

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild <a href="general-regarding-numbers-n

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

November 2009

FDY4000CZ

Complementary N & P-Channel PowerTrench® MOSFET

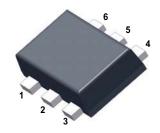
Features

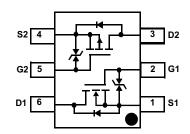
Q1: N-Channel

- Max $r_{DS(on)} = 0.7\Omega$ at $V_{GS} = 4.5V$, $I_D = 600$ mA
- Max $r_{DS(on)} = 0.85\Omega$ at $V_{GS} = 2.5V$, $I_D = 500$ mA
- Max $r_{DS(on)} = 1.25\Omega$ at $V_{GS} = 1.8V$, $I_{D} = 150$ mA

Q2: P-Channel

- Max $r_{DS(on)} = 1.2\Omega$ at $V_{GS} = -4.5V$, $I_D = -350$ mA
- Max $r_{DS(on)}$ = 1.6 Ω at V_{GS} = -2.5V, I_D = -300mA
- Max $r_{DS(on)} = 2.7\Omega$ at $V_{GS} = -1.8V$, $I_D = -150$ mA
- ESD protection diode (note 3)
- RoHS Compliant




General Description

This Complementary N & P-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench® process to optimize the $r_{DS(ON)}$ @ $V_{GS} \! = \! 2.5 V$ and specify the $r_{DS(ON)}$ @ $V_{GS} \! = \! 1.8 V$.

Applications

- Level shifting
- Power Supply Converter Circuits
- Load/Power Switching Cell Phones, Pagers

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V_{DS}	Drain to Source Voltage		20	-20	V
V_{GS}	Gate to Source Voltage		±12	±8	V
	Drain Current -Continuous (Note 1a		600	-350	mA
I _D	-Pulsed		1000	-1000	IIIA
P_		(Note 1a)) 625		mW
		(Note 1b)	446		IIIVV
T _J , T _{STG}	Operating and Storage Jaunting Temperature Range		-55 to 150		°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	200	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	280	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package Reel Size		Tape Width	Quantity
Е	FDY4000CZ	SC89-6	7"	8mm	3000units

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Off Chara	cteristics						
D	Drain to Source Breakdown Volt-	$I_D = 250 \mu A, V_{GS} = 0 V$	Q1	20			V
B _{VDSS}	age	$I_D = -250 \mu A$, $V_{GS} = 0 V$	Q2	-20			V
ΔB _{VDSS}	Breakdown Voltage Temperature	I _D = 250μA, referenced to 25°C	Q1		15		mV/°C
ΔT_{J}	Coefficient	I_D = -250 μ A, referenced to 25°C	Q2		-15		IIIV/ C
1	Zoro Coto Voltago Drain Current	V _{DS} = 16V, V _{DS} =0V	Q1			1	^
I _{DSS} Ze	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{DS} = 0V$	Q2			-3	μА
		$V_{GS} = \pm 12V, V_{DS} = 0V$	Q1			±10	
I_{GSS}	Gate-Body Leakage	$V_{GS} = \pm 4.5V, V_{DS} = 0V$	Q1			±1	μΑ
		$V_{GS} = \pm 8V, V_{DS} = 0V$	Q2			±10	

On Characteristics (note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, \ I_D = 250 \mu A$ $V_{GS} = V_{DS}, \ I_D = -250 \mu A$	Q1 Q2	0.6 -0.6	1.0 -1.0	1.5 -1.5	٧
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C I_D = -250 μ A, referenced to 25°C	Q1 Q2		-3 3		mV/°C
r _{DS(on)} Drain to Source O	Drain to Source On Resistance	V_{GS} = 4.5V, I_D = 600mA V_{GS} = 2.5V, I_D = 500mA V_{GS} = 1.8V, I_D = 150mA, V_{GS} = 4.5V, I_D = 600mA, T_J = 125°C	Q1		0.30 0.40 0.80 0.35	0.70 0.85 1.25 1.00	Ω
		V_{GS} = -4.5V, I_{D} =350mA V_{GS} = -2.5V, I_{D} = -300mA V_{GS} = -1.8V, I_{D} = -150mA V_{GS} = -4.5V, I_{D} = -350mA, T_{J} =125°C	Q2		0.5 0.8 1.3 0.7	1.2 1.6 2.7 1.6	
9FS	Forward Transconductance	$V_{DS} = 5V, I_{D} = 600 \text{mA}$ $V_{DS} = -5V, I_{D} = -350 \text{mA}$	Q1 Q2		1.8 1		S

Dynamic Characteristics

-					
C _{iss}	Input Capacitance	Q1 V _{DS} = 10V, V _{GS} = 0V, f = 1MHz	Q1 Q2	00 00	pF
C _{oss}	Output Capacitance	Q2	Q1 Q2	20 30	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10V, V_{GS} = 0V, f = 1MHz$	Q1 Q2	10 15	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = 10V, I _D = 1A,	Q1 Q2	6 6	12 12	ns
t _r	Rise Time	V_{GS} = 4.5V, R_g = 6Ω	Q1 Q2	8 13	16 23	ns
t _{d(off)}	Turn-Off Delay Time	Q2 V _{DD} = -10V, I _D = -0.5A,	Q1 Q2	8 8	16 16	ns
t _f	Fall Time	V_{GS} = -4.5V, R_g = 6Ω	Q1 Q2	2.4 1	4.8 2	ns
Q _g	Total Gate Charge	Q1	Q1 Q2	0.8 1.0	1.1 1.4	nC
Q _{gs}	Gate to Source Gate Charge	V_{DS} = 10V, I_{D} = 600mA, V_{GS} = 4.5V	Q1 Q2	0.16 0.2		nC
Q_{gd}	Gate to Drain "Miller" Charge	V_{DS} = -10V, I_{D} = -350mA, V_{GS} = -4.5V	Q1 Q2	0.26 0.3		nC

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V$, $I_S = 150mA$ (Note 2) $V_{GS} = 0V$, $I_S = -150mA$ (Note 2)	Q1 Q2	0.7 -0.8	1.2 -1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 600mA, di/dt = 100A/μs	Q1 Q2	8 11		ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = -350mA, di/dt = 100A/μs	Q1 Q2	1 2		nC

Notes

12 R_{0,IA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,IC} is guaranteed by design while R_{0,IA} is determined by the user's board design.

a) 200°C/W when mounted on a 1 in² pad of 2 oz copper

b) 280°C/W when mounted on a minimum pad of 2 oz copper

Scale 1:1 on letter size paper

- 2: Pulse Test: Pulse Width < 300us, Duty Cycle < 2.0%
- 3: The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

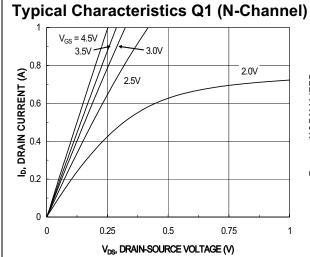
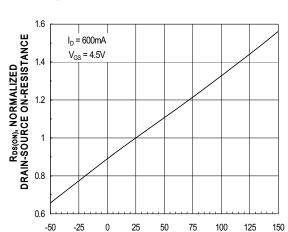



Figure 1. On-Region Characteristics

T,, JUNCTION TEMPERATURE (°C) Figure 3. Normalized on-Resistance vs. **Temperature**

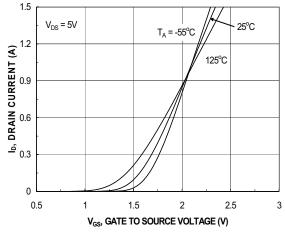
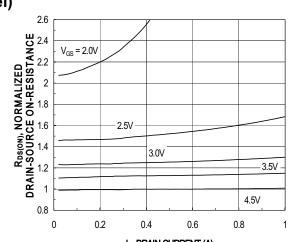



Figure 5. Transfer Characteristics

In DRAIN CURRENT (A) Figure 2. Normalized on-Resistance vs. Drain **Current and Gate Voltage**

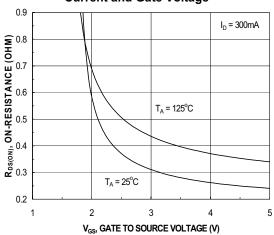


Figure 4. On-Resistance vs. Gate-to-Source Voltage

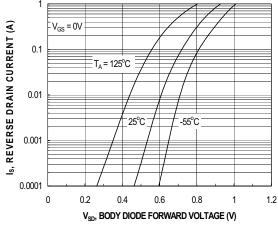
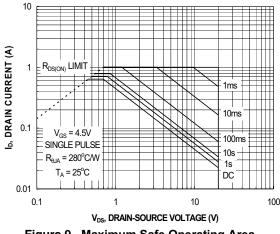



Figure 6. Source to Drain Diode Forward Voltage vs. Source Current and Temperature

Figure 8. Capacitance vs. Drain to source voltage

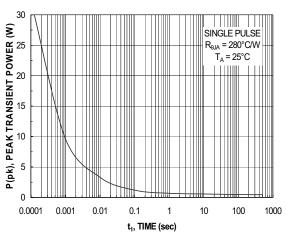


Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

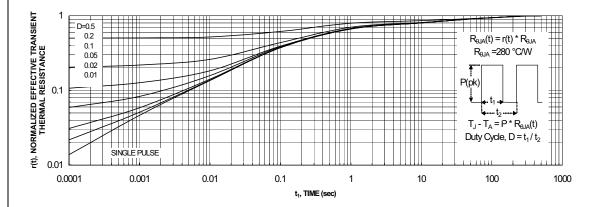


Figure 11. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Typical Characteristics Q2 (P-Channel) 1 0.8 4.0V -3.0V -1.8V -1.8V

Figure 12. On-Region Characteristics

0.5 -V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

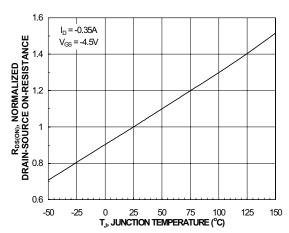


Figure 14. Normalized on-Resistance vs. Temperature

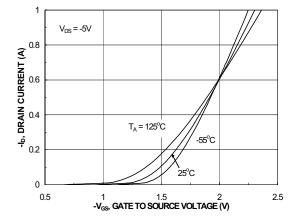


Figure 16. Transfer Characteristics

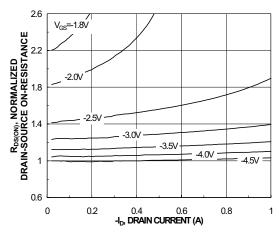


Figure 13. Normalized on-Resistance vs. Drain Current and Gate Voltage

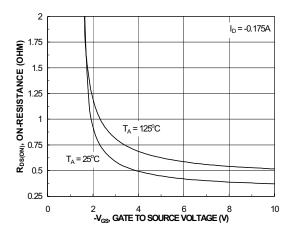


Figure 15. On-Resistance vs. Gate-to-Source Voltage

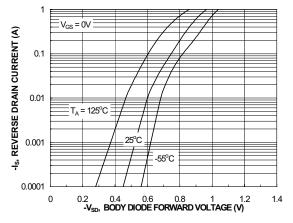


Figure 17. Source to Drain Diode Forward Voltage vs. Source Current and Temperature

Typical Characteristics Q2 (P-Channel)

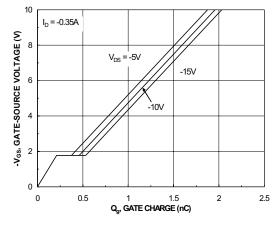


Figure 18. Gate Charge Characteristics

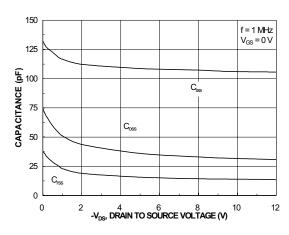


Figure 19. Capacitance vs. Drain to source voltage

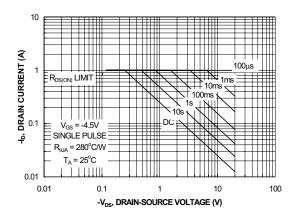


Figure 20. Maximum Safe Operating Area

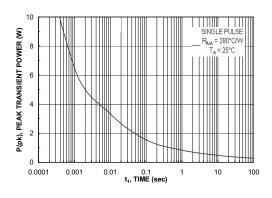


Figure 21. Single Pulse Maximum Power Dissipation

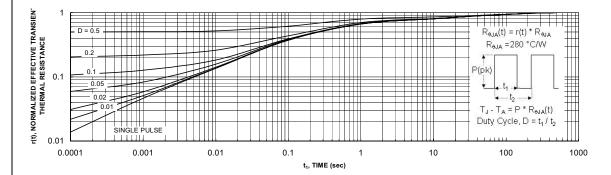


Figure 22. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Dimensional Outline and Pad Layout 1.70 1.50 A 0.50 _0.30 0.15 0.50 В 1.20 BSC 1.60 1.80 1.25 □ 0.1 C B A (0.20)0.30 0.50 1.00 **TOP VIEW** LAND PATTERN RECOMMENDATION _0.60 0.56 _0.18 0.10 SEE DETAIL A C 0.35 BSC 0.20 BSC **DETAIL A** 0.10 SCALE 2:1 **BOTTOM VIEW** NOTES: A) THIS PACKAGE CONFORMS TO EIAJ SC89 PACKAGING STANDARD. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DRAWING CONFORMS TO ASME Y14.5M-1994 D) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

MAD06ArevA

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™

EcoSPARK® EfficentMax™ EZSWITCH™*

Fairchild[®]

Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST® FastvCore™ FETBench™ FlashWriter® * F-PFS™ FRFET®

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET® OSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™

SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM ®' GENERAL

The Power Franchise®

bwer' franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriÉault Detect™ TRUECURRENT™*

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICYFAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I41

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDY4000CZ