July 1988 Revised September 2000 ## 74ACT825 8-Bit D-Type Flip-Flop #### **General Description** The ACT825 is an 8-bit buffered register. They have Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included are multiple enables that allow multiple control of the interface. The ACT825 has noninverting outputs. #### **Features** - Outputs source/sink 24 mA - Inputs and outputs are on opposite sides - TTL compatible inputs ## **Ordering Code:** | | Order Number | Package Number | Package Description | |---|--------------|----------------|---| | | 74ACT825SC | M24B | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide | | | 74ACT825MTC | MTC24 | 24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | ı | 74ACT825SPC | N24C | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0,300 Wide | Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code #### **Logic Symbols** ## **Connection Diagram** ## **Pin Descriptions** | Pin Names | Description | |---|----------------| | D ₀ –D ₇ | Data Inputs | | O ₀ -O ₇ | Data Outputs | | $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3$ | Output Enables | | EN | Clock Enable | | CLR | Clear | | CP | Clock Input | $\mathsf{FACT^{\scriptscriptstyle\mathsf{TM}}}$ is a trademark of Fairchild Semiconductor. ## **Functional Description** The ACT825 consists of eight D-type edge-triggered flipflops. These devices have 3-STATE outputs for bus systems, organized in a broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable (OE) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With \overline{OE}_1 , \overline{OE}_2 and \overline{OE}_3 LOW, the contents of the flip-flops are available at the outputs. When one of $\overline{\text{OE}}_1$, $\overline{\text{OE}}_2$ or $\overline{\text{OE}}_3$ is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops. The ACT825 has Clear (CLR) and Clock Enable (EN) pins. These pins are ideal for parity bus interfacing in high performance systems. When $\overline{\text{CLR}}$ is LOW and $\overline{\text{OE}}$ is LOW, the outputs are LOW. When $\overline{\text{CLR}}$ is HIGH, data can be entered into the flip-flops. When $\overline{\text{EN}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When $\overline{\mathsf{EN}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions. #### **Function Table** | | | Inputs | | | Internal | Output | | |----|-----|--------|----|----------------|----------|--------|----------| | ŌE | CLR | EN | СР | D _n | Q | 0 | Function | | Н | Х | L | ~ | L | L | Z | High-Z | | Н | X | L | ~ | Н | н | Z | High-Z | | Н | L | X | X | Х | L | Z | Clear | | L | L | X | X | Х | L | L | Clear | | Н | Н | Н | X | Х | NC | Z | Hold | | L | Н | Н | X | Х | NC | NC | Hold | | Н | Н | L | ~ | L | L | Z | Load | | Н | Н | L | ~ | Н | н | Z | Load | | L | Н | L | ~ | L | L | L | Load | | L | Н | L | ~ | Н | н | Н | Load | - H = HIGH Voltage Level L = LOW Voltage Level - X = Immaterial - Z = High Impedance #### **Logic Diagram** Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. ## **Absolute Maximum Ratings**(Note 1) Supply Voltage (V_{CC}) -0.5V to 7.0V DC Input Diode Current (I_{IK}) $\begin{array}{ccc} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$ DC Output Diode Current (I_{OK}) $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA DC Output Source or Sink Current (I_O) DC V_{CC} or Ground Current DC Output Voltage (V_O) DC VCC of Glound Current $\begin{array}{ll} \mbox{Per Output Pin (I_{CC} \mbox{ or } I_{GND})} & \pm 50 \mbox{ mA} \\ \mbox{Storage Temperature (T_{STG})} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \end{array}$ Junction Temperature (T_J) PDIP 140°C # Recommended Operating Conditions V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications. #### **DC Electrical Characteristics** | Symbol | Parameter | V_{CC} $T_A = 25^{\circ}C$ | | 25°C | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | Units | Conditions | | |------------------|--------------------------------|------------------------------|-------|-------|---|--------|--|--| | Syllibol | | (V) | Тур | Gu | aranteed Limits | Ullits | Conditions | | | V _{IH} | Minimum HIGH Level | 4.5 | 1.5 | 2.0 | 2.0 | V | V _{OUT} = 0.1V | | | | Input Voltage | 5.5 | 1.5 | 2.0 | 2.0 | v | or V _{CC} -0.1V | | | V _{IL} | Maximum LOW Level | 4.5 | 1.5 | 0.8 | 0.8 | V | V _{OUT} = 0.1V | | | | Input Voltage | 5.5 | 1.5 | 0.8 | 0.8 | v | or V _{CC} -0.1V | | | V _{OH} | Minimum HIGH Level | 4.5 | 4.49 | 4.4 | 4.4 | V | - 50 A | | | | Output Voltage | 5.5 | 5.49 | 5.4 | 5.4 | l v | $I_{OUT} = -50 \mu A$ | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | | 4.5 | | 3.86 | 3.76 | V | $I_{OH} = -24 \text{ mA}$ | | | | | 5.5 | | 4.86 | 4.76 | | $I_{OH} = -24 \text{ mA (Note 2)}$ | | | V _{OL} | Maximum LOW Level | 4.5 | 0.001 | 0.1 | 0.1 | V | I _{OUT} = 50 μA | | | | Output Voltage | 5.5 | 0.001 | 0.1 | 0.1 | , v | 1007 = 30 μΑ | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | | 4.5 | | 0.36 | 0.44 | V | $I_{OL} = 24 \text{ mA}$ | | | | | 5.5 | | 0.36 | 0.44 | | I _{OL} = 24 mA (Note 2) | | | I _{IN} | Maximum Input Leakage Current | 5.5 | | ± 0.1 | ± 1.0 | μΑ | $V_I = V_{CC}$, GND | | | I _{OZ} | Maximum 5.5 | | | ±0.5 | ±5.0 | μА | $V_I = V_{IL}, V_{IH}$ | | | | 3-STATE Current | 5.5 | | ±0.5 | ±5.0 | μΑ | $V_O = V_{CC}$, GND | | | I _{CCT} | Maximum I _{CC} /Input | 5.5 | 0.6 | | 1.5 | mA | $V_I = V_{CC} - 2.1V$ | | | I _{OLD} | Minimum Dynamic | 5.5 | | | 75 | mA | V _{OLD} = 1.65V Max | | | I _{OHD} | Output Current (Note 3) | 5.5 | | | -75 | mA | V _{OHD} = 3.85V Min | | | I _{CC} | Maximum Quiescent | 5.5 | | 8.0 | 80 | μА | V _{IN} = V _{CC} or GND | | | | Supply Current | 5.5 | | 0.0 | 00 | μΑ | AIN - ACC OL GIAD | | +0.5V \pm 50 mA Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms, one output loaded at a time. ## **AC Electrical Characteristics** | | | v _{cc} | | $T_A = +25^{\circ}C$ | | T _A = -40° | C to +85°C | | |------------------|---|-----------------|------------------------|----------------------|------|-----------------------|------------|-------| | Symbol | Parameter | (V) | C _L = 50 pF | | | $C_L = 50 \text{ pF}$ | | Units | | | | (Note 4) | Min | Тур | Max | Min | Max | | | f _{MAX} | Maximum Clock
Frequency | 5.0 | 120 | 158 | | 109 | | MHz | | t _{PLH} | Propagation Delay
CP to O _n | 5.0 | 1.5 | 5.5 | 9.5 | 1.5 | 10.5 | ns | | t _{PHL} | Propagation Delay
CP to O _n | 5.0 | 2.0 | 5.5 | 9.5 | 1.5 | 10.5 | ns | | t _{PHL} | Propagation Delay CLR to O _n | 5.0 | 2.5 | 8.0 | 13.5 | 2.0 | 15.5 | ns | | [†] PZH | Output Enable Time OE to On | 5.0 | 1.5 | 6.0 | 10.5 | 1.5 | 11.5 | ns | | t _{PZL} | Output Enable Time OE to On | 5.0 | 2.0 | 6.5 | 11.0 | 1.5 | 12.0 | ns | | t _{PHZ} | Output Disable Time OE to O _n | 5.0 | 1.5 | 6.5 | 11.0 | 1.5 | 12.0 | ns | | t _{PLZ} | Output Disable Time OE to On | 5.0 | 1.5 | 6.0 | 10.5 | 1.5 | 11.5 | ns | Note 4: Voltage Range 5.0 is 5.0V ± 0.5V ## **AC Operating Requirements** | Symbol | Parameter | V _{CC} (V) | T _A = +25°C
C _L = 50 pF | | $T_A = -40$ °C to +85°C
$C_L = 50$ pF | Units | |------------------|---|---------------------|--|-----|--|-------| | | | (Note 5) | Тур | Gua | aranteed Minimum | | | t _S | Setup Time, HIGH or LOW
D _n to CP | 5.0 | 0.5 | 2.5 | 2.5 | ns | | t _H | Hold Time, HIGH or LOW D _n to CP | 5.0 | 0 | 2.5 | 2.5 | ns | | t _S | Setup Time, HIGH or LOW EN to CP | 5.0 | 0 | 2.0 | 2.5 | ns | | t _H | Hold Time, HIGH or LOW EN to CP | 5.0 | 0 | 1.0 | 1.0 | ns | | t _W | CP Pulse Width
HIGH or LOW | 5.0 | 2.5 | 4.5 | 5.5 | ns | | t _W | CLR Pulse Width, LOW | 5.0 | 3.0 | 5.5 | 5.5 | ns | | t _{REC} | CLR to CP
Recovery Time | 5.0 | 1.5 | 3.5 | 4.0 | ns | Note 5: Voltage Range 5.0 is 5.0V ± 0.5V ## Capacitance | Symbol | Symbol Parameter | | Units | Conditions | |---|------------------|-----|-------|------------------------| | C _{IN} Input Capacitance | | 4.5 | pF | V _{CC} = OPEN | | C _{PD} Power Dissipation Capacitance | | 44 | pF | V _{CC} = 5.0V | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N24C Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com