
www.silabs.com

C8051F38x USB MCU

2

Agenda

 The C8051F38x family

 C8051F38x advantages

 C8051F38x enhancements

 Firmware portability

3

C8051F38x Family Features
 High speed pipelined 8051 MCU core
 48 MIPS operation
 Up to 64K flash and 4K RAM

 Flexible clocking
 Internal oscillator with ±0.25% accuracy supports all USB

and UART modes
 Low frequency oscillator for low power operation

 USB function controller
 Integrated clock recovery requires no external crystal
 Integrated transceiver requires no external resistors

 Two UART and SMBus/I2C peripherals

 High performance analog
 10-bit, 500 Ksps ADC
 Integrated voltage reference (15 ppm)
 Fast comparators

 Integrated regulator

 Small 5 mm x 5 mm package

 -40 to +85 C operation

C8051F38x Block Diagram

Presenter
Presentation Notes
With on-chip Power-On Reset, VDD monitor, Voltage Regulator, Watchdog Timer, and clock oscillator, C8051F380/1/2/3/4/5/6/7 devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings. Each device is specified for 2.7–5.25 V operation over the industrial temperature range (–40 to +85 °C). For voltages above 3.6 V, the on-chip voltage regulator must be used. A minimum of 3.0 V is required for USB communication. The port I/O and RST pins are tolerant of input signals up to 5 V. C8051F380/1/2/3/4/5/6/7 devices are available in 48-pin TQFP, 32-pin LQFP, or 32-pin QFN packages.

4

C8051F38x Product Family

 12 new USB flash-based devices

Ordering Part Number C8051F380-GQ C8051F381-GQ C8051F381-GM C8051F382-GQ C8051F383-GQ C8051F383-GM C8051F384-GQ C8051F385-GQ C8051F385-GM C8051F386-GQ
MIPS (Peak) 48 48 48 48 48 48 48 48 48 48

Flash or EPROM Code Memory (Bytes) 64k 64k 64k 32k 32k 32k 64k 64k 64k 32k
RAM (Bytes) 4352 4352 4352 2304 2304 2304 4352 4352 4352 2304

Calibrated Internal 48 MHz Oscillator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Internal Low Frequency Oscillator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

USB with 1k Endpoint RAM Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Supply Voltage Regulator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

SMBus/I2C 2 2 2 2 2 2 2 2 2 2
Enhanced SPI Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

UARTs 2 2 2 2 2 2 2 2 2 2
Timers (16-bit) 6 6 6 6 6 6 6 6 6 6

Programmable Counter Array Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Digital Port I/Os 40 25 25 40 25 25 40 25 25 40

10-bit 500ksps ADC Yes Yes Yes Yes Yes Yes — — — —
Internal Voltage Reference Yes Yes Yes Yes Yes Yes — — — —

Temperature Sensor Yes Yes Yes Yes Yes Yes — — — —
Analog Comparator 2 2 2 2 2 2 2 2 2 2

External Memory Interface (EMIF) Yes — — Yes — — Yes — — Yes
Package TQFP48 LQFP32 QFN32 TQFP48 LQFP32 QFN32 TQFP48 LQFP32 QFN32 TQFP48

Presenter
Presentation Notes
Now, let’s take a closer look at the C8051F38x product family. This product family brings 12 new highly integrated USB flash-based devices, with 64K and 32K Flash memory and 4K and 2K of RAM memory. They come in 48 and 32 pins offerings with multiple packages: TQFP48, LQFP32 and a tiny 5 mm x 5 mm QFN32. An external memory interface is also available in 48TQP packages to enable connection to external memories or peripherals.

5

C8051F38x USB Advantages

 Hardware implementation made simple with high functional density
 Oscillators, resistors, voltage supply regulators and in system programmable

memory are integrated on chip
 All that is recommended are the USB ESD protection diodes

No external crystal, resistors, regulator or memory required

C8051F38x

USB Function Controller

USB Transceiver

Voltage
Regulator

48 MHz
Oscillator

VBUS
D+
D-

GND SP0503BAHT

M
em

or
y

CPU

Presenter
Presentation Notes
The Silicon Labs USB devices provide high functional density and integrates many of the components required for USB communications. For example, the internal oscillator is capable of generating the clock accuracy required for robust USB data links. The USB transceiver integrates the series termination resistors as well as the pull-up resistor required to start the enumeration process. Device power is generated from the integrated regulator that can be driven by the USB VBUS. The only recommended external component is the protection diodes for the D+/D- and VBUS lines. Overall, this integration reduces footprint, simplifies board design and reduces cost.

6

C8051F38x Family Enhancements (1 of 2)

 Internal oscillator calibrated to 48 MHz
 Multiplier PLL not required

• Multiplier SFR registers remain for backward compatibility with existing code base

 More communications interfaces
 Adds second SMBus peripheral

• SMBus peripherals are enhanced and provide hardware acknowledge and hardware
address recognition

 All devices have two UARTs
• Second UART has its own baud rate generator and FIFO

C8051F38x UART1 Peripheral

Presenter
Presentation Notes
The C8051F38x devices are the next generation USB products and are pin and function compatible with the C8051F34x family. There are some changes to the family over the existing family. There is no longer a clock multiplier and the internal oscillator is calibrated to 48 MHz. This clock can be used to drive the USB clock directly. To maintain backward compatibility with existing firmware, the special function registers (SFR) that controlled the multiplier in the earlier family still exist so that existing firmware can still be used without modification. The communications interfaces for the SMBus and the UART have been enhanced to add more flexibility and in some cases, reduces code size and free up other resources. The SMBus interfaces are also backwards compatible with existing firmware.

7

C8051F38x Family Enhancements (2 of 2)

 Low power optimization
 Voltage regulators can be disabled or

placed into a low power state while
maintaining voltage output

 Pre-fetch engine can be disabled in the
standby state to reduce power

 More timing peripherals
 Six general purpose 16 bit timers

 Analog performance enhanced
 ADC sample rate increased to 500 Ksps
 Voltage reference provides more options

• 1.2 V/2.4 V internal reference voltages
available

• Can use the internal 1.8 V regulator as well
as VDD for the reference

C8051F38x VREF Peripheral

Presenter
Presentation Notes
More enhancements include the ability to place the voltage regulators and the prefetch engine in low power modes. Also, two more timers have been integrated to provide more functionality. Combine this with the fact that the UART now includes its own baud rate generator and there are many free resources to use. The ADC sample rate has been increased to 500 ksps providing more flexibility in signal processing. Included in the ADC enhancements is the use of a slightly different voltage reference design. The reference has more options for modifying the sensitivity of a system. For example, the internal reference can drive the ADC for 1.2 V or 2.4 V which provides the capability to maximize the dynamic range of the system.

8

Firmware Porting Considerations (1 of 2)

 Firmware functionality between the existing C8051F34x family and
the C8051F38x family remains unchanged in the default state
 All SFR mappings and functionality remain compatible
 SFRs for removed peripherals remain, such as CLKMUL, for backward

compatibility

USB Clock remains
unchanged

Clock multiplier no
longer present

No change to
firmware initialization

needed

Configuration Wizard

Presenter
Presentation Notes
The default state of the registers of the C8051F38x family places the device in the same operating state as the previous family. Therefore, the firmware from the C8051F34x will run unmodified on the C8051F38x devices. One example is the clock multiplier settings. In the previous family that had the multiplier to generate the 48 MHz the multiplier had to be setup and stable. The mux settings in the chip were then set to drive the 48 MHz to the system clock and the USB clock. In the current family this same code can be used and the register settings will cause the 48 MHz internal oscillator to drive the nodes that the output of the clock multiplier did.

9

Firmware Porting Considerations (2 of 2)

 New firmware can utilize new features of the C8051F38x family
 Increase ADC sensitivity using lower reference voltage
 Multiplier initialization no longer needed
 Can place regulators in low power modes
 Can place pre-fetch engine in a low power mode

REG01CN Register
Bit 7 6 5 4 3 2 1 0

Name Reg0DIS VBSTAT VBPOL REG0MD STOPCF Reserved REG1MD Reserved

Type R/W R R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Low power mode
bits for regulators

Presenter
Presentation Notes
If generating new designs then the firmware can take advantage of the new features of the device. The low power modes can be used and the code required for the oscillator can be removed and replaced with a much simpler and smaller set of code.

www.silabs.com

C8051F38x Clocking

11

Clocking Options

 Clock sources
 Flexible internal oscillator

• Default clock after reset
• Factory calibrated to 48 MHz

 Low frequency oscillator at 80 KHz
 External oscillator

• Supports CMOS oscillators, crystals, RC
networks and capacitors

 USB clock can be sourced directly
from the internal high frequency
oscillator
 No external crystal required

Oscillator Options

Presenter
Presentation Notes
C8051F380/1/2/3/4/5/6/7 devices include a programmable internal high-frequency oscillator, a programmable internal low-frequency oscillator, and an external oscillator drive circuit. The internal high-frequency oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers. The internal low-frequency oscillator can be enabled/disabled and calibrated using the OSCLCN register. The system clock can be sourced by the external oscillator circuit or either internal oscillator. Both internal oscillators offer a selectable post-scaling feature. The USB clock (USBCLK) can be derived from the internal oscillators or external oscillator.

12

 USB Clock multiplier is not required since the internal oscillator is
calibrated to 48 MHz

 CLKMUL register still exists for backward compatibility with other
USB MCUs

USB Clock

Legacy USB Clock Selection Mux

Is now the 48 MHz high frequency oscillator

Register setting remains
the same as legacy devices

Presenter
Presentation Notes
Here is a diagram of the clocking system to generate the 48 MHz clock required for the full speed USB operation of the C8051F34x device family. On the C8051F38x devices this multiplier has been removed.

www.silabs.com

The USB Peripheral

14

USB Controller

 Complete Full/Low speed USB 2.0
compliant function controller

 Device only, cannot be a host

 Up to 8 Endpoints

 Integrated transceiver with clock
recovery and configurable pull-up
resistors

 1 KB FIFO for Endpoint data transfers

 Serial Interface Engine (SIE) handles
low level protocol in hardware
 Error checking
 Packet validity

 Control, Interrupt, Bulk and
Isochronous transfers supported

USB0 Peripheral

Supported Endpoints

Presenter
Presentation Notes
The USB controller integrated into the C8051F38x family is the same controller that has been used for many designs and has been proven through numerous USB product certifications. The Silicon Labs USB MCUs provide device side functionality for communication with a USB host. The USB module includes the serial interface engine (SIE) that provides all of the low level functionality required to communicate with the host. The SIE controls the low level packet checking and acknowledgment without firmware overhead. This simplifies the implementation of USB firmware development. All transfer types are supported using the USB controller including control, bulk, interrupt and isochroous.

15

USB Register Access Scheme

 Two SFRs used to provide access
to the configuration registers
(USB0ADR and USB0DAT)
 First set USB0ADR to define the USB

register to access
 Write/Read data to/from USB0DAT

 Endpoint Access via the Index
register
 Set USB0ADR to point to the Index

register
 Use USB0DAT to write the endpoint

address desired into the index register
 Switch USB0ADR to point to the

Endpoint Control/Status registers
 Use USB0DAT to write/read data

to/from the endpoint registers

 USB Endpoint FIFOs accessed via
the indexing scheme

USB clock must be active when accessing the USB0 Control/Status registers

SFRs Indexed
Registers

Indexed Registers

Presenter
Presentation Notes
Programming the USB controller is accomplished through two direct registers that are mapped to the SFR space of the MCU. These registers are called the USB address register (USB0ADR) and the USB data register (USB0DAT). Access to all of the USB registers and the endpoint FIFOs are through an indexing scheme whereby the USB0ADR register points to the associated register to access and the data register is used to pass the data to the controller. For example, to write to the common registers the USB0ADR register would set the mux to where the yellow line is pointing. After the USBADR register is set the data written to the USB0DAT register would then be written to the common register. To access the endpoint registers the index register must first be written to set the mux to point to the channel highlighted by the red arrow. Then data written will be passed to the associated endpoint pointed to by the index register. Silicon Labs code examples provide routines that handle all of the indirect access which simplifies the implementation.

16

Indirect Addressing Flow Chart

 Indirect register access

Poll for BUSY
USB0ADR
Bit 7 = ‘0’

Load Target
USB0 register
into USBADR

Write Data to
USB0DAT

USBAD
R

already
set?

Indirect Write Data Flow

Poll for BUSY
USB0ADR

Bit 7 = 0

USBAD
R

already
set?

Load Target
USB0 register
into USBADR

Write ‘1’ to
BUSY bit in
USB0ADR

Poll for BUSY
USB0ADR

Bit 7 = 0

Read data
from

USB0DAT

Indirect Read Data Flow

N

Y

Auto-
read

enabled

N

Y

Y

N

Presenter
Presentation Notes
Here is a flow diagram that highlights the indirect register access of the USB module for both the read and write directions. These principles can be found in the code examples provided in the Silicon Labs examples directory of the IDE install.

17

USB0 FIFO Allocation

 1024 Bytes of FIFO available to the USB
endpoints allocated in XRAM space

 Endpoints 1-3 can be configured as IN,
OUT or split mode with both IN and OUT
endpoints
 Split mode halves the FIFO size available for

each endpoint

 Each endpoint can be double buffered
 Half the memory is available for each transaction
 Max. packet size is halved

• Example, IN endpoint 1 double buffered provides 64
bytes for each IN transaction

 FIFO access indirectly addressed

Endpoint FIFOs

Presenter
Presentation Notes
There is 1 KB of memory available to the USB controller and is split amongst the 8 endpoints. Endpoint 0 is a 64 byte memory location that is used for the control transfers during enumeration. The other memory areas are allocated to the remaining endpoints and range in size. The memory can be split such that there are IN and OUT endpoints or they can be used in a double buffered mode. In this case the data is made available to successive transactions and the overall max packet size that can be used is half that of the endpoint buffer size. This FIFO space is accessed using the indirect scheme previously outlined using the USB0ADR and USB0DAT registers.

18

C8051 Interrupt Vectors

 Single interrupt vector for all
USB events

 11 Interrupt sources can
trigger an interrupt event
 ISR needs to be parsed to

determine which interrupt is
pending

Presenter
Presentation Notes
There is a single interrupt generated from the USB module. Once vectored to the interrupt service routine (ISR) the firmware then parses the interrupt flags and determines the appropriate action. For example, if a transaction from a control transfer were received and the SIE determined that it was a valid packet then the USB0 module would set the USB0 interrupt flag. Once vectored to the interrupt the firmware would then read the interrupt flags register and see that it was endpoint 0 that generated the interrupt and jump to the routines that handle the control transfer.

19

Serial Interface Engine (SIE)
 Serial Interface Engine (SIE) handles data

communications to the host in hardware
 Handles the handshake between the endpoint and the

host device
 Generates an interrupt when valid data packets

received
 Will not interrupt the CPU when an error in

transmission occurs
 Moves valid data to/from the endpoint FIFOs
 Firmware only needs to be concerned with the data

transferred

Field PID Address Endpoint CRC

Bits 8 7 4 5

Token Packet
format:

Field PID Frame Number CRC

Bits 8 11 5

SOF Packet
format:

Field PID Data CRC

Bits 8 0-1023 16

Data Packet
format:

Field PID

Bits 8
Handshake

Packet format:

SIE handles
error checking

ACK

NAK

SIE handles
handshaking

Firmware
interfaces

Presenter
Presentation Notes
The SIE is what handles all of the low level processing the incoming packets from the host and outgoing packets from the MCU. Shown in the slide are the packets defined by the USB specification. The SIE is responsible for monitoring the data as it is received and checking the validity of the complete packet. If for some reason that packet is invalid the SIE will discard the packet and not store it into the FIFO. If the packet is valid then the SIE will pass the packet to the FIFO. This limits the firmware overhead require to service the USB data transfers.

20

Control Transfer to Endpoint 0

 Setup packet to Endpoint 0:
 Both IN and OUT directions
 Used when sending the USB Standard Requests

Host sends
Setup Packet

Packet
Valid?

CRC OK
8 data bytes transferred
ACK transmitted

Load data to
Endpoint0

FIFO

Generate
Interrupt

Unload FIFO

Set SOPRDY
= 1

SOPRDY - Service
OUT Packet

Do nothing

Discard Data

SIE controlled

Firmware control

Decode
transfer
request

N

Y

Set Index to
0x00 to read

E0CSR

Do other

OPRDY
?

Y

N

Get data from
OUT request

Load data for
IN request

Presenter
Presentation Notes
Over the next couple of slides we can look at the steps that are involved in the firmware development required to handle data transfers across the USB. As an example we will look at the control transfer. The first thing that happens is the host sends what is called a setup packet. If the packet is received with errors the SIE will do nothing and discard the packet. No device firmware is required to handle this error condition. If the packet is valid then the SIE will load the data into the FIFO and an interrupt is generated. At this point it is now up to the firmware to handle the received data. Since this was an endpoint 0 transaction the firmware sets the index to 0 so that the endpoint 0 FIFO can be read. If the packet is ready the firmware unloads the data from the FIFO and decodes the transfer request (according to chapter 9 of the USB specification). Once decoded the firmware will either load data to be read by the host (IN) or get the new data sent from the host (OUT).

21

IN Packet to Endpoint 0

 Host is requesting data
 Data phase of control transfers
 Used when sending data for the USB standard requests

Host sends IN
Packet

Packet
Valid?

Load data to
Endpoint0

FIFO

INPRDY = 1

INPRDY - IN Packet
Ready

No response

Discard Data

SIE controlled

Firmware controlN

Y

Service IN
interrupt

INPRDY
Set?

Send FIFO
Data

Send NAK

N

Set interrupt
flag

Y

Last
Packet

of
data?

Y

DATAEND = 1

N

Presenter
Presentation Notes
The next phase of the control transfer is the data phase. Depending on the request that was communicated in the setup phase the host will either request data from the device or send data to the device. Here we see the flow diagram if the host is expecting the device to return the requested data. As a result of the setup phase, if the request from the host was a GET request then the firmware had already loaded the data into the IN endpoint FIFO and set the INPRDY flag to notify the SIE that there is valid data waiting on the host IN request. Once the IN request is received the SIE once again determines the validity of the packet and checks the INPRDY bit to make sure the data is ready. If it is not set the SIE automatically generates NAK response to the host. If the bit is set then the SIE sends the data from the FIFO and sets the interrupt flag. Once the interrupt is pended the firmware will load more data to the FIFO and set the INPRDY bit once again. If this is the last packet the firmware will also set the DATAEND bit. This allows the SIE to generate the acknowledge sequence required by the control transfer status phase.

22

OUT Packet to Endpoint 0

 Host is sending data
 Data phase of control transfers
 Used when receiving data for standard requests

Host sends
out Packet

Packet
Valid?

Load data to
Endpoint0

FIFO

Generate
Interrupt

Unload FIFO

Set DATAEND
= 1

No response

Discard Data

SIE controlled

Firmware control

N

Y

Do other

OPRDY
?

Y

N

Last data
byte

received?

Set SOPRDY
= 1

N

Y

Presenter
Presentation Notes
Some control transfers send data to the device which would require OUT transfers in the data phase. In this flow diagram the SIE loads the received data to the FIFO and sets the interrupt flag. The firmware then unloads the FIFO for processing.

www.silabs.com

The SMBus/I2C Peripheral

24

SMBus/I2C Peripheral
 Master/Slave byte-wise serial data transfers

(can switch on-the-fly)
 Clock signal generation on SCL (Master Mode

only) and SDA data synchronization
 Timeout/bus error recognition, as defined by

the SMB0CF configuration register
 START/STOP timing, detection, and generation
 SMBus peripheral supports both software

address decoding and hardware address
decoding
 Hardware address decoding

•Hardware controls the ACK/NACK of the address
and data bytes
•The SMBus peripheral can support masters
without clock stretching at 400 kHz (for I2C)
•Hardware control means less code, less overhead
and more CPU resources available

 Bus arbitration
 Status information

 Supports SCL Low Timeout and Bus Free Timeout detection

Presenter
Presentation Notes
The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

25

SMBus Transfer Modes

 The SMBus interface may be configured to operate as Master and/or
a Slave

 At any particular time, it will be operating in one of the following four
modes:
 Master transmitter (write operation)
 Master receiver (read operation)
 Slave transmitter (read operation)
 Slave receiver (write operation)

 Peripheral is in master mode any time a START is generated
 Remains in Master mode until it loses an arbitration or generates a STOP

 SMBus interrupts are generated at the end of all SMBus byte frames:
 Receiver:

•The interrupt for an ACK occurs before the ACK with hardware ACK generation
disabled
•The interrupt for an ACK occurs after the ACK when hardware ACK generation is
enabled

 Transmitter:
•Interrupts occur after the ACK

Presenter
Presentation Notes
The SMBus interface may operate as a master and/or a slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. The SMBus peripheral can be fully driven by software (i.e., software accepts/rejects slave addresses, and generates ACKs), or hardware slave address recognition and automatic ACK generation can be enabled to minimize software overhead and response latency.

26

SMBus Timing Control
 The SMBCS1–0 bits in SMB0CF select the SMBus clock source
 Overflows from Timer 0, Timer 1 or Timer 2 set the time-base
 Used only when operating as a Master or when the Bus Free Timeout detection

is enabled
 Selected clock source may be shared by other peripherals so long as the timer is

left running at all times.
•Example, Timer 1 overflows may generate the SMBus and UART baud rates
simultaneously

Timer overflow rate determines high and low
time and must conform to the standards as
well as the requirements of the system, i.e.

bus loading affects timing.

Actual bit rate of the peripheral

THIGH typically twice as large as TLOW (SCL
not driven or extended by another device)

27

SMBus Addressing

 The SMBus hardware has the capability to automatically recognize
incoming slave addresses and send an ACK without software
intervention
 SMBus Slave Address register

•Programmed device address
•Addresses are 7 bits

 SMBus Slave Address Mask Registers
•A 1 in the bit position enables the comparison with the incoming address
•A 0 in the bit position is treated as a don’t care

 Will recognize the General Call Address (0x00)

Mask (SMB0ADM) = 0x7E

0 1 1 0 1 0 0

1

GCAddress (SMB0ADR) = 0x34

1 1 1 1 1 0 EHACK

Don’t care

Comparisons enabled

0 1 1 0 1 0 0 x

0 1 1 0 1 0 1 x

Accepted match = 0x34
Accepted match = 0x35

Presenter
Presentation Notes
The registers used to define which addresses are recognized by the hardware are the SMBus Slave Address register and the SMBus Slave Address Mask register. A single address or range of addresses (including the General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two registers are used to define which addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison between the received slave address and the hardware’s slave address bits. A 0 in a bit of the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this case, either a 1 or a 0 value are acceptable on the incoming slave address.

28

SMBus Configuration: SMB0CN Register
 SMB0CN bits can be used to identify

the transfer mode:
 MASTER
 TXMODE
 STA
 STO

 All bits combined define the
firmware action to take

 Example: A master data or address byte
was transmitted; ACK received.

•SMB0CN = 1100001
•MASTER = 1
•TXMODE = 1
•STA = 0
•STO = 0
•ACKRQ = 0
•ARBLOST = 0
•ACK = 1

•Possible next action for firmware:
•Load new data to SMB0DAT
•Send Stop
•Send repeated start

Presenter
Presentation Notes
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depends on whether hardware slave address recognition and ACK generation is enabled or disabled.

29

Acknowledgement Handling

 Software acknowledgement
 EHACK bit in register SMB0ADM is cleared to 0
 Firmware on the device must detect incoming slave addresses and ACK or

NACK the slave address and incoming data bytes.
•Receiver—writing the ACK bit defines the outgoing ACK value
•Transmitter—reading the ACK bit indicates the value received during the last ACK
cycle

 Hardware acknowledgement
 EHACK bit in register SMB0ADM is set to 1
 Automatic slave address recognition and ACK generation is enabled in hardware

•Receiver—the value currently specified by the ACK bit will be automatically sent on
the bus during the ACK cycle of an incoming data byte
•Transmitter—reading the ACK bit indicates the value received on the last ACK cycle

 Transmit mode always interrupts after the ACK/NAK

 Indicates a successful transfer

Presenter
Presentation Notes
The transmitter, master or slave, releases the SDA line (HIGH) during the acknowledge clock cycle. In order to acknowledge a byte, the receiver must pull the SDA line LOW during the HIGH period of the clock pulse according to the SMBus timing specifications. A receiver that wishes to NACK a byte must let the SDA line remain HIGH during the acknowledge clock pulse.

30

Write: Master Transmitter

 Transmit mode always interrupts after the ACK/NAK
 First byte transfer the device is the master transmitter and interrupts after the

ACK
 The device then continues to be the transmitter and generates the interrupt

regardless of the hardware acknowledgement bit (EHACK)

Slave Address WStart A A StopData Byte A

Received by SMBus slave
Transmitted by the SMBus slave

Data Byte

Interrupts generated
with EHACK = 1

Interrupts generated
with EHACK = 0

Master Write Interrupt Generation

Presenter
Presentation Notes
During a Write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. The interface will switch to master receiver mode if SMB0DAT is not written following a master transmitter interrupt. Two transmit data bytes are shown above, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

31

Read: Master Receiver

Slave Address WStart A N StopData Byte A Data Byte

Interrupts generated
with EHACK = 1

Interrupts generated
with EHACK = 0

Master Read Interrupt Generation

♦ Transmit mode always interrupts after the ACK/NAK
 First byte transfer the device is the master transmitter and interrupts after the

ACK
 The device then becomes the receiver and generates the interrupt based on

the hardware acknowledgement bit (EHACK)
EHACK = 1 then interrupts occur after the ACK/NAK
EHACK = 0 then interrupts occur before the ACK/NAK period and firmware must
write the desired value to the ACK bit

Received by SMBus Slave
Transmitted by the SMBus Slave

Presenter
Presentation Notes
During a read sequence, an SMBus master reads data from a Slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

32

Write: Slave Receiver

 First byte transfer the device is the slave receiver for the address and
direction bit
 The device continues to be the receiver and generates the interrupt based on the

hardware acknowledgement bit (EHACK)
•EHACK = 1 then interrupts occur after the ACK/NAK
•EHACK = 0 then interrupts occur before the ACK/NAK period and firmware must
write the desired value to the ACK bit

Slave Address WStart A A StopData Byte A Data Byte

Interrupts generated
with EHACK = 1

Interrupts generated
with EHACK = 0

Slave Write Interrupt Generation

Received by SMBus Slave
Transmitted by the SMBus Slave

Presenter
Presentation Notes
During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters slave receiver mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering slave receiver mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

33

Read: Slave Transmitter

 First byte transfer the device is the slave receiver for the address and
direction bit
 EHACK = 1 then interrupts occur after the ACK/NAK
 EHACK = 0 then interrupts occur before the ACK/NAK period and firmware must

write the desired value to the ACK bit

 The device then becomes the transmitter and generates the interrupt
after the Acknowledgement bit (ACK)

Received by SMBus Slave
Transmitted by the SMBus Slave

Slave Address RStart A N StopData Byte A Data Byte

Interrupts generated
with EHACK = 1

Interrupts generated
with EHACK = 0

Slave Read Interrupt Generation

Presenter
Presentation Notes
During a Read sequence, an SMBus master reads data from a Slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters slave receiver ode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

34

SMBus/I2C Code Examples

♦ Code examples can be found in the Silicon Labs install directory
 Silabs\MCU\Examples\C8051F38x
 Master and slave implementations available

♦ Example initialization routines found in the examples directory

Presenter
Presentation Notes
Here we see a code example for the configuration of the SMBus module. The difference between setting the peripheral up for master or slave is one bit setting in the SMB0CF register.

www.silabs.com

C8051F38x Enhanced UART

36

Additional UART Module

 Asynchronous full-duplex serial port
 Dedicated Baud rate generator
 Three byte FIFO for receiving characters

 Baud rates should be less than the system clock divided by 16

 Multi-processor mode available

 Odd, even, mark or space parity supported

Enhanced UART Block Diagram

Dedicated baud
rate generator

Presenter
Presentation Notes
UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive up to three data bytes before data is lost and an overflow occurs. The UART supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. Extra bits can be used to generate the mark and space parity (1 or 0 respectively).

37

Operating Modes

 The UART has several modes of operation, selectable using the
SMOD register

 All modes enable asynchronous communications
 5, 6, 7, or 8-bit UART
 Extra 9TH bit for multi-processor communications
 Parity can be enabled or disabled
 Stop bit length can be changed

D1 DN-2D0 DN-1 P/E

N bits; N=5, 6, 7 or 8

Rx Data

Start bit Parity bit Stop bit

Stop

1 bit time

P/E
Stop

Parity bit can be enabled or disabled or the bit time can be used for an extra bit
Stop bit is programmable for 1, 1.5 or 2 bit times

Presenter
Presentation Notes
UART1 has a number of available options for data formatting. Data transfers begin with a start bit (logic low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop bit length is selectable between short (1 bit time) and long (1.5 or 2 bit times), and a multi-processor communication mode is available for implementing networked UART buses. All of the data formatting options can be configured using the SMOD1 register. The figure shows the formats provided by the UART1 module. Note that the extra bit feature is not available when parity is enabled, and the second stop bit is only an option for data lengths of 6, 7, or 8 bits.

38

Baud Rate Calculations
 The baud rate is generated by using the following equation:

Baud Rate Example:
Desired baud rate = 57600 baud
Clock input to Timer 1 = System clock = 48 MHz

Changing above equation:

Prescaler2

65536

××

−=
BaudRate

SYSCLKSBRL

65120=SBRL

1576002

4865536

××

−=
MHzSBRL

()() Prescaler
1

2
1

1:165536
××

−
=

SBRLLSBRLH
SYSCLKBaudRate

Presenter
Presentation Notes
The baud rate generator is included as part of the UART1 module. The baud rate is determined by the equation shown. The SBRL register is a 16 bit timer that is clocked by the system clock through a prescaler that provides divisors of 1, 4, 12, and 48. The example shows how to calculate the register settings from a desired UART baud rate.

www.silabs.com

Silicon Labs Tools for USB
Development

40

Firmware Examples

 Installed as part of the Silicon labs IDE and found at
 http://www.silabs.com/PRODUCTS/MCU/Pages/SoftwareDownloads.aspx

 Firmware template for HID applications can be used for custom
applications

 USB examples provided (includes host and device software)
 USB bulk—uses the bulk transfer method to illustrate USB
 USB HID—includes firmware template as a starting point for custom firmware

• HID blinky
• HID to UART
• HID mouse example

 USB interrupt—examples highlight firmware that utilize the interrupt transfer

 Other examples
 Mass Storage Device (MSD)
 Human interface device w/boot loader
 USB streaming audio/isochronous

Presenter
Presentation Notes
There are code examples in the Silicon Labs IDE install examples directory. Each peripheral has a code example that can be used as a starting point for application firmware. There are also example highlighting the use of the USB controller. Due to the complex nature of USB and the associated firmware, these examples prove to be invaluable as a starting point for USB device implementations.

http://www.silabs.com/PRODUCTS/MCU/Pages/SoftwareDownloads.aspx�

41

USBXpress

 Allows the developer to implement a
USB application without USB expertise
 Royalty free, Windows certified device driver

that can be customized and distributed
 Microsoft Windows 2000,XP, Vista, 7 and

WinCE are supported

 For use with USB MCUs as well as fixed
function devices

 Host side API and drivers included
 No host side driver development required
 Drivers certified through Microsoft and can be

customized and certified by the end user

 Firmware API included
 Access to USBXpress libraries via the

firmware API

 Details can be found in AN169:
USBXpress Programmers User Guide

USBXpress Data Flow

C8051F38x MCU

Presenter
Presentation Notes
The Silicon Laboratories USBXpress® Development Kit provides a complete host and device software solution for interfacing Silicon Laboratories USB MCUs and bridge devices to the Universal Serial Bus (USB). No USB protocol or host device driver expertise is required. Instead, a simple, high-level Application Program Interface (API) for both the host software and device firmware is used to provide complete USB connectivity.

42

C8051F380DK Development Kit

 C8051F380DK development kit
 Enables real-time code development and

evaluation of the C8051F38x product family

 Includes:
• C8051F380 target board
• Quick start guide
• Integrated development environment (IDE)
• USB debug adaptor
• Wall power adaptor
• USB cables and complete documentation

 TOOLSTICK381DC
 Enables a quick development and evaluation of the C8051F381 USB MCU
 Available for $9.90 USD (MSRP)

F340

CP2201
C8051F380DK Development Kit

The C8051F380DK Development Kit is
available for $99.00 USD (MSRP)

Presenter
Presentation Notes
Silicon Labs has developed a cohesive ecosystem of easy-to-learn application development and evaluation tools for all of our USB product families. The C8051F380DK development kit enables real-time code development and evaluation of the C8051F38x product family. It includes the C8051F380 target board, Quick Start Guide, Integrated Development Environment (also known as IDE), USB debug adaptor, wall power adaptor, USB cables and complete documentation. The C8051F380 development kit is available for $99.00 USD MSRP Additionally, the Silicon Labs TOOLSTICK381DC daughter card is an easy to use development system that allows designers to develop and debug application firmware directly on the target C8051F381 microcontroller using the Silicon Labs IDE. Once complete, designers can replace the daughter card with a programming adapter and program blank devices for use in their actual system. The TOOLSTICK381DC is available for $9.90 MSRP

www.silabs.com

www.silabs.com/USB

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Silicon Laboratories:

 TOOLSTICK381DC

http://www.mouser.com/Silicon-Laboratories
http://www.mouser.com/access/?pn=TOOLSTICK381DC

	C8051F38x USB MCU
	Agenda
	C8051F38x Family Features
	C8051F38x Product Family
	C8051F38x USB Advantages
	C8051F38x Family Enhancements (1 of 2)
	C8051F38x Family Enhancements (2 of 2)
	Firmware Porting Considerations (1 of 2)
	Firmware Porting Considerations (2 of 2)
	C8051F38x Clocking
	Clocking Options
	USB Clock
	The USB Peripheral
	USB Controller
	USB Register Access Scheme
	Indirect Addressing Flow Chart
	USB0 FIFO Allocation
	C8051 Interrupt Vectors
	Serial Interface Engine (SIE)
	Control Transfer to Endpoint 0
	IN Packet to Endpoint 0
	OUT Packet to Endpoint 0
	The SMBus/I2C Peripheral
	SMBus/I2C Peripheral
	SMBus Transfer Modes
	SMBus Timing Control
	SMBus Addressing
	SMBus Configuration: SMB0CN Register
	Acknowledgement Handling
	Write: Master Transmitter
	Read: Master Receiver
	Write: Slave Receiver
	Read: Slave Transmitter
	SMBus/I2C Code Examples
	C8051F38x Enhanced UART
	Additional UART Module
	Operating Modes
	Baud Rate Calculations
	Silicon Labs Tools for USB Development
	Firmware Examples
	USBXpress
	C8051F380DK Development Kit
	www.silabs.com/USB

