FEATURES:

- $16 \mathrm{~K} \times 16 \mathrm{~K}$ non-blocking switching at $16.384 \mathrm{Mb} / \mathrm{s}$
- 64 serial input and output streams
- Accepts data streams at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$
- Per-channel Variable Delay Mode for low-latency applications
- Per-channel Constant Delay Mode for frame integrity applications
- Automatic identification of ST-BUS ${ }^{\circledR}$ and GCI bus interfaces
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel high-impedance output control
- Direct microprocessor access to all internal memories
- Memory block programming for quick setup
- IEEE-1149.1 (JTAG) Test Port
- 3.3V Power Supply
- Available in 208-pin ($17 \mathrm{~mm} \times 17 \mathrm{~mm}$) Plastic Ball Grid Array (PBGA) and 208-pin (28mm x 28mm) Plastic Quad Flatpack (PQFP) packages
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION:

The IDT72V71660 has a non-blocking switch capacity of $2,048 \times 2,048$ channels at $2.048 \mathrm{Mb} / \mathrm{s}, 4,096 \times 4,096$ channels at $4.096 \mathrm{Mb} / \mathrm{s}$, and $8,192 \mathrm{x}$ 8,192 channels at $8.192 \mathrm{Mb} / \mathrm{s}$ and $16,384 \times 16,384$ channels at $16.384 \mathrm{Mb} / \mathrm{s}$. With 64 inputs and 64 outputs, programmable per stream control, and a variety of operating modes the IDT72V71660 is designed for the TDM time slot interchange function in either voice or data applications.

Some of the main features of the IDT72V71660 are LOW power 3.3 Volt operation, automatic ST-BUS ${ }^{\circledR} / \mathrm{GCl}$ sensing, memory block programming, simple microprocessor interface, one cycle direct internal memory accesses, JTAG TestAccess Port(TAP) and perstream programmableinputoffsetdelay, variable or constant throughput modes, outputenable and processor mode.

The IDT72V71660 is capable of switching up to $16,384 \times 16,384$ channels without blocking. Designed to switch $64 \mathrm{Kbit} / \mathrm{PPCM}$ or Nx64 Kbit/s data, the device maintains frame integrity in data applications and minimizesthroughput delay for voice applications on a per-channel basis.

FUNCTIONAL BLOCK DIAGRAM

5905 drw01

PIN CONFIGURATIONS

NOTE:

1. $\mathrm{NC}=$ No Connect

PBGA: 1 mm pitch, $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ (BB208-1, order code: BB) TOP VIEW

PIN CONFIGURATIONS (CONTINUED)

NOTE:

1. NC = No Connect

PIN DESCRIPTION

SYMBOL	NAME	1/0	DESCRIPTION
A0-15	Address 0 to 15	1	These address lines access all internal memories.
CLK	Clock	1	Serial clock for shifting datain/out on the serial data streams. Depending upon the value programmed, this input accepts a 4.096, 8.192 or 16.384 MHz clock. See the Control Register bits on Table 5 for the values.
$\overline{C S}$	ChipSelect	1	This active LOW input is used by a microprocessor to activate the microprocessor port of IDT72V71660.
D0-15	Data Bus 0-15	1/0	These pins are the data bits of the microprocessor port.
$\overline{\text { DS }}$	DataStrobe	1	This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations and enables the data bus lines (DO-D15).
$\overline{\text { DTA }}$	Data Transfer Acknowledgment	0	Indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance.
FE/HCLK	Frame Evaluation/ HCLK Clock	1	When the WFPS pin is LOW, this pin is the frame measurement input. When the WFPS pin is HIGH, the HCLK (4.096 MHZ clock) is required for frame alignment in the wide frame pulse mode (WFPS). ${ }^{(1)}$
FP	FramePulse	I	Whenthe WFPS pin is LOW, this input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS ${ }^{\circledR}$ and GCI specifications. When pinWFPS is HIGH, this pin accepts a negative frame pulse, which conforms to the WFPS format.
GND	Ground		Ground Rail.
ODE	Output Drive Enable	1	This is the output enable control for the TX serial outputs. When the ODE inputis LOW and the Output Stand By bit of the Control Register is LOW, all TX outputs are in ahigh-impedance state. If this input is HIGH, the TX output drivers are enabled. However, each channel may still be put into a high-impedance state by using the per-channel control bitinthe Connection Memory.
$\overline{\text { RESET }}$	Device Reset	1	This input puts the IDT72V71660 into a reset state that clears the device internal counters, registers and brings TX0-63 and D0-D15 into a high-impedance state. The RESET pin must be held LOW for a minimum of $20 n$ ns to properly reset the device.
R/W	Read/Write	1	This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.
RX0-63	DataStream Input 0 to 63	1	Serial data input stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$, depending upon the value programmed in the Control Register.
TCK	TestClock	I	Provides the clock to the JTAG testlogic.
TDI	Test Serial Data In	1	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	Test Serial Data Out	0	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-impedance state when JTAG scan is not enabled.
TMS	TestMode Select	1	JTAG signal that controls the state transitions of the TestAccess Port controller. This pin is pulled HIGH by an internal pull-up when not driven.
TRST	TestReset	1	Asynchronously initializesthe JTAG TestAccessPortcontroller by putting itinthe Test-Logic-Resetstate. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, orheld LOW, to ensure that the IDT72V71660 is in the normal functional mode.
TX0-31	TX Output 0 to 31 (Three-state Outputs)	0	Serial data output stream. These streams may have a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$, depending upon the value programmed in the Control Register.
$\begin{aligned} & \hline \text { TX32-63/ } \\ & \text { OEIO-31 } \end{aligned}$	TX Output 32 to 63/ OutputEnable Indication 0 to 31 (Three-state Outputs)	0	When all 64 outputstreams are selected viaControl Register, these pins are the outputstreams TX32 to TX63 and may operate at a data rate of $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, or $16.384 \mathrm{Mb} / \mathrm{s}$. When output enable function is selected, these pins reflect the active or high-impedance status for the corresponding outputstream OEIO-31.
Vcc	Vcc		+3.3 Volt Power Supply.
WFPS	Wide FramePulse Select	1	When 1, enables the wide frame pulse (WFPS) Frame Alignment interface. When 0, the device operates in ST-BUS ${ }^{\circledR} /$ GCImode. ${ }^{(2)}$

NOTES:

[^0]
DESCRIPTION (CONTINUED)

The 64 serial input streams (RX) of the IDT72V71660 can run up to $16.384 \mathrm{Mb} / \mathrm{s}$ allowing 256 channels per 125μ s frame. The data rates on the output streams (TX) are identical to those on the inputstreams (RX).

Withtwo main operating modes, Processor Mode and ConnectionMode, the IDT72V71660 can easily switch data from incoming serial streams (Data Memory) or from the controlling microprocessor viaConnection Memory. As control and statusinformation is critical in datatransmission, the Processor Mode is especially useful whenthere are multiple devicessharing the input and output streams.

With data coming from multiple sources and through different paths, data entering the device is often delayed. To handlethis problem, the IDT72V71660 hasaFrame Evaluationfeature to allowindividual streams to be offsetfromthe frame pulse in halfclock-cycle intervals up to +7.5 clock cycles.

The IDT72V71660 also provides a JTAG Test Access Port, memory block programming, a simple microprocessorinterface andautomatic ST-BUS ${ }^{\circledR} / \mathrm{GCI}$ sensing to shorten setup time, aid in debugging and ease use of the device withoutsacrificing capabilities.

FUNCTIONAL DESCRIPTION

DATA AND CONNECTION MEMORY

All data that comes in through the RX inputs go through a serial-to-parallel conversion before being stored into internal Data Memory. The 8 KHz frame pulse (FP) is used to mark the 125μ s frame boundaries and to sequentially address the inputchannels in Data Memory.

Dataoutputonthe TX streams may come from either the serial inputstreams (Data Memory) or from the microprocessor (Connection Memory). Inthecase that RXinputdataisto be output, the addresses inConnectionMemory are used to specify a stream and channel of the input. The Connection Memory is setup in such a way that each location corresponds to an output channel for each particularstream. Inthatway, morethan one channel can outputthe same data. InProcessor Mode, the microprocessor writes datatotheConnection Memory locations corresponding tothe stream and channel thatisto be output. The lower half(8leastsignificantbits) ofthe ConnectionMemory is outputeveryframeuntil the microprocessor changes the data or mode of the channel. By using this Processor Mode capability, the microprocessor can access input and output time-slots on a per-channel basis.

The two mostsignificantbits of the Connection Memory are used to control the per-channel mode of the outputstreams. Specifically, the MOD1-0 bits are used to selectProcessor Mode, Constantor Variable delay Mode, and the highimpedance state of outputdrivers. IftheMOD1-0 bits are setto 1-1 accordingly, only that particular output channel (8 bits) will be in the high-impedance state. If however, the ODE inputpinis LOW and the OutputStandby Bitinthe Control Register is LOW, all of the outputs will be in a high-impedance state even if a particular channel in Connection Memory has enabled the output for that channel. In otherwords, the ODEpin and OutputStand By control bitare master output enables for the device (See Table 3).

SERIAL DATA INTERFACE TIMING

When 16.384Mb/sserial data rate is required, the master clock frequency will be running at 16.384 MHz resulting in a single-bit per clock. For all other cases, $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$, and $8.192 \mathrm{Mb} / \mathrm{s}$, the master clock frequency will be twice the data rate on the serial streams, resulting intwo clocks per bit. Use Table 5to determine clock speed and the DR1-0 bits inthe Control Register to
setup the device. The IDT72V71660 provides two different interface timing modes, ST-BUS ${ }^{\circledR}$ or GCI. The IDT72V71660 automatically detects the presence of an input frame pulse and identifies it as either ST-BUS ${ }^{\circledR}$ or GCl .

InST-BUS ${ }^{\circledR}$, when running at 16.384 MHz , datais clocked out on the falling edge and is clocked in on the subsequent rising-edge. At all other data rates, there are two clock cycles per bit and every second falling edge of the master clockmarks abitboundary and the data isclocked in on the rising edge of CLK, three quarters of the way into the bit cell. See Figure 14 for timing.

InGCI format, when running at 16.384 MHz , data is clocked out on the rising edge and is clocked in on the subsequent falling edge. At all other data rates, there are two clock cycles per bitand every second rising edge of the master clock marks the bit boundary and data is clocked in on the falling edge of CLK at three quarters of the way into the bit cell. See Figure 15 for timing.

INPUT FRAME OFFSET SELECTION

Inputframe offset selection allows the channel alignment of individual input streamstobeoffsetwithrespecttotheoutputstreamchannelalignment. Although all input data comes in at the same speed, delays can be caused by variable path serial backplanes and variable path lengths which may be implemented in large centralized and distributed switching systems. Because data is often delayed, this feature is useful in compensating for the skew between input streams.
Each inputstream can have its own delay offset value by programming the frameinputoffsetregisters(FOR,Table8). Themaximumallowableskewis +7.5 master clock (CLK) periods forward with a resolution of $1 / 2$ clock period, see Table 9. The output frame cannot be adjusted.

SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT72V71660 provides the Frame Evaluation input to determine differentdatainputdelays with respecttothe frame pulse FP. A measurement cycle is started by setting the StartFrame Evaluation bit of the Control Register LOW for atleastone frame. Whenthe StartFrameEvaluationbitintheControl Register ischanged from LOW to HIGH, the evaluation starts. Two frames later, the Complete Frame Evaluation bit of the Frame Alignment Registerchanges from LOWtoHIGH to signal thata avalid offsetmeasurement is ready to be read frombits 0 to 11 of the Frame Alignment Register. The Start Frame Evaluation bit must be setto zero before a new measurement cycle is started.

InST-BUS ${ }^{\circledR}$ mode, thefalling edge of the framemeasurementsignal(Frame Evaluation) is evaluated againstthe falling edge of the ST-BUS ${ }^{\circledR}$ frame pulse. InGCImode, the rising edge of Frame Evaluationis evaluated againsttherising edge of the GCI frame pulse. See Table 7 and Figure 1 for the description of the Frame Alignment Register.

MEMORY BLOCK PROGRAMMING

The IDT72V71660 provides userswith the capability of initializing the entire Connection Memory block in two frames. To set bits 14 and 15 of every Connection Memory location, first program the desired pattern in the Block Programming DataBits(BPD1-0), located inbits 7 and 8 ofthe Control Register.
The block programming mode is enabled by setting the Memory Block ProgrambitoftheControl RegisterHIGH. WhentheBlockProgramming Enable bit of the Control Register is set to HIGH, the Block Programming Data will be loaded into the bits 14 and 15 of every Connection Memory location. The other Connection Memory bits (bit0tobit13) areloaded withzeros. Whenthememory block programming is complete, the device resets the Block Programming Enable, BPD 1-0 and MBP bits to zero.

DELAY THROUGH THE IDT72V71660

The switching of informationfrom the inputserial streams to the output serial streams results in a throughput delay. The device can be programmed to perform time-slotinterchangefunctionswithdifferentthroughputdelay capabilities on a per-channel basis. For voice applications, variable throughput delay is bestas itensure minimum delay between input and output data. In wideband data applications, constantthroughputdelay is bestas the frame integrity of the information is maintained throughthe switch.

The delay throughthe device varies according to the type ofthroughputdelay selected in the Switching Mode Selection bits of the Connection Memory.

VARIABLE DELAY MODE (MOD1-0 = 0-0)

In this mode, the delay is dependent only on the combination of source and destination channels and is independent of input and output streams. The minimum delay achievable inthe IDT72V71660 is threetime-slots. If the input channel datais switched to the same outputchannel(channeln, framep), itwill be output inthe following frame (channeln, framep+1). The same is true ifthe input channel n is switched to output channel $n+1$ or $n+2$. If the input channel n is switched to output channel $n+3, n+4, \ldots$, the new output data will appear in the same frame. Table 2 shows the possible delays for the IDT72V71660 in Variable Delay mode.

CONSTANT DELAY MODE (MOD1-0 = 0-1)

Inthis mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. Inputchannel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In the IDT72V71660, the minimumthroughputdelay achievable inConstantDelay mode will be one frame plus one channel. See Table 1.

MICROPROCESSOR INTERFACE

The IDT72V71660's microprocessor interface looks like a standard RAM interface to improve integration into a system. With a 16-bitaddress bus and a 16-bitdatabus, reads and writes are mapped directly into Data and Connection Memories and require only one clock cycle to access. By allowing the internal memoriestoberandomlyaccessedin one cycle, the controlling microprocessor has more time to manage other peripheral devices and can more easily and quickly gather information and setup the switch paths. Table 4 shows the mapping of the addresses into internal memory blocks.

MEMORY MAPPING

Theaddressbus onthemicroprocessor interface selectstheinternal registers and memories of the IDT72V71660.

Thetwo mostsignificantbits ofthe address selectbetween the registers, Data Memory, and Connection Memory. IfA15 and A14 are HIGH, A13-A0 are used to addressthe Data Memory. IfA15isHIGH and A14 is LOW, A13-A0 are used to address Connection Memory. If A15 is LOW and A14 is HIGH A13-A0 are usedtoselectthe Control Register, Frame AlignmentRegister, and FrameOffset Registers. See Table 4 for mappings.

As explained inthe Serial DataInterface Timing and Switching Configurations sections, after system power-up, the Control Register should be programmed immediately to establishthe desired switching configuration.

The datain the Control Register consists of the Memory Block Programming bit,the BlockProgramming Databits, the Begin Block Programming Enable, the OutputStand By, Start Frame Evaluation, OutputEnable Indication and Data Rate Selectbits. As explained inthe Memory Block Programming section, the Block Programming Enable beginsthe programming ifthe MBP bitisenabled. This allows the entire Connection Memory block to be programmed with the Block Programming Data bits. Ifthe ODE pin is LOW, the OutputStand By bit enables (if HIGH) or disables (if LOW) all TX output drivers. If the ODE pin is HIGH, the OutputStand By bitisignored and all TX outputdrivers are enabled.

SOFTWARE RESET

The Software Reset serves the same function as the hardware reset. As with the hard reset, the Software Resetmust also be setHIGH for 20 ns before bringing the SoftwareResetLOWagainfornormal operation. OncetheSoftware Reset is LOW, internal registers and other memories may be read or written. During Software Reset, the microprocessor port is still able to read from all internal memories. The only write operation allowed during a Software Reset istotheSoftwareResetbitintheControl RegistertocompletetheSoftwareReset.

CONNECTION MEMORY CONTROL

If the ODE pin and the OutputStand By bit are LOW, all output channels will be in three-state. See Table 3 for detail.

IfMOD1-0 oftheConnection Memory is 1-0 accordingly, the outputchannel will be in Processor Mode. In this case the lower eight bits of the Connection Memory are output each frame until the MOD1-0 bits are changed. If MOD1O oftheConnectionMemory are 0-1 accordingly, the channel will bein Constant Delay Mode and bits 13-0 are used to address a location in Data Memory. If MOD1-0 of the Connection Memory are 0-0, the channel will be in Variable Delay Mode and bits 13-0 are used to address a location in Data Memory. If MOD 1-0 of the Connection Memory are 1-1, the channel will be in high Impedance mode and that channel will be in three-state.

OUTPUT ENABLE INDICATION

The IDT72V71660 hasthe capability to indicate the state oftheoutputs(active orthree-state) by enabling the OutputEnable Indication inthe Control Register. In the Output Enable Indication mode however, only half of the output streams are available. Ifthis same capability is desired with all 64 streams, this can be accomplished by using two IDT72V71660 devices. Inone device, the All Output Enable bit is set to a one while in the other the All Output Enable is set to zero. Inthis way, one device acts as the switch and the other as athree-state control device, see Figure 5. It is importantto note ifthe TSI device is programmed for All Output Enables and the Output Enable Indication is also set, the device will be inthe All Output Enables mode not OutputEnable Indication. Touse all 64 streams, set Output Enable Indication in the Control Register to zero.

INITIALIZATION OF THE IDT72V71660

After power up, the state of the Connection Memory is unknown. As such, theoutputsshould be putinhigh-impedanceby holding theODEpinLOW. While the ODE is LOW, the microprocessor can initialize the deviceby using the Block Programming feature and programthe active pathsviathe microprocessorbus. Once the device is configured, the ODE pin (or OutputStand By bitdepending on initialization) can be switched to enable the TSI switch.

TABLE 1 -CONSTANT THROUGHPUT DELAY VALUE

Input Rate	Delay for Constant Throughput Delay Mode $(\mathrm{m}$ - output channel number) $(\mathrm{n}$ - input channel number)
$2.048 \mathrm{Mb} / \mathrm{s}$	$32+(32-\mathrm{n})+\mathrm{m}$ time-slots
$4.096 \mathrm{Mb} / \mathrm{s}$	$64+(64-\mathrm{n})+\mathrm{m}$ time-slots
$8.192 \mathrm{Mb} / \mathrm{s}$	$128+(128-\mathrm{n})+\mathrm{m}$ time-slots
$16.384 \mathrm{Mb} / \mathrm{s}$	$256+(256-\mathrm{n})+\mathrm{m}$ time-slots

TABLE 2 -VARIABLE THROUGHPUT

 DELAY VALUE| Input Rate | Delay for Variable Throughput Delay Mode
 $(\mathrm{m}-$ output channel number; $\mathrm{n}-$ input channel number) | |
| :--- | :---: | :---: |
| | $\mathrm{m} \leq \mathrm{n}+2$ | $\mathrm{~m}>\mathrm{n}+2$ |
| $2.048 \mathrm{Mb} / \mathrm{s}$ | $32-(\mathrm{n}-\mathrm{m})$ time-slots | $(m-n)$ time-slots |
| $4.096 \mathrm{Mb} / \mathrm{s}$ | $64-(\mathrm{n}-\mathrm{m})$ time-slots | $(m-n)$ time-slots |
| $8.192 \mathrm{Mb} / \mathrm{s}$ | $128-(\mathrm{n}-\mathrm{m})$ time-slots | $(m-n)$ time-slots |
| $16.384 \mathrm{Mb} / \mathrm{s}$ | $256-(\mathrm{n}-\mathrm{m})$ time-slots | $(m-n)$ time-slots |

TABLE 3 -OUTPUT HIGH-IMPEDANCE CONTROL

Bits MOD1-0 Values in Connection Memory	ODE pin	OSB bit in Control Register	Output Status
1 and 1	Don'tCare	Don'tCare	Per-channel high-Impedance
Any, other than 1 and 1	0	0	high-Impedance
Any, other than 1 and 1	0	1	Enable
Any, other than 1 and 1	1	0	Enable
Any, other than 1 and 1	1	1	Enable

TABLE 4 - INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	RNW	Location
1	1	STA5	STA4	STA3	STA2	STA1	STAO	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO	R	Data Memory
1	0	STA5	STA4	STA3	STA2	STA1	STAO	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO	R/W	Connection Memory
0	1	0	0	0	0	0	x	X	X	x	x	x	x	x	x	R/W	Control Register
0	1	0	0	0	0	1	x	X	x	x	X	X	x	x	x	R	Frame Align Register
0	1	1	0	0	0	0	x	x	x	x	X	x	x	x	x	R/W	FrameOffsetRegister0
0	1	1	0	0	0	1	X	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister 1
0	1	1	0	0	1	0	X	x	x	X	X	X	x	x	x	R/W	FrameOffsetRegister2
0	1	1	0	0	1	1	x	x	x	x	X	x	x	x	x	R/W	FrameOffsetRegister3
0	1	1	0	1	0	0	x	x	x	X	X	x	x	x	x	R/W	FrameOffsetRegister 4
0	1	1	0	1	0	1	X	x	x	x	X	x	x	x	x	R/W	FrameOffsetRegister 5
0	1	1	0	1	1	0	x	x	x	x	x	x	x	x	x	R/W	FrameOffsetRegister 6
0	1	1	0	1	1	1	X	X	x	x	X	X	x	x	x	R/W	FrameOffsetRegister 7
0	1	1	1	0	0	0	x	x	x	X	x	x	x	x	x	R/W	FrameOffsetRegister 8
0	1	1	1	0	0	1	x	x	x	x	X	x	x	x	x	R/W	FrameOffsetRegister9
0	1	1	1	0	1	0	x	X	x	x	X	x	x	x	x	R/W	Frame Offset Register 10
0	1	1	1	0	1	1	x	x	x	x	x	x	x	x	x	R/W	Frame Offset Register 11
0	1	1	1	1	0	0	x	x	x	x	X	X	x	x	x	R/W	Frame Offset Register 12
0	1	1	1	1	0	1	x	x	x	x	x	x	x	x	x	R/W	Frame Offset Register 13
0	1	1	1	1	1	0	x	X	x	X	X	x	x	x	x	R/W	Frame Offset Register 14
0	1	1	1	1	1	1	X	x	X	X	X	x	x	x	x	R/W	Frame Offset Register 15

NOTE: Unused STA and CH bits should be set to zero.

TABLE 5 - CONTROL REGISTER (CR) BITS

			ResetValue: 0000н.												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SRS	OEI	OEPO	AOE	0	0	MB	BPD1	BPDO	BPE	OSB	SFE	0	0	DR1	DR0
BIT	NAME			DESCRIPTION											
15	SRS (Software Reset)			A one will reset the device and have the same effect as the RESET pin. Must be zero for normal operation.											
14	OEI (OutputEnable Indication)			When1,the TX32-63/OEIO-31 pins will be OEIO-31 and reflectthe active or high-impedance state of their corresponding outputdata streams. When 0, this feature is disabled and these pins are used as output datastreams TX32-63.											
13	OEPOL (OutputEnable Polarity)			When1, aoneonanOutputEnable Indicationpindenotes an active state ontheoutputdatastream;zeroonanOutputEnable Indication pindenotes high-impedance state. When 0 , a one on an OutputEnable Indication pindenotes high-impedance and azerodenotes an active state.											
12	AOE (All OutputEnables)			When 1, TX0-63 will behave as OEIO-63 accordingly. These outputs will reflect the active or high-impedance state of the correspondingoutputdatastreams(TX0-63)inanotherIDT72V71660ifprogrammedidentically. When0, the TSI operates inthenormal switch mode.											
11-10	Unused			Mustbe zero for normal operation.											
9	MBP (Memory Block Program)			When 1, the Connection Memory block programming feature is ready for the programming of Connection Memory HIGH bits, bit 14 and bit 15 . When 0 , this feature is disabled.											
8-7	BPD1-0 (Block Programming Data)			These bits carry the value to be loaded into the Connection Memory block whenever the memory block programming feature is activated. After the Memory Block Program bitinthe Control Register is setto 1 and the Block Programming Enable is setto 1 , the contents of the bits Block Programming Data1-0 are loaded into bit 15 and 14 of the Connection Memory. Bit 13 to bit 0 of the Connection Memory are set to 0 .											
6	BPE (Begin Block Programming Enable)			Azero to one transition of this bitenables the memory block programming function. Once the Block Programming Enable bitis setHIGH, the device requires two frames to complete the block programming. After the programming function has finished, the BlockProgramming Enable, Memory Block Program and Block Programming Data1-0 bits will be resetto zero by the device toindicatethe operation is complete.											
5	$\begin{aligned} & \text { OSB } \\ & \text { (OutputStand By) } \end{aligned}$			When ODE $=0$ and Output Stand $\mathrm{By}=0$, the output drivers of the transmit serial streams are in high-impedance mode. When either ODE $=1$ or Output Stand By $=1$ the output serial streams drivers function normally.											
4	SFE (StartFrameEvaluation)			AzerotoonetransitioninthisbitstartstheFrame Evaluationprocedure. WhentheComplete Frame Evaluationbitinthe Frame Alignment Register changes fromzeroto one, the evaluation procedure stops. To startanother Frame Evaluation cycle, setthis bitto zero for atleastoneframe.											
3-2	Unused			Mustbe zero for normal operation.											
1-0	DR1-0 (DataRate Select)			DR1			DR0			DataRate				Master Clock	
					0 1 1			1			2.048 4.096 8.192 16.38				

TABLE 6 - CONNECTION MEMORY BITS

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MOD1	MOD0	SAB5	SAB4	SAB3	SAB2	SAB1	SAB0	CAB7	CAB6	CAB5	CAB4	CAB3	CAB2	CAB1	CAB0

NOTE:

1. Unused Source Stream Address Bits and Source Channel Address Bits bits should be set to zero.

TABLE 7 -FRAME ALIGNMENT REGISTER (FAR)BITS

Figure 1. Example for Frame Alignment Measurement

TABLE 8 - FRAME INPUT OFFSET REGISTER (FOR) BITS

Reset Value:0000n for all FOR registers.																
Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FOR0Register	OF32	OF31	OF30	DLE3	OF22	OF21	OF20	DLE2	OF12	OF11	OF10	DLE1	OF02	OF01	OF00	DLE0
FOR1 Register	OF72	OF71	OF70	DLE7	OF62	OF61	OF60	DLE6	OF52	OF51	OF50	DLE5	OF42	OF41	OF40	DLE4
FOR2 Register	OF112	OF111	OF110	DLE11	OF102	OF101	OF100	DLE10	OF92	OF91	OF90	DLE9	OF82	OF81	OF80	DLE8
FOR3Register	OF152	OF151	OF150	DLE15	OF142	OF141	OF140	DLE14	OF132	OF131	OF130	DLE13	OF122	OF121	OF120	DLE12
FOR4Register	OF192	OF191	OF190	DLE19	OF182	OF181	OF180	DLE18	OF172	OF171	OF170	DLE17	OD162	OD161	OF160	DLE16
FOR5Register	OF232	OF231	OF230	DLE23	OF222	OF221	OF220	DLE22	OF212	OF211	OF210	DLE21	OF202	OF201	OF200	DLE20
FOR6Register	OF272	OF271	OF270	DLE27	OF262	OF261	OF260	DLE26	OF252	OF251	OF250	DLE25	OF242	OF241	OF240	DLE24
FOR7 Register	OF312	OF311	OF310	DLE31	OF302	OF301	OF300	DLE30	OF292	OF291	OF290	DLE29	OF282	OF281	OF280	DLE28
FOR8Register	OF352	OF351	OF350	DLE35	OF342	OF341	OF340	DLE34	OF332	OF331	OF330	DLE33	OF322	OF321	OF320	DLE32
FOR9 Register	OF392	OF391	OF390	DLE39	OF382	OF381	OF380	DLE38	OF372	OF371	OF370	DLE37	OF362	OF361	OF360	DLE36
FOR10Register	OF432	OF431	OF430	DLE43	OF422	OF421	OF420	DLE42	OF412	OF411	OF410	DLE41	OF402	OF401	OF400	DLE40
FOR11Register	OF472	OF471	OF470	DLE47	OF462	OF461	OF460	DLE46	OF452	OF451	OF450	DLE45	OF442	OF441	OF440	DLE44
FOR12Register	OF512	OF511	OF510	DLE51	OF502	OF501	OF500	DLE50	OF492	OF491	OF490	DLE49	OF482	OF481	OF480	DLE48
FOR13Register	OF552	OF551	OF550	DLE55	OF542	OF541	OF540	DLE54	OF532	OF531	OF530	DLE53	OF522	OF521	OF520	DLE52
FOR14Register	OF592	OF591	OF590	DLE59	OF582	OF581	OF580	DLE58	OF572	OF571	OF570	DLE57	OF562	OF561	OF560	DLE56
FOR15Register	OF632	OF631	OF630	DLE63	OF622	OF621	OF620	DLE62	OF612	OF611	OF610	DLE61	OF602	OF601	OF600	DLE60

Name ${ }^{(1)}$	Description	
OFn2, OFn1, OFn0 (Offset Bits 2, 1 \& 0)	These three bits define how long the serial interface receiver takes to recognize and store bit 0 from the RX input pin: i.e., to start a new frame. The input frame offset can be selected to +7.5 clock periods from the point where the external frame pulse input signal is applied to the FP input of the device. See Figure 2.	
DLEn	ST-BUS ${ }^{\circledR}$ and GCI mode:	DLEn $=0$, offset is on the clock boundary DLEn $=1$, offset is a half clock cycle off of the clock boundary.

NOTE:

1. n denotes an input stream number from 0 to 63.

TABLE 9 - OFFSET BITS (OFn2, OFn1, OFn0, DLEn) \& FRAME DELAY BITS (FD11, FD2-0)

InputStream Offset	MeasurementResultfrom Frame Delay Bits				Corresponding OffsetBits			
	FD11	FD2	FD1	FD0	OFn2	OFn1	OFn0	DLEn
Noclock period shift(Default)	1	0	0	0	0	0	0	0
+ 0.5 clock period shift	0	0	0	0	0	0	0	1
+ 1.0 clock period shift	1	0	0	1	0	0	1	0
+ 1.5 clock period shift	0	0	0	1	0	0	1	1
+ 2.0 clock period shift	1	0	1	0	0	1	0	0
+ 2.5 clock period shift	0	0	1	0	0	1	0	1
+3.0 clock period shift	1	0	1	1	0	1	1	0
+ 3.5 clock period shift	0	0	1	1	0	1	1	1
+4.0 clock period shift	1	1	0	0	1	0	0	0
+4.5 clock period shift	0	1	0	0	1	0	0	1
+5.0 clock period shift	1	1	0	1	1	0	1	0
+5.5 clock period shift	0	1	0	1	1	0	1	1
+6.0 clock period shift	1	1	1	0	1	1	0	0
+6.5 clock period shift	0	1	1	0	1	1	0	1
+7.0 clock period shift	1	1	1	1	1	1	1	0
+7.5 clock period shift	0	1	1	1	1	1	1	1

Figure 2. Examples for Input Offset Delay Timing in 16.384Mb/s mode

Figure 2. Examples for Input Offset Delay Timing in $8.192 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$ and $2.048 \mathrm{Mb} / \mathrm{s}$ mode (Continued)

J TAG SUPPORT

The IDT72V71660JTAG interface conformstothe Boundary-Scan standard IEEE-1149.1. This standard specifies adesign-for-testabilitytechnique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external Test Access Port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT72V71660. It consists of three inputpins and one outputpin.
-Test Clock Input (TCK)
TCK provides the clockfor the testlogic. The TCK does notinterferewith any on-chip clock and thus remains independent. The TCK permits shifting oftest data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received atthe TMS inputare interpreted bythe TestAccess Port Controller to control the test operations. The TMS signals are sampled at the rising edge ofthe TCK pulse. This pinis internally pulled to VCC when itis not driven from an external source.
-Test Data Input (TDI)
Serial input data applied to this portis fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to VCC when it is not driven from an external source.
-TestDataOutput(TDO)
Depending onthe sequencepreviously appliedtothe TMS input, the contents of either the instruction register or data register are serially shifted out through the TDO pin on the falling edge of each TCK pulse. When no data is shifted throughthe boundaryscancells, the TDOdriverissetto ahigh-impedancestate.

- Test Reset (TRST)

Resetthe JTAG scan structure. This pin is internally pulled to VCC when it is not driven from an external source.

INSTRUCTION REGISTER

In accordance with the IEEE-1149.1 standard, the IDT72V71660 uses public instructions. The IDT72V71660 JTAG interface contains a four-bitinstruction register. Instructions are seriallyloaded into the instruction register from the TDI whenthe TestAccess Port Controller is in its shift-IR state. Subsequently, the instructions are decoded to achieve two basic functions: to selectthetestdata register that may operate while the instruction is current, and to define the serial testdataregister path, which is used to shift data betweenTDI and TDO during data register scanning. See Table 12 below for Instruction decoding.

TESTDATAREGISTER

As specifiedinIEEE-1149.1, the IDT72V71660 JTAG Interface containstwo testdataregisters:
-The Boundary-Scan register
The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the IDT72V71660 core logic.
-The Bypass Register
The Bypass register is asingle stage shiftregister that providesaone-bitpath from TDI to TDO. The IDT72V71660 boundary scan register bits are shown in Table 14. Bit0 is the firstbitclocked out. Allthree-state enable bits are active HIGH.

ID CODE REGISTER

As specified in IEEE-1149.1, this instruction loads the IDR with the Revision Number, Device ID, and ID Register Indicator Bit. See Table 10.

TABLE 10-IDENTIFICATION REGISTER DEFINITIONS

INSTRUCTION FIELD	VALUE	DESCRIPTION
Revision Number(31:28)	0×0	Reserved forversionnumber
IDT Device ID (27:12)	0×434	Defines IDT partnumber
IDT JEDEC ID (11:1)	0×33	Allows unique identification of device vendoras IDT
ID Register Indicator Bit(Bit0)	1	Indicatesthe presence of an ID register

TABLE 11 - SCAN REGISTER SIZES

REGISTERNAME	BIT SIZE
Instruction(IR)	4
Bypass (BYR)	1
Identification(IDR)	32
Boundary Scan (BSR)	Note(1)

NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

TABLE 12 - SYSTEM INTERFACE PARAMETERS

INSTRUCTION	CODE	
EXTEST	0000	Forces contents ofthe boundary scan cells ontothe device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDI and TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGH-Z	0100	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
CLAMP	0011	Places the bypass register (BYR) between ITDI and TDO. Forces contents of the boundary scan cells onto the device outputs.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs (2) becaptured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be inputserially into the boundary scan cells via the TDI.
RESERVED	All other codes	Several combinations are reserved. Do not use other codes thanthose identified above.

NOTES:

1. Device outputs = All device outputs except TDO.
2. Device inputs $=$ All device inputs except TDI, TMS and TRST.

TABLE 13 - J TAG AC ELECTRICAL CHARACTERISTICS (1,2,3,4)

SYMBOL	PARAMETER	MIN.	MAX.	UNITS
tJCYC	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock LOW	40	-	ns
tJR	JTAG Clock Rise Time	-	$3^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$3^{(1)}$	ns
tJRST	JTAG Reset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAG Data Output	-	25	ns
tJDC	JTAG Data OutputHold	0	-	ns
tJS	JTAG Setup	15	-	ns
tJH	JTAG Hold	15	-	ns

NOTES:

1. Guaranteed by design.
2. 30 pF loading on external output signals.
3. Refer to AC Electrical Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed $(10 \mathrm{MHz})$. The base device may run at any speed specified in this datasheet.

NOTES:

1. Device inputs $=$ All device inputs except TDI, TMS and TRST.
2. Device outputs = All device outputs except TDO.

Figure 3. JTAG TIming Specifications

TABLE 14 - BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to bit 265		
	Input Scan Cell	Output Scan Cell	Three-State Control
ODE	0		
$\overline{\text { RESET }}$	1		
CLK	2		
FP	3		
FE/HCLK	4		
WFPS	5		
$\overline{\text { DS }}$	6		
$\overline{\mathrm{CS}}$	7		
R/W	8		
A0	9		
A1	10		
A2	11		
A3	12		
A4	13		
A5	14		
A6	15		
A7	16		
A8	17		
A9	18		
A10	19		
A11	20		
A12	21		
A13	22		
A14	23		
A15	24		
$\overline{\text { DTA }}$		25	
D15	26	27	28
D14	29	30	31
D13	32	33	34
D12	35	36	37
D11	38	39	40
D10	41	42	43
D9	44	45	46
D8	47	48	49
D7	50	51	52
D6	53	54	55
D5	56	57	58
D4	59	60	61
D3	62	63	64
D2	65	66	67
D1	68	69	70
D0	71	72	73
RX63	74		
RX62	75		
RX61	76		
RX60	77		
RX59	78		
RX58	79		
RX57	80		
RX56	81		

Device Pin	Boundary Scan Bit 0 to bit 265		
	$\begin{gathered} \text { Input } \\ \text { Scan Cell } \end{gathered}$	$\begin{aligned} & \text { Output } \\ & \text { Scan Cell } \end{aligned}$	Three-State Control
TX63/OEI31		82	83
TX62/OEI30		84	85
TX61/OEI29		86	87
TX60/OEI28		88	89
TX59/OEI27		90	91
TX58/OEI26		92	93
TX57/OEI25		94	95
TX56/OEI24		96	97
TX55/OEi23		98	99
TX54/OEi22		100	101
TX53/OEI21		102	103
TX52/OEI20		104	105
TX51/OEI19		106	107
TX50/OEI18		108	109
TX49/OE17		110	111
TX48/OEI16		112	113
RX55	114		
RX54	115		
RX53	116		
RX52	117		
RX51	118		
RX50	119		
RX49	120		
RX48	121		
RX47	122		
RX46	123		
RX45	124		
RX44	125		
RX43	126		
RX42	127		
RX41	128		
RX40	129		
TX47/OEI15		130	131
TX46/OEI14		132	133
TX45/OEI13		134	135
TX44/OEI12		136	137
TX43/OEI11		138	139
TX42/OEI10		140	141
TX41/OEI9		142	143
TX40/OE18		144	145
TX39/OEI7		146	147
TX38/OEI6		148	149
TX37/OEI5		150	151
TX36/OEI4		152	153
TX35/OEI3		154	155
TX34/OEI2		156	157
TX33/OEI1		158	159
TX32/OEI0		160	161

TABLE 14 - BOUNDARY SCAN REGISTER BITS (CONTINUED)

Device Pin	Boundary Scan Bit 0 to bit 265		
	Input Scan Cell	$\begin{gathered} \text { Output } \\ \text { Scan Cell } \end{gathered}$	Three-State Control
RX39	162		
RX38	163		
RX37	164		
RX36	165		
RX35	166		
RX34	167		
RX33	168		
RX32	169		
RX31	170		
RX30	171		
RX29	172		
RX28	173		
RX27	174		
RX26	175		
RX25	176		
RX24	177		
TX31		178	179
TX30		180	181
TX29		182	183
TX28		184	185
TX27		186	187
TX26		188	189
TX25		190	191
TX24		192	193
TX23		194	195
TX22		196	197
TX21		198	199
TX20		200	201
TX19		202	203
TX18		204	205
TX17		206	207
TX16		208	209
RX23	210		
RX22	211		
RX21	212		
RX20	213		
RX19	214		
RX18	215		
RX17	216		
RX16	217		
RX15	218		
RX14	219		
RX13	220		
RX12	221		
RX11	222		
RX10	223		
RX9	224		
RX8	225		

Device Pin	Boundary Scan Bit 0 to bit 265		
	Input Scan Cell	Output Scan Cell	Three-State Control
		226	227
TX14		228	229
TX13		230	231
TX12		232	233
TX11		234	235
TX10		236	237
TX9		238	239
TX8		240	241
TX7		242	243
TX6		244	245
TX5		246	247
TX4		250	249
TX3		252	251
TX2		254	253
TX1		256	255
TX0			257
RX7	258		
RX6	259		
RX5	260		
RX4	261		
RX3	262		
RX2	263		
RX1	264		
RX0	265		

APPLICATIONS

CREATING LARGE SWITCH MATRICES

To create a switch matrix with twice the capacity of a given TSI device, four devices must be used. In the example below, four IDT72V71660, 16K x16K channel capacity devices are used to create a32Kx32K channel switchmatrix.

As can be seen, Device \#1 and Device \#2 will receive the same incoming RX0-63 data and thus have the same contents in Data Memory. On the output side, however Device \#1 is used to switch data out on to TX0-63 where as

Device \#2 is used to switch out on TX 64-127. Likewise Device \#3 and Device \#4 are used in the same way as Device \#1 and Device \#2 but switch RX 64-127 to TX0-63 and TX 64-127, respectively. With this configurationall possible combinations of inputand outputstreams are possible. Inshort, Device \#1 is used to switch RX0-63 to TX0-63, Device \#2 to switch RX0-63 to TX64-127, Device\#3toswitchRX64-127 to TX0-63, and Device\#4 to switch RX64-127 to TX64-127.

Figure 4. Creating Larger Switch Matrices

Figure 5. Using All Output Enable (AOE)

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	-0.5	+4.0	V
Vi	Voltage on Digital Inputs	$\mathrm{GND}-0.3$	$\mathrm{VCC}+0.3$	V
IO	CurrentatDigital Outputs	-50	50	mA
Ts	Storage Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	Package Power Dissapation	-	2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDEDOPERATING

 CONDITIONS ${ }^{(1)}$| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Vcc | Positive Supply | 3.0 | 3.3 | 3.6 | V |
| VIH^{2} | Input HIGH Voltage | 2.0 | - | Vcc | V |
| VIL | InputLOWVoltage | -0.3 | - | 0.8 | V |
| Top | OperatingTemperature
 Industrial | -40 | 25 | +85 | ${ }^{\circ} \mathrm{C}$ |

NOTE:

1. Voltages are with respect to Ground unless otherwise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter		Min.	Typ.	Max.	Units
ICC ${ }^{(2)}$	Supply Current	@ 2.048Mb/s	-	-	80	mA
		@ 4.096Mb/s	-	-	90	mA
		@ 8.192Mb/s	-	-	130	mA
		@ 16.384Mb/s	-	-	140	mA
ILL ${ }^{(3,4)}$	InputLeakage (inputpins)		-	-	60	$\mu \mathrm{A}$
$10 z^{(3,4)}$	high-impedanceLeakage		-	-	60	$\mu \mathrm{A}$
Vон ${ }^{(5)}$	Output HIGH Voltage		2.4	-	-	V
VoL ${ }^{(6)}$	OutputLOWVoltage		-	-	0.4	V

NOTES:

1. Voltages are with respect to ground (GND) unless otherwise stated.
2. Outputs unloaded.
3. $0 \leq \mathrm{V} \leq \mathrm{VCC}$.
4. Maximum leakage on pins (output or I/O pins in high-impedance state) is over an applied voltage (V).
5. $\mathrm{IOH}=10 \mathrm{~mA}$.
6. $\mathrm{IOL}=10 \mathrm{~mA}$.

AC ELECTRICAL CHARACTERISTICS-TIMING PARAMETER MEASUREMENT VOLTAGE LEVELS

Symbol	Rating	Level	Unit
VTT	TLLThreshold	1.5	V
VHM	TTLRise/Fall ThresholdVoltage HIGH	2.0	V
VLM	TTLRise/Fall Threshold VoltageLOW	0.8	V
	InputPulse Levels		V
tr,ff	InputRise/Fall Times	1	ns
	InputTiming ReferenceLevels		V
	OutputReferenceLevels		V
$\mathrm{CLL}^{(1)}$	OutputLoad	150	pF
$\mathrm{Cin}^{(2)}$	InputCapacitance	8	pF

NOTES:

1. JTAG CL is 30 pF
2. For 208 PQFP.

Figure 6. AC Termination

Figure 7. AC Test Load

Figure 8. Lumped Capacitive Load, Typical Derating

AC ELECTRICAL CHARACTERISTICS -FRAME PULSE AND CLOCK

Symbol	Parameter	Min.	Typ.	Max.	Units
tFPW	Frame Pulse Width (ST-BUS ${ }^{\circledR}$, GCI) Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & \hline \end{aligned}$	—	$\begin{gathered} 295 \\ 145 \\ 65 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tFPS	Frame Pulse Setup time before CLK falling (ST-BUS® or GCI)	5	-	-	ns
tFPH	Frame Pulse Hold Time from CLK falling (ST-BUS® or GCI)	10	-	-	ns
tcP	CLK Period Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{gathered} 190 \\ 110 \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 244 \\ 122 \\ 61 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 150 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
tCH	CLK Pulse Width HIGH Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & 122 \\ & 61 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 75 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
tcl	CLK Pulse Width LOW Bit rate $=2.048 \mathrm{Mb} / \mathrm{s}$ Bit rate $=4.096 \mathrm{Mb} / \mathrm{s}$ Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ or $16.384 \mathrm{Mb} / \mathrm{s}$	$\begin{aligned} & 85 \\ & 50 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 122 \\ & 61 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \hline \end{aligned}$
tHFPW	Wide Frame Pulse Width HCLK $=4.096 \mathrm{Mb} / \mathrm{s}$		244		ns
tHFPS	Frame Pulse Setup Time before HCLK @ 4.096 MHz falling	50	-	150	ns
tHFPH	Frame Pulse Hold Time from HCLK @ 4.096 MHz falling	50	-	150	ns
thCP	HCLK Period @ 4.096 MHz	190	244	300	ns
H-CH	HCLK Pulse Width HIGH @ 4.096mb/s	110	122	150	ns
thCL	HCLK Pulse Width LOW @ 4.096mb/s	110	122	150	ns
thr, thf	HCLK Rise/Fall Time	-	-	10	ns
tDIF	Delay between falling edge of HCLK and falling edge of CLK	-10	-	10	ns

NOTE:

1. To guarentee TX outputs remain in high-impedance.

Figure 9. RESET and ODE Timing

Figure 10. Serial Output and External Control

Figure 11. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS -MICROPROCESSOR INTERFACE TIMING

Symbol	Parameter		Min.	Typ.	Max.	Units
tcss	CS Setup from DS falling		0	-	-	ns
trws	R/W Setup from DS falling		3	-	-	ns
tads	Address Setup from DS falling		2	-	-	ns
tcSH	CS Hold after DS rising		0	-	-	ns
trwh	R/W Hold after DS Rising		3	-	-	ns
tadh	Address Hold after DS Rising		2	-	-	ns
todr	Data Setup from $\overline{\text { DTA }}$ LOW on Read		1	-	-	ns
tDHR	Data Hold on Read		10	15	25	ns
tosw	DataSetup on Write (Register Write)		10	-	-	ns
tswo	Valid Data Delay on Write (Connection Memory Write)		-	-	0	ns
tohw	Data Hold on Write		5	-	-	ns
takD	AcknowledgmentDelay: Reading/Writing Registers Reading/Writing Memory	@ 2.048Mb/s @ $4.096 \mathrm{Mb} / \mathrm{s}$ @ 8.192Mb/s or 16.384Mb/s			$\begin{gathered} 32 \\ 345 \\ 200 \\ 120 \\ \hline \end{gathered}$	ns ns ns ns
takh	Acknowledgment Hold Time		-	-	20	ns
toss	DataStrobe Setup Time		6	-	-	ns
tospw	DataStrobe Pulse Width High		28	-	-	ns

NOTE:

1. For quick microprocessor access tdss must be met. In this case takd = takd (max) - CLK (period) tdss.

Figure 12. Motorola Non-Multiplexed Bus Timing

Figure 13. Output Enable Indicator Timing (8.192Mb/s ST-BUS ${ }^{\circledR}$)

AC ELECTRICAL CHARACTERISTICS — SERIAL STREAM (ST-BUS ${ }^{\circledR}$ and GCI)

Symbol	Parameter	Min.	Typ.	Max.	Units
tsIS	RXSetup Time	4	-	-	ns
tSIH	RXHold Time	8	-	-	ns
tSOD	Clock to Valid Data	8	-	20	ns
tCHZ	Clock to High-Z	-	-	9	ns
tCLZ	Clock to Low-Z	3	-	-	ns
toDE	Output Driver Enable to Reset HIGH	5	-	-	ns
toDEHZ	Output Driver Enable (ODE) Delay	-	-	9	ns
toDELZ	OutputDriver Enable(ODE) to Low-Z	5	-	-	ns
toEl	OutputEnable Indicator	8	-	20	ns
tRZ	Active to High-Z on Master Reset	-	-	12	ns
tZR	High-Zto Active on Master Reset	-	-	12	ns
tRS	Resetpulsewidth	20	-	-	ns
toDEA	Output Drive Enable to Active	6	-	16	ns

NOTE:

ORDERINGINFORMATION

DATASHEET DOCUMENTHISTORY
08/14/2001 pgs.3,20,21,23,24, 26 and 27.
09/24/2001 pgs.11,21,23, 26 and 27.
12/19/2001
12/21/2001
03/26/2002
08/02/2002
05/27/2003
10/10/2003
06/21/2004
12/17/2012
pgs. 1-6, 8, 10-16, 19-23, and 25-29.
pgs. 1-3, 5, 6, 8, 14, 15, 17, 18, 20, 21-23 and 27.
pgs. 20 and 21.
pg. 8
pg. 21
pg. 1 and 4.
pgs. 24 and 25.
pg. 31

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: 1. For compatibility with the IDT72V73273/63 device, this pin should be logic High.
 2. For compatibility with the IDT72V73273/63 device, this pin should be logic Low.
