

LOW VOLTAGE DUAL POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2096 is a dual power amplifier, which operates with 1.0V minimum supply voltage. The NJM2096 is suitable to small radio and head-phone stereo. The NJM2096 is resemble to the NJM2076, but two amplifiers are the same.

■ FEATURES

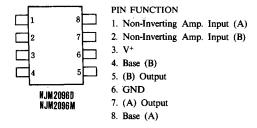
Low Operating Voltage

(1.0V min)

Minimum external components

Low Operating Current

Package Outline


DIP8, DMP8

Bipolar Technology

■ APPLICATION

• Head-phone Stereo, Portable Radio, Portable TV, Hand-carry Tele-communication Set.

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM 2096 D

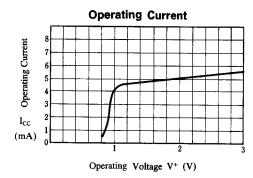
NJM 2096 M

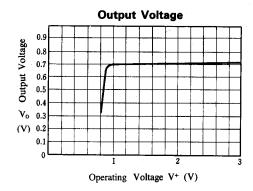
■ ABSOLUTE MAXIMUM RATINGS

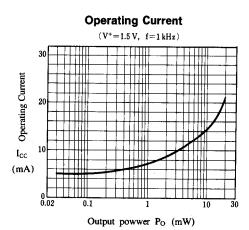
(Ta=25°C)

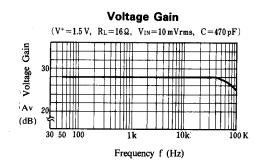
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	4.5	v	
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW	
Maximum Input Signal	V _{IN}	200	mVrms	
Operating Temperature Range	Торг	-20~+75	r	
Storage Temperature Range	Tstg	-40~+125	υ	

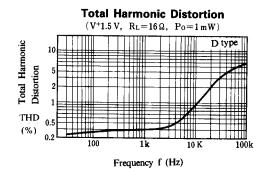
■ ELECTRICAL CHARACTERISTICS

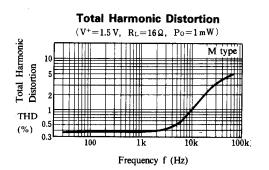

 $(Ta=25^{\circ}C, V^{+}=1.5V. R_{L}=16\Omega)$

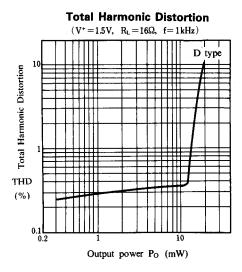

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{cc}	V _{IN} =Open		4.7	7	mA
Maximum Output Power	Pol	THD=10% D	15	20	_	mW
		M	15	17.5	l —	mW
Max. Output Power at Low Supply Voltage	Po	THD= 10% , V ⁺ = 1.0V		3	_	mW
Voltage Gain	Av	$V_{IN}=10 \text{mVrms}$	26.5	28	29.5	dB
Total Harmonic Distortion	THD	$P_O = 1 \text{mW}$	_	0.4	0.8	%
Ripple Rejection Ratio	RR	$Rg=00$, $V_r = 30 \text{mVrms}$. $F_r = 1 \text{kHz}$	25	35		dB
Input Resistance	R _{IN}		25	33	43	kΩ
Output Noise Voltage	V_{NO}	Rg=0Ω, A Curve	—	40	150	μV
Output Pin Voltage	Vo (DC)		0.62	0.70	0.77	v
Voltage Difference between Two Output Pins	$\Delta V_{O}(DC)$		_		50	mV

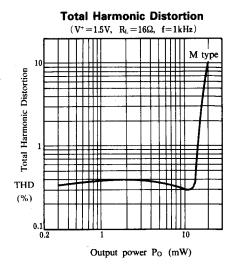

TEST CIRCUIT

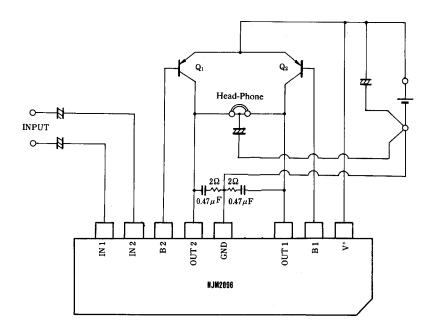



■ TYPICAL CHARACTERISTICS








■ TYPICAL CHARACTERISTICS

TYPICAL APPLICATION

Stereo Head-Phone

■ NOTICE

(1) External PNP Transistor

Maximum output power becomes large with low saturation voltage transistor, and so select transistor of low saturation voltage. h_{FF} : 120

(2) External Frequency Compensation

Recommend tantalum capacitor with low tan δ (less than 0.25 at f=10kHz) and 2Ω resistor. Stable with large capacitor of less high frequency distortion and worse tan δ . For example: $1\mu F$. $\tan\delta \leq 0.6$

(3) Layout on PCB

Be careful to get maximum output power and low distortion set.

DIP/DMP: Signal ground has to be close to IC ground pin. Impedance of ground line must be low.

NJM2096

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

NJM2096M-TE3 NJM2096D NJM2096M