PTC04-DB-HALL03

INSPIRED ENGINEERING

Daughter Board for Melexis PTC devices

Features and Benefits

PTC04 interface board for testing devices

- MLX90288
- MLX91206
- MLX91207
- MLX90291
- MLX90292 for 3 wire PWM

Ordering Information

Part No.

PTC04-DBHall-03 V1.1

Accessories

Part No.

DLL's for all supported products
User Inter Faces for supported products
Firmware for supported products

1. Functional Diagram

Applications

Experimental tool for Lab and Prototyping
Production Equipment for Serial Programming

Description

Daughter Board

Description

Contents

Features and Benefits. 1
Applications. 1
Ordering Information 1
Accessories 1

1. Functional Diagram 1
2. Board description 3
2.1. Board Layout 3
2.2. Board Schematics 4
2.3. Daughter board Connectors 4
2.3.1. Digital DB Connector (40 Pins) 5
2.3.2. Analog DB Connector (48 Pins) 6
2.4. Application Connector 7
2.4.1. The DB15_Female connector (application connector) 7
2.4.2. The screw terminal 8
3. Contact 9
4. Disclaimer 9

2. Board description

2.1. Board Layout

- J3: Jumpers to connect the measurement sense lines immediately to the force lines. These jumpers are needed when no force and sense is used.
- DB-ID: This ID keeps a few initial variables in mind. It allows for example to detect what DB is connected to the programmer and if the DB is not expired.
- J5, J6: Analogue and Digital connector: See below for a detailed description.
- DB Connector: Connector to the application. See below for details.
- LED Indicators: 8 LED Indicators for the DB_IOdrv lines.
- J1: 10 pins Screw Terminal. It provides the same signals as the application connector.

2.2. Board Schematics

Below you can find the complete schematics of the DB:

The PTCO4 main board has two connectors to the interface with the application. The PTC allows adding a full PCB in between (Daughter Board). This daughter board can be mounted on the two connectors. In some exceptional cases, a daughter board contains only a few wires from the Analogue connector to the application connector. The pins on of the connectors are described below.

DIGITAL DB CONNECTOR

ANALOG DB CONNECTOR

2.3.1. Digital DB Connector (40 Pins)

Mainly, the digital connector is meant to expand the programmer to extra needs. Address lines A0-A7 together with the Map Select Lines F8-FF allows to direct access an area of 2 K . Examples would be adding a simple addressed I/O register by using the selection lines. If more complexity is needed, a full FPGA can be mounted on the DB board

Pins	Names	Description
1-8	A0-A7	Address lines
9-16	D0 - D7	Data Lines active during Rd or Wr signals
17	Rd	Read: A negative pulse will indicate a sampling of the data on the Data Bus
18	Wr	Write: A Negative pulse will indicate when data is available on the Data Bus
20	Reset	This signal goes low by powering the PTC or by pressing the reset button. This line can be pulled low by application. Check firmware documentation for resetting by software.
21-22	SCL / SDA	$I^{2} \mathrm{C}$ Bus
23-30	F8,F9,...,FF	CS lines when the address areas are accessed
31-38	Port E	Note: These pins are limited to 5 Volt input/output!!! The full Port E of the Atmega core is mounted to these pins. This allows us to use advanced features like PWM, UARTS, Time Measurements, etc.... By using firmware that supports these, functions, application specific requirements can be fulfilled.
39	DGND	Digital Ground
40	+5V Digital	5 Volt Digital Supply. Maximum current to get out of this supply : 250 mA

Note: All the pins are limited to 5 Volt input/output!!! However, there are Protections, please take precautions in order to avoid damage of the main board.

2.3.2. Analog DB Connector (48 Pins)

Mainly, the analog connector provides all the analog signals and measure possibilities.

Pins	Names	Description
28,32,36	PPS 1-3	Output of the high current Programmable Supplies
40	PPS 4	Output of the Fast DAC Programmable Power Supply
27,31,35,39	Isense_PP1-4	Outputs (Driver outputs before Rsens) for current evaluations. These outputs could be used to connect to the analog comparators in order to create fast digital signals based on current.
2,4,6,8	ExtMeas1-4Pos	There are 4 differential inputs for making measurements, these are the positive inputs.
10,12,14,16	ExtMeas1- 4Neg	The negative inputs of ExtMeas1-4Pos
43,44,47,48	AnaComp0-3	Input (limited to +5 V) See ${ }^{*}$ Note. Fast Level comparators in order to remove time consuming measurement
18	+35V_Supply	Supply to extend the daughter board with some extra drivers
24	+2.5V_Ref	Output of internal reference
All other	AGND	Analogue Ground

Note: All the pins are limited to 35 Volt input/output!!! However, there are protections, please take precautions in order to avoid damage of the main board.

* Note: Some pins are protected and limited to 5 Volt!!! However, there are Protections, please take precautions in order to avoid damage of the main board.

2.4. Application Connector

There are two ways to connect the application to PTC04:

2.4.1. The DB15_Female connector (application connector)

The view of the connector is front view for the female connector of the PTCO4-DB-HALLO3 which corresponds to the solder side of the male connector.

DB15 Female Connector

PTC04			$\begin{aligned} & \infty \\ & \infty \\ & \widetilde{N}_{\infty}^{\infty} \end{aligned}$	-1 oै or	O N \%	- - ने
Pin\#	Names	Description	Package Pin \#			
1	VDD_DIE	Device Supply	1	1	1	1
2	OUT1_DIE	Device Output 1	4	4	5	5
3	GND_DIE	Analogue Ground	2	2	2	2
4	NC	Not Connected				
5	NC	Not Connected				
6	TEST_MUSTO_DIE	Digital test pin - MUSTO (if Master-Slave approach used acts as M2S)	7	n / a	7	7
7	TEST_MUST1_DIE	Digital test pin - MUST1 (if Master-Slave approach used acts as S2M)	8	n / a	4	4
8	TESTOUT_MICE_DIE	Digital test pin - MICE	6	n/a	6	6
9	VDD_SENSE_DIE	Sensing Device Supply	1	1	1	1
10	OUT1_SENSE_DIE	Sensing Device Output 1	4	4	4	4
11	GND_SENSE_DIE	Sensing Analogue Ground Device	2	2	2	2
12	OUT2_DIE	Device Output 2 (TempOut)	n/a	n / a	8	8
13	NC	Not Connected				
14	NC	Not Connected				
15	NC	Not Connected				

2.4.2. The screw terminal

10 Pin Screw Terminal

$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

PTC04						
Pin\#	Names	Description	Package Pin \#			
1	VDD_DIE	Device Supply	1	1	1	1
2	VDD_SENSE_DIE	Sensing Device Supply	1	1	1	1
3	OUT1_ DIE	Device Output 1	4	4	5	5
4	OUT1_SENSE_DIE	Sensing Device Output 1	4	4	5	5
5	GND_DIE	Analogue Ground Device	2	2	2	2
6	GND_SENSE_DIE	Sensing Analogue Ground Device	2	2	2	2
7	OUT2_ DIE	Device Output 2 (TempOut)	n/a	n/a	8	8
8	TEST_MUSTO_DIE	Digital test pin - MUSTO (if Master-Slave approach used acts as M2S)	7	n/a	7	7
9	TEST_MUST1_DIE	Digital test pin - MUST1 (if Master-Slave approach used acts as S2M)	8	n/a	4	4
10	TESTOUT_MICE_DIE	Sensing Analogue Ground Device	6	n/a	6	6

3. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +3213670495
	Email : sales_europe@melexis.com
Americas	Telephone: +16032232362
	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

4. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.
The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.
The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.
This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or lifesustaining equipment are specifically not recommended by Melexis.
The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation
The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document
Melexis NV © - No part of this document may be reproduced without the prior written consent of Melexis. (2016)

ISO/TS 16949 and ISO14001 Certified

