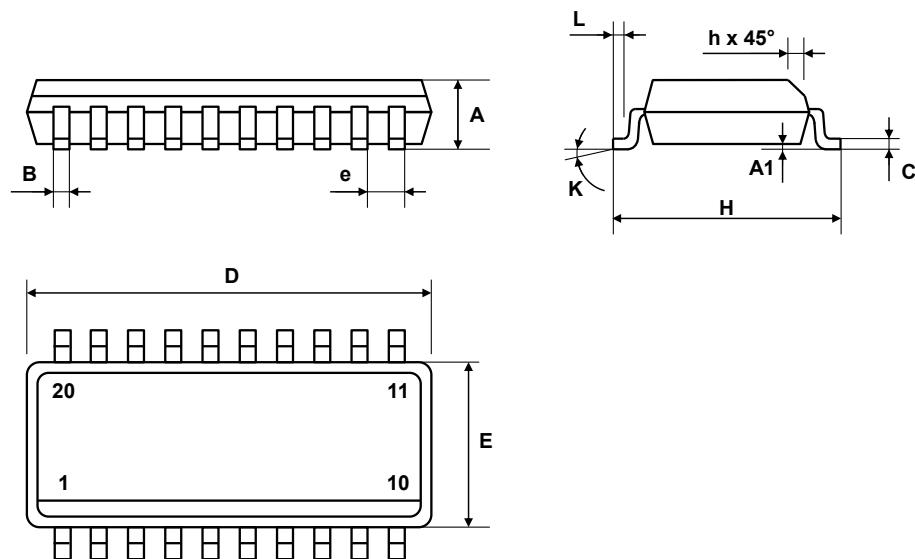


Table 6. SO20 mechanical data

Dim.	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	2.35		2.65	0.093		0.104
A1	0.1		0.3	0.004		0.012
B	0.33		0.51	0.013		0.020
C	0.23		0.32	0.009		0.013
D	12.6		13	0.496		0.512
E	7.4		7.6	0.291		0.299
e		1.27			0.050	
H	10		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
K				0° (min.)8° (max.)		

5.2

SO20 packing information

Figure 10. Shipping tube for SOIC SO20 (measure in mm)

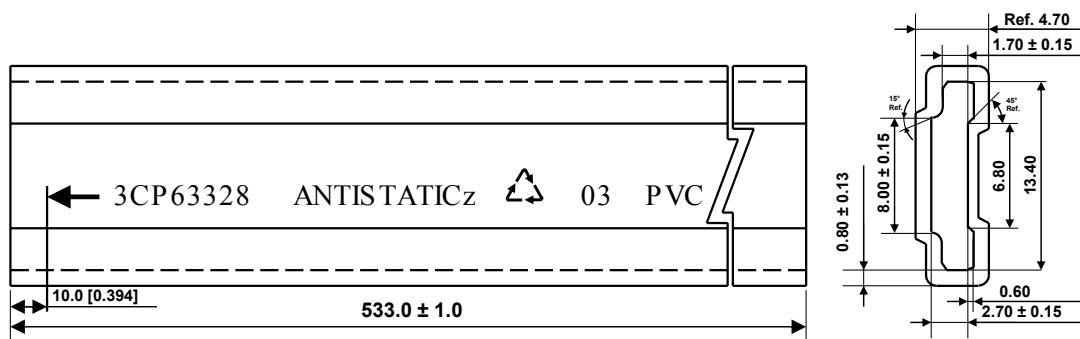
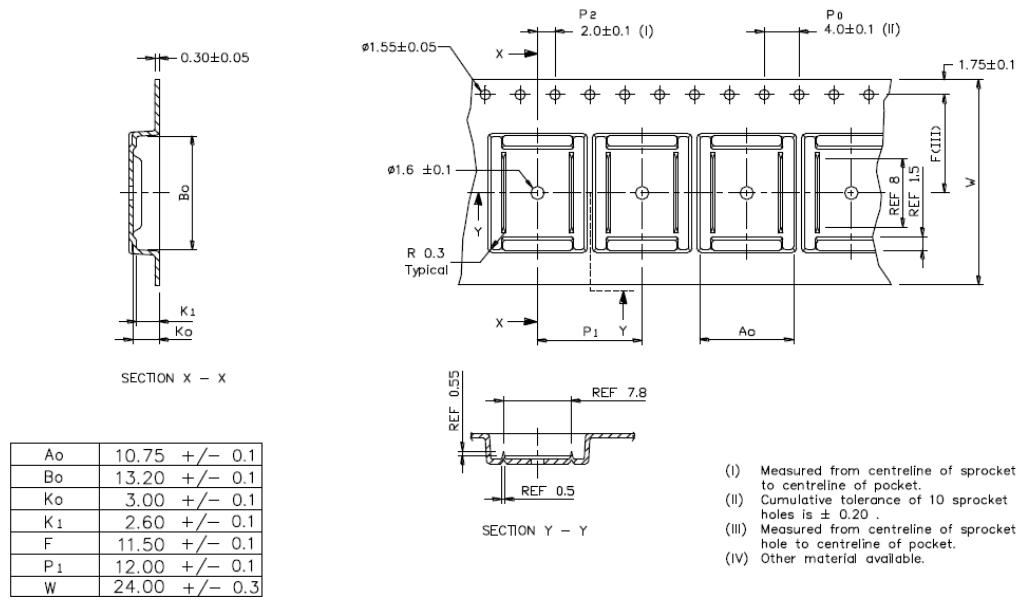
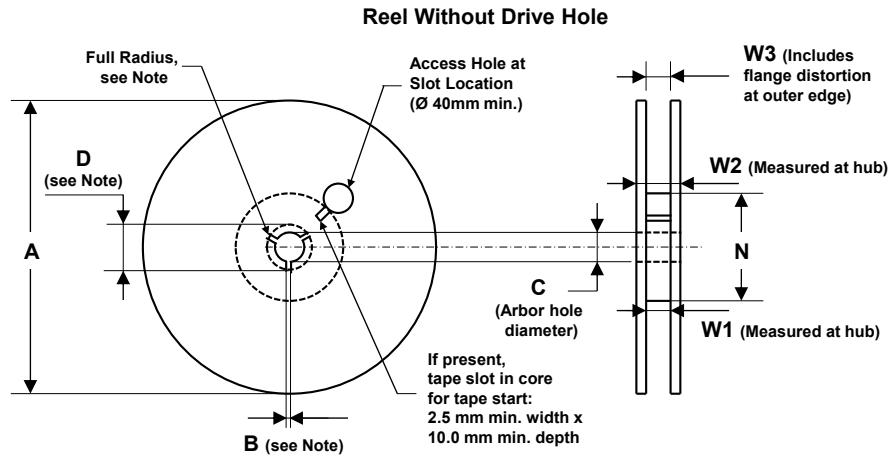




Figure 11. SOIC 20L wide body carrier tape drawing (supplier code 12)

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 12. SO20 reel drawing

Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 7. SO20 reel dimensions

Dim.	mm		
	Min.	Typ.	Max.
A		330	
B	1.5		
C	12.8	13.0	13.5
D	20.2		
Tape size	8		200
W		24	
N		7" (178)	
W1 ⁽¹⁾		24.4	24.6
W2 max		30.4	

1. Measured at the hub

Figure 13. SO20 Reel side view drawing

Table 8. SO20 reel side view dimensions

Dim.	mm		
	Min.	Typ.	Max.
Reel		7" hub (24mm)	
X	24.5	25	25.5
Y	0.95	1	1.05
Z	5.5	6	6.5
V	19	20	21
U	1.95	2	2.05

Revision history

Table 9. Document revision history

Date	Revision	Changes
24-Jul-2007	1	Initial release.
29-Jun-2009	2	Updated Table 5 on page 7
21-Dec-2011	3	Updated Table 5 on page 7
15-May-2019	4	Updated Table 4. Electrical characteristics

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[STMicroelectronics](#):

[L6375D](#) [L6375D013TR](#)