

HIGH SPEED POWER DRIVER

Check for Samples: UC1705, UC2705, UC3705

FEATURES

- 1.5 A Source/Sink Drive
- 100 nsec Delay
- 40 nsec Rise Fall into 1000 pF
- Inverting and Non-Inverting Inputs
- Low Cross-Conduction Current Spike

nuto

DESCRIPTION

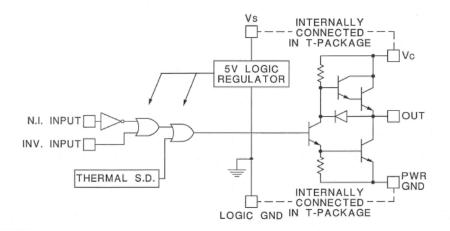
- Low Quiescent Current
 5 V to 40 V Operation
- Thermal Shutdown Protection
- Minidip and Power Packages

The UC1705 family of power drivers is made with a high sppeed Schottky process to interface between low-level control functions and high-power switching devices - particularly power MOSFETs. These devices are also an optimum choise for capacitive line drivers where up to 1.5 A may be switched in either direction. With both inverting and non-inverting inputs available, logic signals of either polarity may be accepted, or one input can be used to gate or strobe the other.

Supply voltages for both V_S and V_C can independently range from 5 V to 40 V. For additional application details, see the UC1707/3707 data sheet (SLUS177).

The UC1705 is packaged in an 8-pin hermetically sealed CERDIP for -55°C to 125°C operation. The UC3705 is specified for a temperature range of 0°C to 70°C and is available in either a plastic minidip or a 5-pin, power TO-220 package.

TRUTH TABLE⁽¹⁾⁽²⁾


INV	N.I	OUT
Н	Н	L
L	Н	Н
Н	L	L
L	L	L

(1) $\underline{OUT} = \overline{INV}$ and N.I.

(2) $\overline{OUT} = INV \text{ and } N.i.$

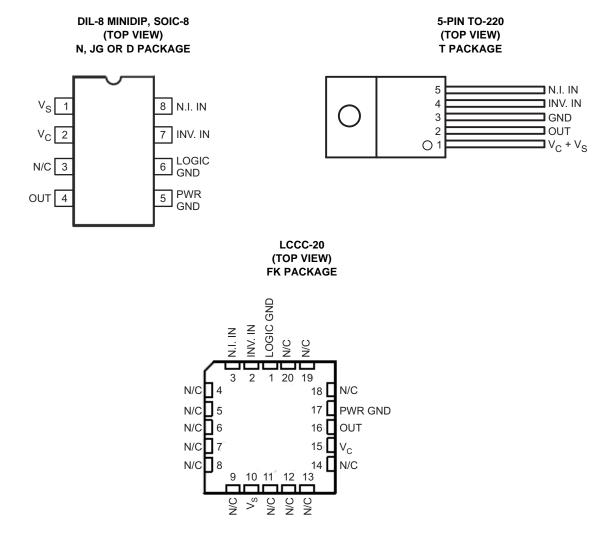
BLOCK DIAGRAM

 $\overline{\Lambda}\overline{\Lambda}$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UC1705 UC2705, UC3705

SLUS370D-JULY 1995-REVISED MARCH 2012



www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

CONNECTION DIAGRAMS

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

		VALUE		UNIT	
	N-Pkg	JG-Pkg	T-Pkg	UNIT	
Supply Voltage (V _{IN})	40	40	40	V	
Collector Supply Voltage, V _C	40	40	40		
Output current (source or sink)					
Steady-State	±500	±500	±1	А	
Peak Transient	±1.5	±1	±2	А	
Capacitive Discharge Energy	20	15	50	μJ	
Digital Inputs ⁽²⁾	5.5	5.5	5.5	V	
Power Dissipation at $T_A = 25^{\circ}C^{(1)}$	1	1	3	W	
Power Dissipation at T_A (Lead/Case) = 25°C ⁽¹⁾	3	2	25	W	
Operating Temperature Range	0 to 70	-55 to 125	0 to 70	°C	
Storage temperaturee	-65 to 150	-65 to 150	-65 to 150	°C	

(1) All currents are positive into, negative out of the specified terminal.

(2) Digital Drive can exceed 5.5 V if the input current is limited to 10 mA

ELECTRICAL CHARACTERISTICS

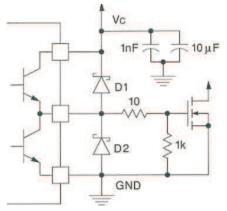
Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}C$ to $+125^{\circ}C$ for the UC1705, $-25^{\circ}C$ to $+85^{\circ}C$ for the UC2707, and 0°C to $+70^{\circ}C$ for the UC3705; $V_{IN} = V_C = 20$ V. $T_A = T_J$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	Current current	V _S = 40 V, outputs high, T package		6	8	mA
VS	Supply current	V_{C} = 40 V, outputs low, T package		6	12	mA
V _C	Supply current (N, JG Only)	$V_{\rm C}$ = 40 V, outputs low		2	4	mA
V _C	Leakage current (N, JG Only)	$V_{\rm S} = 0, V_{\rm C} = 30 \ {\rm V}$		0.05	0.1	mA
	Digital input low level				0.8	V
	Digital input high level		2.2			V
	Input current	V ₁ = 0		-0.6	-1	mA
	Input leakage	V _I = 5 V		0.05	0.1	mA
V V	Output high acturation	I _O = -50 mA			2	V
vc - vo	$V_{C} - V_{O}$ Output high saturation	I _O = -500 mA			2.5	v
V		I _O = -50 mA			0.4	
Vo	Output low saturation	I _O = -500 mA			2.5	V
	Thermal shutdown			155		°C

SLUS370D - JULY 1995-REVISED MARCH 2012

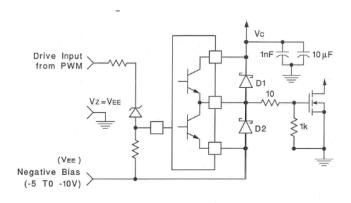
www.ti.com

TYPICAL SWITCHING CHARACTERISTICS


 $V_{IN} = V_C = 20 \text{ V}, \text{ }T_A = 25^{\circ}\text{C}. \text{ Delays measured to } 10\% \text{ output change.}$

PARAMETER	TEST CONDITIONS	OUTI	OUTPUT CL =			
From Inv. Input to Output	·	open	1	2.2	nF	
Rise time delay		60	60	60	ns	
10% to 90% rise		20	40	60	ns	
Fall time delay		60	60	60	ns	
90% to 10% fall		25	40	50	ns	
From N.I. Input to Output						
Rise time delay		90	90	90	ns	
10% to 90% rise		20	40	60	ns	
Fall time delay		60	60	60	ns	
90% to 10% fall		25	40	50	ns	
V _C cross-conduction current spike duration	Output rise	25			ns	
	Output fall	0			ns	

Copyright © 1995–2012, Texas Instruments Incorporated



APPLICATION INFORMATION

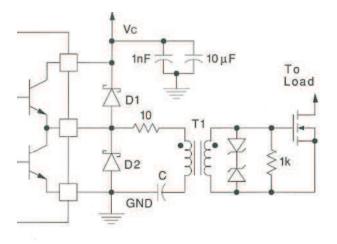

D1, D2: UC3611 Schottky Diodes

Figure 1. Power MOSFET Drive Circuit

D1, D2: UC3611 Schottky Diodes

Figure 2. Power MOSFET Drive Circuit Using Negative Bias Voltage and Level Shifting to Ground Referenced PWMs

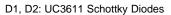


Figure 3. Transformer Coupled MOSFET DRIVE Circuit

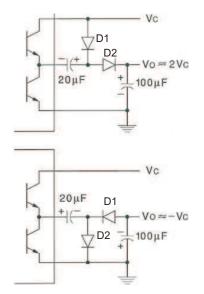


Figure 4. Charge Pump Circuit

REVISION HISTORY

Cł	nanges from Revision C (December, 2011) to Revision D	Page
•	Deleted SN54BCT373 from title for FK package image	2

28-Jul-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9579801M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9579801M2A UC1705L/ 883B	Samples
5962-9579801MPA	ACTIVE	CDIP	JG	8	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	9579801MPA UC1705	Samples
5962-9579801VPA	ACTIVE	CDIP	JG	8	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	9579801VPA UC1705	Samples
UC1705J	ACTIVE	CDIP	JG	8	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	UC1705J	Samples
UC1705J883B	ACTIVE	CDIP	JG	8	1	TBD	SNPB	N / A for Pkg Type	-55 to 125	9579801MPA UC1705	Samples
UC1705L883B	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9579801M2A UC1705L/ 883B	Samples
UC2705D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2705D	Samples
UC2705DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2705D	Samples
UC2705N	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	-40 to 85	UC2705N	Samples
UC3705D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3705D	Samples
UC3705DTR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3705D	Samples
UC3705J	ACTIVE	CDIP	JG	8	1	TBD	SNPB	N / A for Pkg Type	0 to 70	UC3705J	Samples
UC3705N	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	NIPDAU	N / A for Pkg Type	0 to 70	UC3705N	Samples

(1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

28-Jul-2020

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1705, UC1705-SP, UC3705, UC3705M :

- Catalog: UC3705, UC1705, UC3705M, UC3705
- Military: UC1705, UC1705
- Space: UC1705-SP

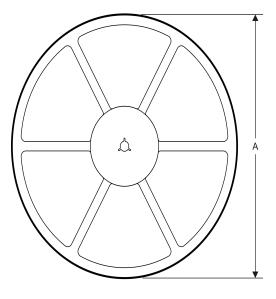
NOTE: Qualified Version Definitions:

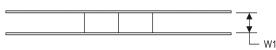
Catalog - TI's standard catalog product

28-Jul-2020

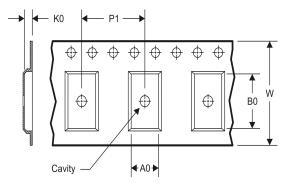
Military - QML certified for Military and Defense Applications

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

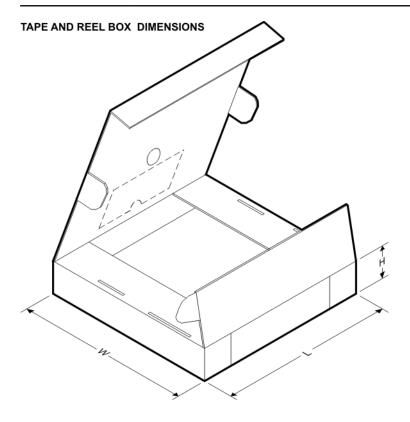
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

*All dimensions are nominal

TAPE AND REEL INFORMATION

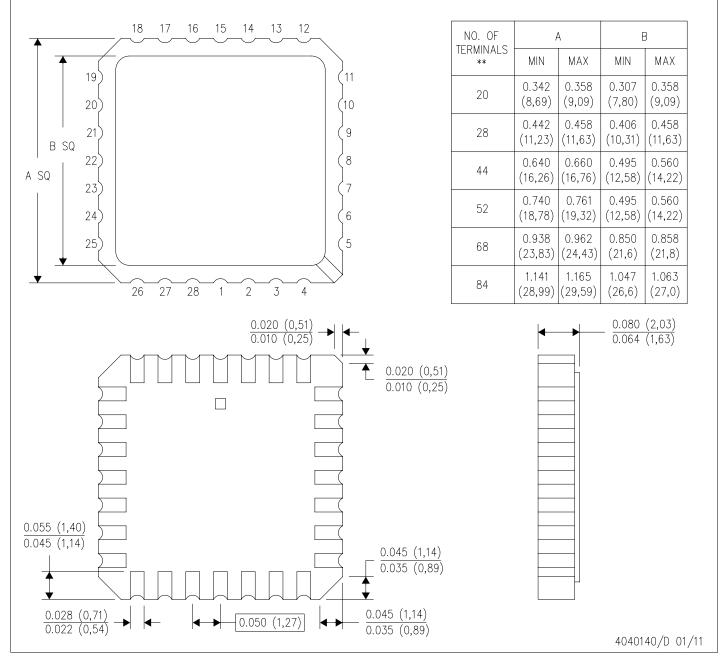

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC3705DTR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UC3705DTR	SOIC	D	8	2500	367.0	367.0	35.0

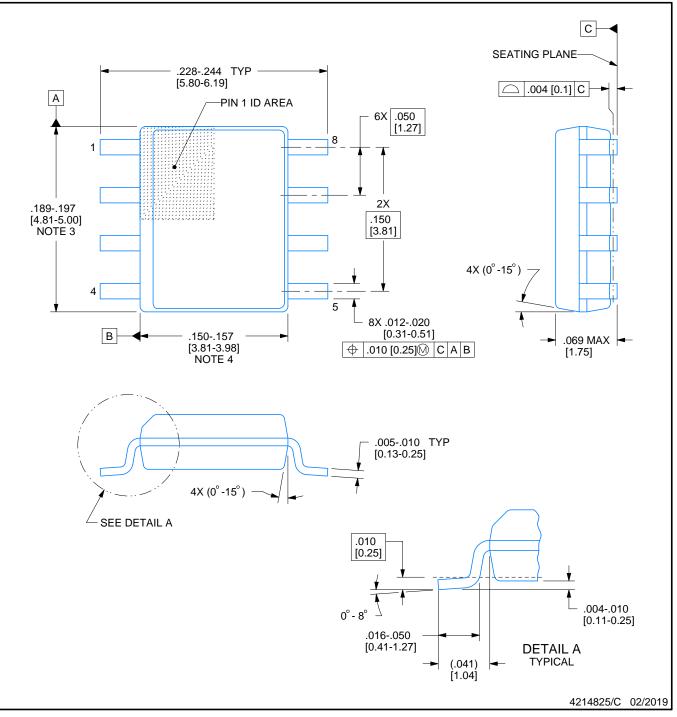
LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004


D0008A

PACKAGE OUTLINE

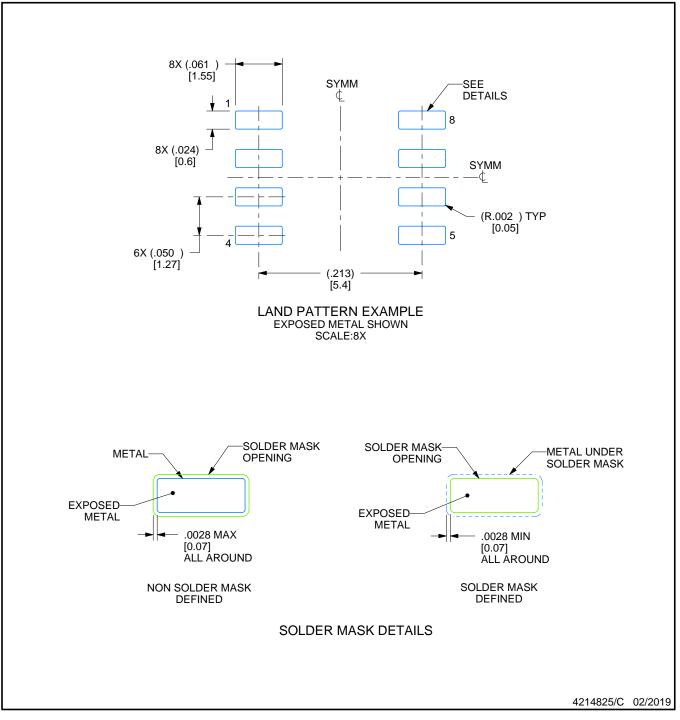
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

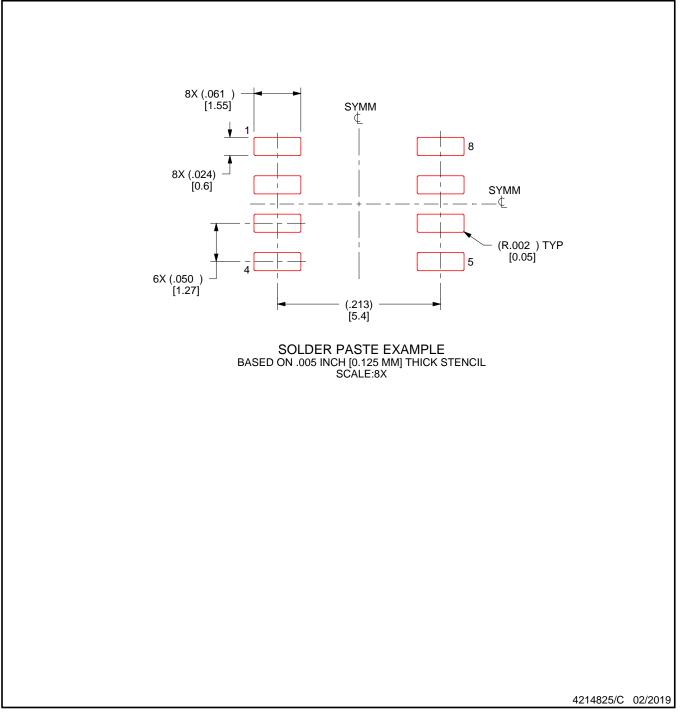
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

EXAMPLE STENCIL DESIGN

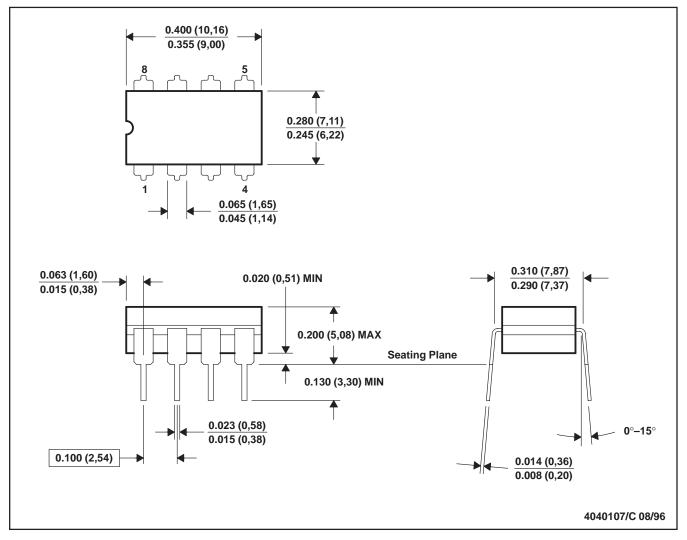
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

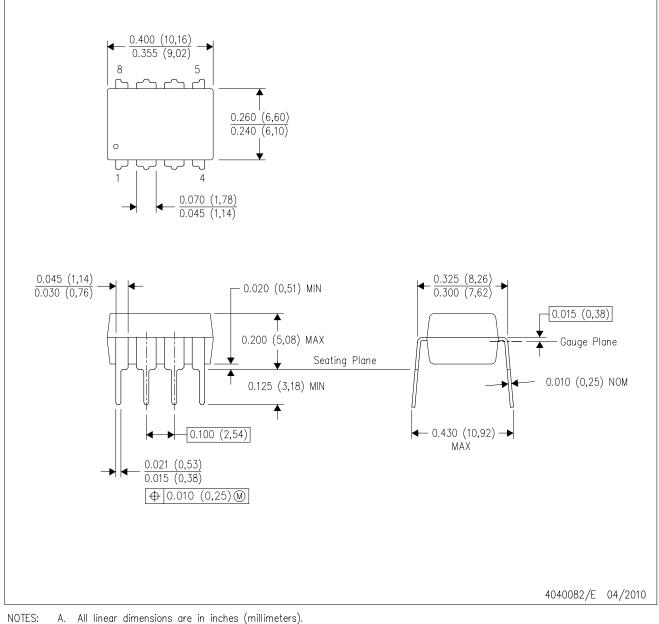
9. Board assembly site may have different recommendations for stencil design.



MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated