

www.ti.com

SCLS539D -AUGUST 2003-REVISED OCTOBER 2009

8-BIT SHIFT REGISTER WITH 3-STATE OUTPUT REGISTERS

Check for Samples: SN74LV595A-Q1

FEATURES

- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- 2-V to 5.5-V V_{CC} Operation
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Voltage Operation on All Ports
- 8-Bit Serial-In, Parallel-Out Shift
- I_{off} Supports Partial-Power-Down Mode Operation
- Shift Register Has Direct Clear

DESCRIPTION

The SN74LV595A is an 8-bit shift register designed for 2-V to 5.5-V V_{CC} operation.

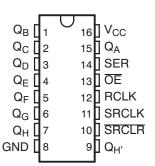
This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and a serial output for cascading. When the output-enable (\overline{OE}) input is high, all outputs except $Q_{H'}$ are in the high-impedance state.

Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TSSOP - PW	Reel of 2000	SN74LV595AIPWRQ1	LV595AI
–40°C to 125°C	TSSOP - PW	Reel of 2000	SN74LV595AQPWRQ1	LV595AQ


ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Table 1. FUNCTION TABLE

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	OE	FUNCTION
Х	Х	Х	Х	Н	Outputs $Q_A - Q_H$ are disabled.
Х	Х	Х	Х	L	Outputs $Q_A - Q_H$ are enabled.
Х	х	L	Х	Х	Shift register is cleared.
L	¢	Н	х	Х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
Н	↑	Н	х	х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	Х	Х	1	Х	Shift-register data is stored in the storage register.

2

www.ti.com

www.ti.com

LOGIC DIAGRAM (POSITIVE LOGIC) <u>OE</u> 13 RCLK 12 10 SRCLR -SRCLK 11 14 SER -1D 3D Q <u>15</u> Q_A > C1 > C3 Q R 3D 2D Q 1 ____ Q_B > C3 Q > C2 R 2D 3D 2 Q_C Q > C3 Q > C2 R 2D Q 3D <u>3</u> Q_D > C3 Q > C2 R 2D 3D Q 4 Q_E > C2 > C3 Q R 2D 3D Q 5 Q_F > C2 > C3 Q R 2D 3D Q <u>6</u> Q_G > C3 Q > C2 R 2D 3D Q 7 Q_H > C2 >C3 Q R 9 Q_{H'}

TEXAS INSTRUMENTS

SCLS539D -AUGUST 2003-REVISED OCTOBER 2009

www.ti.com

	TIMING DIAGRAM
SRCLK	
SER	
RCLK	
SRCLR	
ŌĒ	
Q _A	
Q _B	
Q _C	
QD	
Q _E	
Q _F	
Q _G	
Q _H	
Q _H ′	

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

V _{CC}	Supply voltage range	,	-0.5 V to 7 V
	Input voltage range ⁽²⁾		-0.5 V to 7 V
VI		(0)	
Vo	Voltage range applied to any output in the high-imp	pedance or power-off state ⁽²⁾	-0.5 V to 7 V
Vo	Output voltage range applied in the high or low sta	te ⁽²⁾ (3)	–0.5 V to V _{CC} + 0.5 V
I _{IK}	Input clamp current ⁽²⁾	V ₁ < 0	–20 mA
I _{OK}	Output clamp current ⁽²⁾	V _O < 0	–50 mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}	±35 mA
	Continuous current through V _{CC} or GND		±70 mA
θ _{JA}	Package thermal impedance ⁽⁴⁾		108°C/W
T _{stg}	Storage temperature range		-65°C to 150°C
		Human-body model (HBM)	2000 V
ESD	Electrostatic discharge rating	Machine model (MM)	200 V
		Charged-device model (CDM)	1000 V

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) This value is limited to 5.5 V maximum.
 (4) The package thermal impedance is calculated and the package the

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		$V_{CC} = 2 V$	1.5		
VIH	High lovel input voltage	V_{CC} = 2.3 V to 2.7 V	$V_{CC} \times 0.7$		V
ЧH		V_{CC} = 3 V to 3.6 V	$V_{CC} \times 0.7$		v
	High-level input voltage Low-level input voltage Input voltage Output voltage High level output current Low level output current	V_{CC} = 4.5 V to 5.5 V	$V_{CC} \times 0.7$		
		$V_{CC} = 2 V$		0.5	
V		V_{CC} = 2.3 V to 2.7 V		$V_{CC} \times 0.3$	V
V _{IL}	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		$V_{CC} \times 0.3$	v
		V_{CC} = 4.5 V to 5.5 V		$V_{CC} \times 0.3$	
VI	Input voltage		0	5.5	V
V	Output voltage	High or low state	0	V _{CC}	V
Vo	Odiput voltage	3-state	0	5.5	v
		$V_{CC} = 2 V$		-50	μA
	High lovel output ourrent	V_{CC} = 2.3 V to 2.7 V		-2	
I _{OH}	High level output current	V_{CC} = 3 V to 3.6 V		-8	mA
		V_{CC} = 4.5 V to 5.5 V		-16	
		$V_{CC} = 2 V$		50	μA
		V_{CC} = 2.3 V to 2.7 V		2	
I _{OL}		$V_{CC} = 3 V \text{ to } 3.6 V$		8	mA
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		16	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		200	
Δt/Δv	Input transition rise/fall time	$V_{CC} = 3 V \text{ to } 3.6 V$		100	ns/V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		20	
т	Operating free air temperature	SN74LV595AIPWRQ1	-40	85	°C
T _A	Operating free-air temperature	SN74LV595AQPWRQ1	-40	125	-0

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS	N	$T_{A} = -40^{\circ}$	°C TO 85°	D 85°C $T_A = -40°C \text{ TO } 125°C$		5°C		
PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		I _{OH} = −50 μA	2 V to 5.5 V	V _{CC} – 0.1			V _{CC} – 0.1			
		I _{OH} = −2 mA	2.3 V	2			2			
v	Q _{H'}	I _{OH} = −6 mA	3 V	2.48			2.45			V
V _{OH}	Q _A -Q _H	I _{OH} = −8 mA	3 V	2.48			2.45			v
	Q _{H'}	I _{OH} = −12 mA	4.5.\(3.8			3.7			
	Q _A -Q _H	I _{OH} = −16 mA	4.5 V	3.8			3.7			
		I _{OL} = 50 μA	2 V to 5.5 V			0.1			0.1	
		I _{OH} = 2 mA	2.3 V			0.4			0.45	
	Q _{H'}	I _{OH} = 6 mA	2.1/			0.44			0.5	V
V _{OL}	Q _A -Q _H	I _{OH} = 8 mA	3 V			0.44			0.5	v
	Q _{H'}	I _{OH} = 12 mA	4.5.\(0.55			$ \begin{array}{r} 0.45 \\ 0.5 \\ 0.65 \\ 0.65 \\ \pm 1 \\ \pm 10 \\ 40 \\ 10 \\ \end{array} $	
	Q _A -Q _H	I _{OH} = 16 mA	4.5 V			0.55			0.65	
l _l		$V_I = 5.5 V \text{ or GND}$	0 V to 5.5 V			±1			±1	nA
I _{OZ}	Q _A -Q _H	$V_{O} = V_{CC}$ or GND	5.5 V			±5			±10	μA
I _{CC}		$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	5.5 V			20			40	μA
I _{off}		V_{I} or V_{O} = 0 to 5.5 V	0			5 ⁽¹⁾			10	μA
Ci		$V_I = V_{CC}$ or GND	3.3 V		3.5			3.5		pF

(1) I_{off} does not apply to pin 9.

6

Copyright © 2003–2009, Texas Instruments Incorporated

www.ti.com

TIMING REQUIREMENTS

over operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V (unless otherwise noted)

			$T_A = 2$	$T_{A} = 25^{\circ}C \qquad \begin{array}{c} T_{A} = -40^{\circ}C \\ TO 85^{\circ}C \end{array}$			T _A = −40°C TO 125°C		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
		SRCLK high or low	7		7.5		8.5		
tw	Pulse duration	RCLK high or low	7		7.5		8.5		ns
		SRCLR low	6		6.5		7.5	-	
		SER before SRCLK↑	5.5		5.5		6.5		
	Cotup time	SRCLK↑ before RCLK↑ ⁽¹⁾	8		9		10		20
t _{su}	Setup time	SRCLR low before RCLK↑	8.5		9.5		10.5		ns
		SRCLR high (inactive) before SRCLK↑	4		4		5		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		2.5		ns

(1) This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

TIMING REQUIREMENTS

over operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

			T _A = 2	25°C	T _A = - TO 8	40°C 5°C	T _A = - TO 12	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	
		SRCLK high or low	5.5		5.5		6.5		
tw	Pulse duration	RCLK high or low	5.5		5.5		6.5		ns
		SRCLR low	5		5		6		
		SER before SRCLK↑	3.5		3.5		4.5		
+	Setup time	SRCLK↑ before RCLK↑ ⁽¹⁾	8		8.5		9.5		20
t _{su}	Setup time	SRCLR low before RCLK↑	8		9		10		ns
		SRCLR high (inactive) before SRCLK↑	3		3		4		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		2.5		ns

(1) This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

TIMING REQUIREMENTS

over operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted)

			T _A = 2	25°C	T _A = −40°C TO 85°C		T _A = −40°C TO 125°C		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
		SRCLK high or low	5		5		6		
tw	Pulse duration	RCLK high or low	5		5		6		ns
		SRCLR low	5.2		5.2		6.2		
		SER before SRCLK↑	3		3		4		
	Cotup time	SRCLK↑ before RCLK↑ ⁽¹⁾	5		5		6		~~~
t _{su}	Setup time	SRCLR low before RCLK↑	5		5		6		ns
		SRCLR high (inactive) before SRCLK↑	2.5		2.5		3.5		
t _h	Hold time	SER after SRCLK↑	2		2		3		ns

(1) This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

www.ti.com

SCLS539D -AUGUST 2003-REVISED OCTOBER 2009

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, C_L = 50 pF (unless otherwise noted)

PARAMETER	FROM	TO	т,	T _A = 25°C		T _A = - TO 8		T _A = −40°C TO 125°C		UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			60	70		40		30		MHz
t _{PLH}	RCLK	Q _A -Q _H		11.2	17.2	1	19.3	1	22.3	ns
t _{PHL}	KOLK	$\mathbf{Q}_{A}^{-}\mathbf{Q}_{H}$		11.2	17.2	1	19.3	1	22.3	ns
t _{PLH}	SRCLK	Q _{H'}		13.1	22.5	1	25.5	1	28.5	ns
t _{PHL}	SKULK			13.1	22.5	1	25.5	1	28.5	ns
t _{PHL}	SRCLR	Q _{H'}		12.4	18.8	1	21.1	1	24.1	ns
t _{PZH}	OE	0 -0		10.8	17	1	18.3	1	21.3	ns
t _{PZL}	UE	Q _A -Q _H		13.4	21	1	23	1	26	ns
t _{PHZ}	ŌĒ	0 -0		12.2	18.3	1	19.5	1	22.5	ns
t _{PLZ}	UE	Q _A -Q _H		14	20.9	1	22.6	1	25.6	ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, C_L = 50 pF (unless otherwise noted)

PARAMETER	FROM	TO	т,	T _A = 25°C			40°C 5°C	T _A = −40°C TO 125°C		UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			55	105		50		40		MHz
t _{PLH}	RCLK	0 -0		7.9	15.4	1	17	1	20	ns
t _{PHL}	ROLK	Q _A -Q _H		7.9	15.4	1	17	1	20	ns
t _{PLH}	SRCLK	0		9.2	16.5	1	18.5	1	21.5	ns
t _{PHL}	SRULK	Q _{H'}		9.2	16.5	1	18.5	1	21.5	ns
t _{PHL}	SRCLR	Q _{H'}		9	16.3	1	17.2	1	20.2	ns
t _{PZH}	OE	0 -0		7.8	15	1	17	1	20	ns
t _{PZL}	OE	Q _A -Q _H		9.6	15	1	17	1	20	ns
t _{PHZ}	OE	0.0		8.1	15.7	1	16.2	1	19.2	ns
t _{PLZ}	UE	Q _A -Q _H		9.3	15.7	1	16.2	1	19.2	ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V, C_L = 50 pF (unless otherwise noted)

PARAMETER	FROM	TO (OUTPUT)	т,	T _A = 25°C			40°C 5°C	T _A = −40°C TO 125°C		UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			95	140		85		75		MHz
t _{PLH}	RCLK	Q _A -Q _H		5.6	9.4	1	10.5	1	13.5	ns
t _{PHL}	KOLK	QA-QH		5.6	9.4	1	10.5	1	13.5	ns
t _{PLH}	SRCLK	0		6.4	10.2	1	11.4	1	14.4	ns
t _{PHL}	SKOLK	Q _{H'}		6.4	10.2	1	11.4	1	14.4	ns
t _{PHL}	SRCLR	Q _{H'}		6.4	10	1	11.1	1	14.1	ns
t _{PZH}	- <u>OE</u>	Q _A –Q _H		5.7	10.6	1	12	1	15	ns
t _{PZL}	UL	QA-QH		6.8	10.6	1	12	1	15	ns
t _{PHZ}	OE	0 -0		3.5	10.3	1	11	1	14	ns
t _{PLZ}	UE	Q _A -Q _H		3.4	10.3	1	11	1	14	ns

www.ti.com

NOISE CHARACTERISTICS⁽¹⁾

$V_{\rm CC} = 3.3$	$V, C_{L} = 50 \text{ pF}, T_{A} = 25^{\circ}\text{C}$		
	PARAMETER	MIN TYP MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}	0.3	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}	-0.2	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	2.8	V
V _{IH(D)}	High-level dynamic input voltage	2.31	V
V _{IL(D)}	Low-level dynamic input voltage	0.99	V

(1) Characteristics are for surface-mount packages only.

OPERATING CHARACTERISTICS

$T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITION	TYP	UNIT	
C _{pd}	Power discipation experitence	C = 50 pc f = 10 MHz	$V_{CC} = 3.3 V$	111	'n
	Power dissipation capacitance	$C_{L} = 50 \text{ pF}, \text{ f} = 10 \text{ MHz}$	$V_{CC} = 5 V$	114	р⊦

SN74LV595A-Q1

SCLS539D -AUGUST 2003-REVISED OCTOBER 2009

www.ti.com

INSTRUMENTS

EXAS

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C₁ includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r \leq 3 ns, t_f \leq 3 ns.
 - D. The outputs are measured one at a time, with one input transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PHL} and t_{PLH} are the same as t_{pd} .
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN74LV595AIPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595AI	Samples
SN74LV595AIPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	LV595AI	Samples
SN74LV595AQPWRQ1	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV595AQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

11-Apr-2013

OTHER QUALIFIED VERSIONS OF SN74LV595A-Q1 :

Catalog: SN74LV595A

Enhanced Product: SN74LV595A-EP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

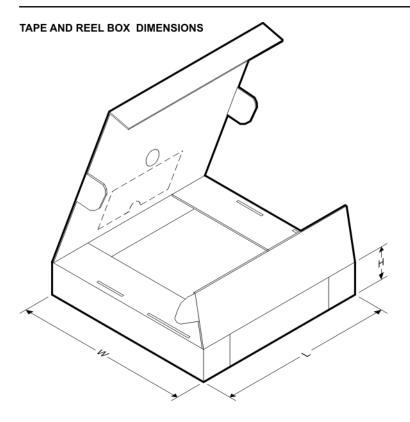
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal Device												
Device	Туре	Drawing		SFQ	Diameter		(mm)	ыл (mm)	(mm)	(mm)		Quadrant
SN74LV595AIPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595AIPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595AQPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

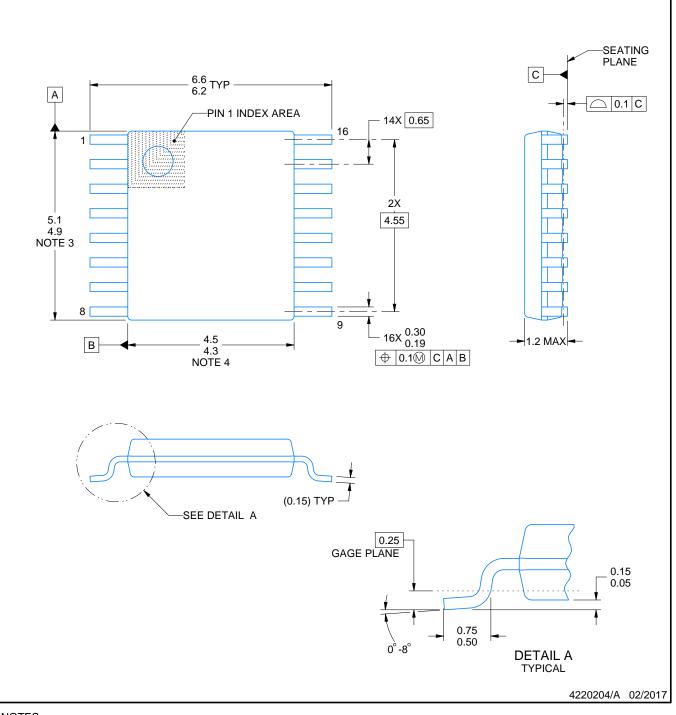
www.ti.com

PACKAGE MATERIALS INFORMATION

14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV595AIPWRG4Q1	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV595AIPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV595AQPWRQ1	TSSOP	PW	16	2000	367.0	367.0	35.0


PW0016A

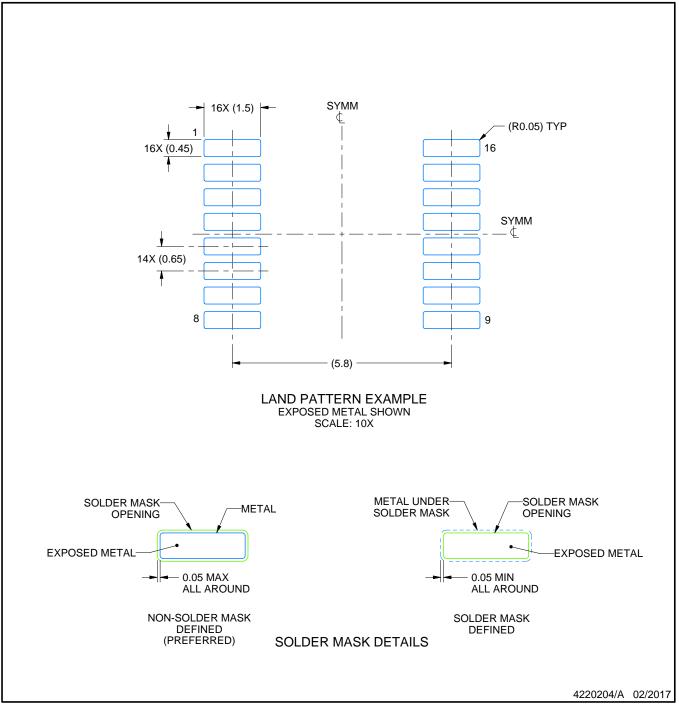
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

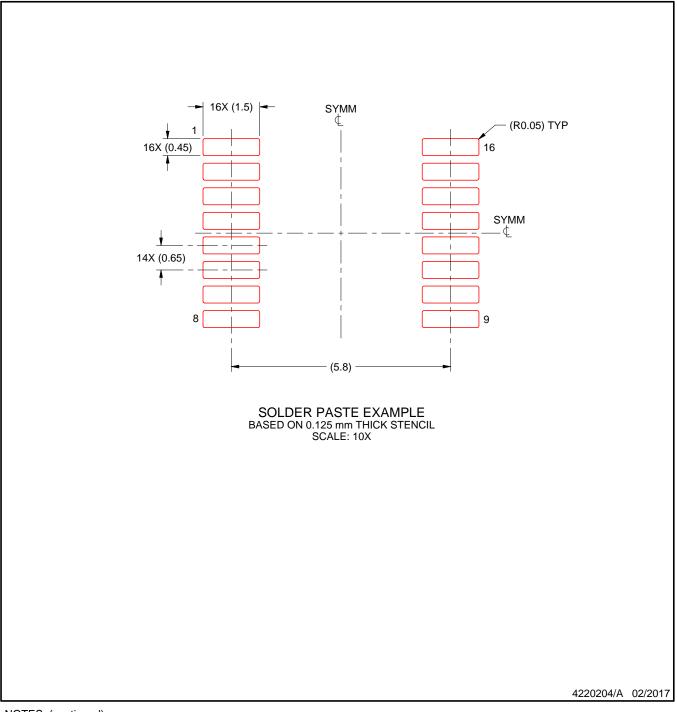
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated