

Dual Output Driver

FEATURES

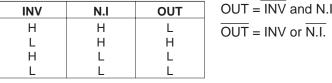
- Dual, 1.5A Totem Pole Outputs
- 40nsec Rise and Fall into 1000pF .
- Parallel or Push-Pull Operation •
- Single-Ended to Push-Pull Conversion •
- High-Speed, Power MOSFET • Compatible
- Low Cross-Conduction Current Spike •
- Analog, Latched Shutdown .
- Internal Deadband Inhibit Circuit •
- Low Quiescent Current .
- 5 to 40V Operation •

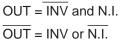
BLOCK DIAGRAM

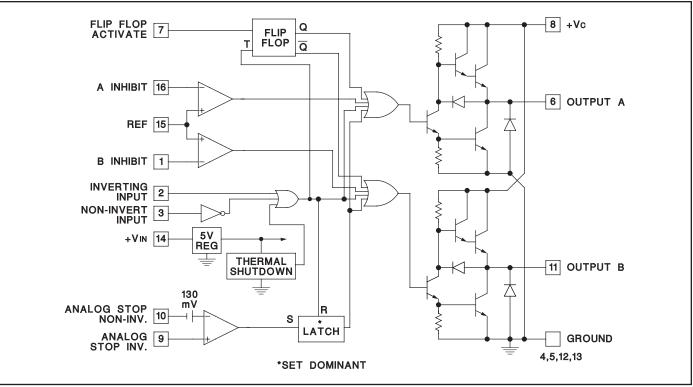
- **Thermal Shutdown Protection** •
- 16-Pin Dual-In-Line Package .
- 20-Pin Surface Mount Package

DESCRIPTION

The UC1706 family of output drivers are made with a high-speed Schottky process to interface between low-level control functions and high-power switching devices - particularly power MOSFET's. These devices implement three generalized functions as outlined below.

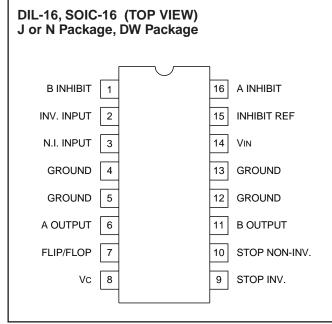

First: They accept a single-ended, low-current digital input of either polarity and process it to activate a pair of high-current, totem pole outputs which can source or sink up to 1.5A each.

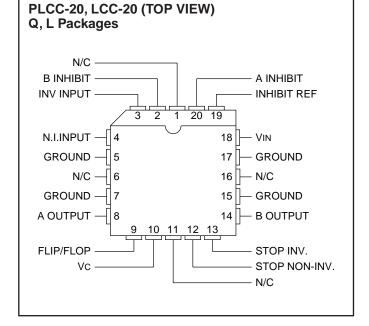

Second: They provide an optional single-ended to push-pull conversion through the use of an internal flip-flop driven by double-pulsesuppression logic. With the flip-flop disabled, the outputs work in parallel for 3.0A capability.


Third: Protection functions are also included for pulse-by-pulse current limiting, automatic deadband control, and thermal shutdown.

These devices are available in a two-watt plastic "bat-wing" DIP for operation over a 0°C to 70°C temperature range and, with reduced power, in a hermetically sealed cerdip for -55°C to +125°C operation. Also available in surface mount Q and L packages.

TRUTH TABLE


SLUS200A - OCTOBER 1998 - REVISED APRIL 2001


application **UC1706** INFO **UC2706** available UC3706

ABSOLUTE MAXIMUM RATINGS

	NPkg	JPkg
Supply Voltage, VIN		
Collector Supply Voltage, Vc	40V	
Output Current (Each Output, Source or Sink))	
SteadyState	±500mA	±500mA
Peak Transient	±1.5A	±1.0A
Capacitive Discharge Energy	20μJ	15μJ
Digital Inputs	5.5V	5.5V
Analog Stop Inputs	VIN	Vin
Power Dissipation at TA = 25°C (See Note)		
Power Dissipation at T (Leads/Case) = 25°C . (See Note)	5W	2
Operating Temperature Range	55°C te	o +125°C
Storage Temperature Range	65°C te	o +150°C
Lead Temperature (Soldering, 10 Seconds) .		0°C
Note: All voltages are with respect to the four together. All currents are positive into, negativ Packaging sections of the Databook for therm	e out of the specified	trerminal. Consult

CONNECTION DIAGRAMS

Note: All four ground pins must be connected to a common ground.

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for the UC1706, $-25^{\circ}C$ to $+85^{\circ}C$ for the UC2706 and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3706; VIN = VC = 20V. TA = TJ.

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
VIN Supply Current	VIN = 40V		8	10	mA
Vc Supply Current	Vc = 40V, Outputs Low		4	5	mA
Vc Leakage Current	VIN = 0, $VC = 30V$, No Load		.05	0.1	mA
Digital Input Low Level				0.8	V
Digital Input High Level		2.2			V
Input Current	VI = 0		-0.6	-1.0	mA
Input Leakage	VI = 5V		.05	0.1	mA

UC1706 UC2706 UC3706

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for the UC1706, $-25^{\circ}C$ to $+85^{\circ}C$ for the UC2706 and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3706; VIN = VC = 20V. TA = TJ.

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
Output High Sat., Vc-Vo	Io = -50mA			2.0	V	
Output Low Sat., Vo	IO = 50mA			0.4	V	
	IO = 500mA			2.5	V	
Inhibit Threshold	Vref = 0.5V	0.4		0.6	V	
	Vref = 3.5V	3.3		3.7	V	
Inhibit Input Current	Vref = 0		-10	-20	μA	
Analog Threshold	Vcm = 0 to 15V, for the UC2706 and UC3706	100	130	160	mV	
	Vcm = 0 to 15V, for the UC1706	80	130	160	mV	
Input Bias Current	Vcm = 0		-10	-20	μΑ	
Thermal Shutdown			155		°C	

TYPICAL SWITCHING CHARACTERISTICS: VIN = VC = 20V, TA = 25°C. Delays measured to 10% output change.

PARAMETERS	OU	OUTPUT CL =			
From Inv. Input to Output:		open	1.0	2.2	nF
Rise Time Delay		110	130	140	ns
10% to 90% Rise		20	40	60	ns
Fall Time Delay		80	90	110	ns
90% to 10% Fall		25	30	50	ns
From N. I. Input to Output:					
Rise Time Delay		120	130	140	ns
10% to 90% Rise		20	40	60	ns
Fall Time Delay		100	120	130	ns
90% to 10% Fall		25	30	50	ns
Vc Cross-Conduction Current Spike Duration	Output Rise	25			ns
	Output Fall	0			ns
Inhibit Delay	Inhibit Ref. = 1V, Inhibit Inv. = 0.5 to 1.5V	250			ns
Analog Shutdown Delay	Stop Non-Inv. = 0V, Stop Inv. = 0 to 0.5V	180			ns

CIRCUIT DESCRIPTION

Outputs

The totem-pole outputs have been designed to minimize cross-conduction current spikes while maximizing fast, high-current rise and fall times. Current limiting can be done externally either at the outputs or at the common Vc pin. The output diodes included have slow recovery and should be shunted with high-speed external diodes when driving high-frequency inductive loads.

Flip/Flop

Grounding pin 7 activates the internal flip-flop to alternate the two outputs. With pin 7 open, the two outputs operate simultaneously and can be paralleled for higher current operation. Since the flip-flop is triggered by the digital input, an off-time of at last 200nsec must be provided to allow the flip/flop to change states. Note that the circuit logic is configured such that the "OFF" state is defined as the outputs low.

Digital Inputs

With both an inverting and non-inverting input available, either active-high or active-low signals may be accepted. These are true TTL compatible inputs—the threshold is approximately 1.2V with no hysteresis; and external pullup resistors are not required.

Inhibit Circuit

Although it may have other uses, this circuit is included to eliminate the need for deadband control when driving relatively slow bipolar power transistors. A diode from each inhibit input to the opposite power switch collector will keep one output from turning-on until the other has turned-off. The threshold is determined by the voltage on pin 15 which can be set from 0.5 to 3.5V. When this circuit is not used, ground pin 15 and leave 1 and 16 open.

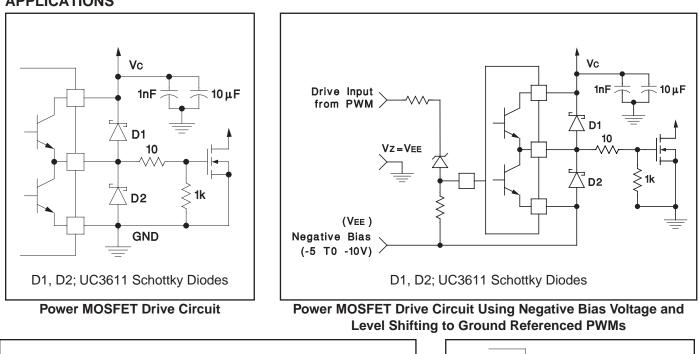
UC1706 **UC2706** UC3706

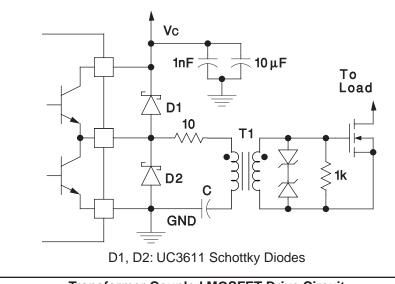
CIRCUIT DESCRIPTION (cont.)

Analog Shutdown

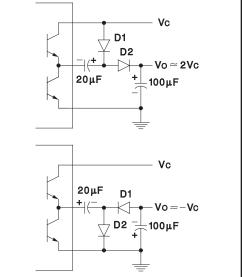
This circuit is included to get a latched shutdown as close to the outputs as possible, from a time standpoint. With an internal 130mV threshold, this comparator has a common-mode range from ground to (VIN - 3V). When not used, both inputs should be grounded. The time required for this circuit to latch is inversely proportional to the amount of overdrive but reaches a minimum of 180nsec. As with the flip-flop, an input off-time of at least 200nsec is required to reset the latch between pulses.

Supply Voltage

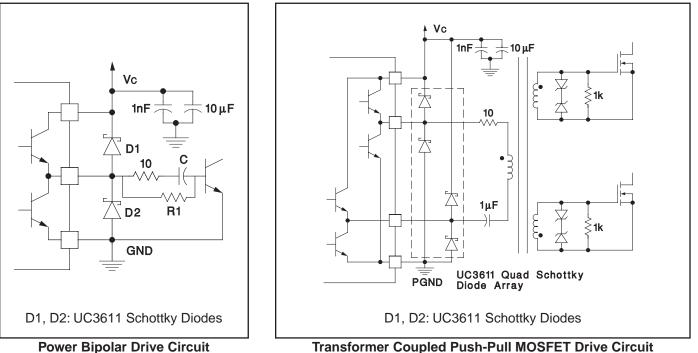

With an internal 5V regulator, this circuit is optimized for

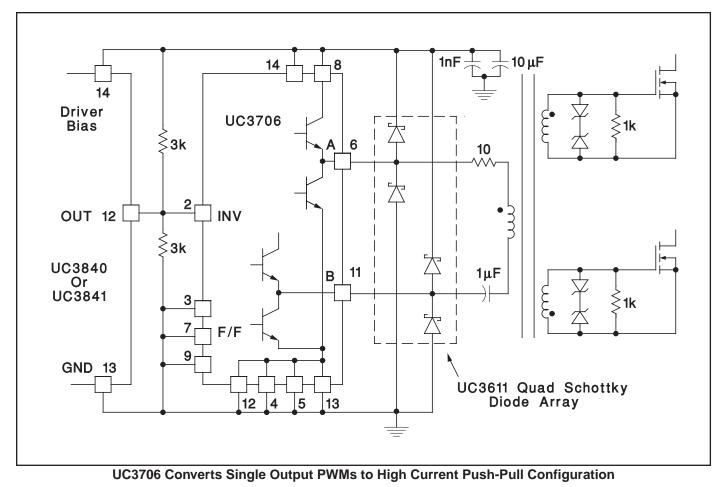

APPLICATIONS

use with a 7 to 40V supply; however, with some slight response time degradation, it can also be driven from 5V. When VIN is low, the entire circuit is disabled and no current is drawn from Vc. When combined with a UC1840 PWM, the Driver Bias switch can be used to supply VIN to the UC1706. VIN switching should be fast as if Vc is high, undefined operation of the outputs may occur with VIN less than 5V.


Thermal Considerations

Should the chip temperature reach approximately 155°C, a parallel, non--inverting input is activated driving both outputs to the low state.


Transformer Coupled MOSFET Drive Circuit



Charge Pump Circuits

UC1706 UC2706 UC3706

APPLICATIONS (cont'd)

UNITRODE CORPORATION 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603) 424-3460

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
5962-89611012A	(1) ACTIVE	LCCC	FK	20	1	(2) TBD	(6) POST-PLATE	(3) N / A for Pkg Type	-55 to 125	(4/5) 5962- 89611012A	Samples
5962-8961101EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8961101EA	Samples
UC1706J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	UC1706J	Samples
UC1706J883B	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	UC1706J/883B	Samples
UC1706L	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	UC1706L	Samples
UC2706DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2706DW	Samples
UC2706J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-40 to 85	UC2706J	Samples
UC2706N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	N / A for Pkg Type	-40 to 85	UC2706N	Samples
UC3706DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3706DW	Samples
UC3706DWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3706DW	Samples
UC3706N	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	N / A for Pkg Type	0 to 70	UC3706N	Samples
UC3706NG4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	Call TI	N / A for Pkg Type	0 to 70	UC3706N	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

www.ti.com

24-Aug-2018

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

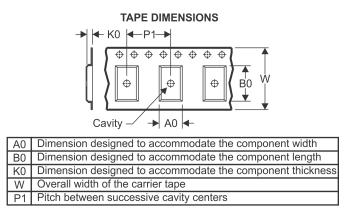
OTHER QUALIFIED VERSIONS OF UC1706, UC2706, UC2706M, UC3706 :

• Catalog: UC3706, UC2706

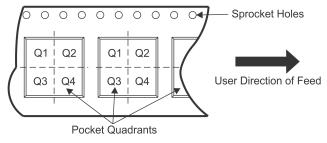
• Military: UC2706M, UC1706

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION

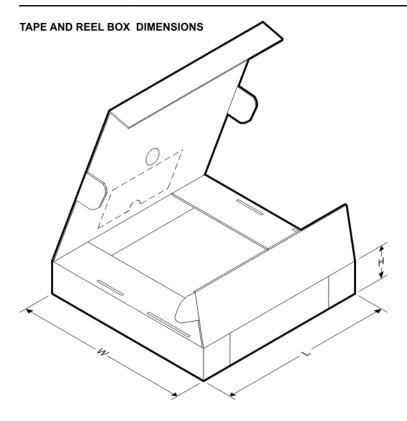
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All	dimensions	are	nominal
------	------------	-----	---------


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC3706DWTR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

15-Jan-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC3706DWTR	SOIC	DW	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated