Features

Regulated

Converter

Universal input voltage range

4kVAC isolation

Low output ripple and noise

• 60 Watt PCB mount package

Short circuit protected

Output trim

UL certified, CE marked

Power module for PCB mounting. This switching converter has a universal input voltage range with single outputs which are trimmable to compensate for any voltage drops on the output connections. Threaded inserts ensure mechanical fixing.

RAC60-B

60 Watt **Single Output**

Selection G	uide					
Part Number	Input Voltage Range [VAC]	Output Voltage [VDC]	Output Current [mA]	Efficiency typ. ⁽¹⁾ [%]	Max. Capacitiv Load [μF]	e Output Power max[W]
RAC60-05SB	85 - 265	5-	10000	82	80000	50
RAC60-09SB	85 - 265	9	6600	84	28000	60
RAC60-12SB	85 - 265	12	5000	86	14000	60
RAC60-15SB	85 - 265	15	4000	86	12000	60
RAC60-24SB	85 - 265	24	2500	86	4000	60
RAC60-48SB	85 - 265	48	1250	86	950	60

Notes:

Note1: Efficiency is tested at nominal input and full load at +25°C ambient

Model Numbering

Ordering Examples:

RAC60-05SB 60 Watt 5Vout Single Output RAC60-24SB 60 Watt 24Vout Single Output UL60950-1 certified EN60950-1 certified CAN/CSA-C22.2 No. 60950-1 certified EN55032 compliant EN55024 compliant

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

BASIC CHARACTERISTICS					
Parameter	Co	ndition	Min.	Тур.	Max.
Input Voltage Range (2)	nom. Vi	n = 230VAC	85VAC 100VDC	230VAC	265VAC 370VDC
Input Current		15VAC 30VAC			2A 1A
Inrush Current	2ms max., cold start	115VAC 230VAC			30A 50A
No load Power Consumption	115VA	AC/230VAC			520mW
Input Frequency Range	А	C Input	47Hz		63Hz
Output Voltage Trimming	please refer to Trim table		-10%		+10%
Minimum Load			1%		
Hold-up Time	115V/	AC/230VAC	10ms		
Internal Operating Frequency				100kHz	
Output Ripple and Noise (3)	20M	Hz limited			% Vout + 50mVp-p % Vout + 40mVp-p

Notes:

Note2: The products were submitted for safety files at AC-Input operation

Note3: Measurements are made with a 0.1µF and 47µF MLCC in parallel across output (low ESR)

Output Voltage Trimming

It allows the user to increase or decrease the output voltage of the module. This is accomplished by connecting an external resistor between the Trim pin and either the +Vout or -Vout pins. With an external resistor between the Trim and -Vout pin, the output voltage increases. With an external resistor between the Trim and +Vout pin, the output voltage decreases. The values for trim resistors shown in trim tables below, the specified percentage may slightly vary.

5V	out	9V	out	12\	/out	15\	/out	24\	/out	48\	√out	
+10	100	+10	100	+10	100	+10	100	+10	100	+10	100	[%]
500	1M	6k	1M	4k	1M	5k	1M	12k	1M	12k	1M	[Ω]
5V	out	9V	out	12\	/out	15\	/out	24\	/out	48\	Vout	
100	-10	100	-10	100	-10	100	-10	100	-10	100	-10	[%]
1M	500	1M	20k	1M	40k	1M	60k	1M	110k	10M	290k	[Ω]
	+10 500 5V	500 1M 5Vout 100 -10	+10 100 +10 500 1M 6k 5Vout 9V 100 -10 100	+10 100 +10 100 500 1M 6k 1M 5Vout 9Vout 100 -10 100 -10	+10 100 +10 100 +10 500 1M 6k 1M 4k 5Vout 9Vout 12V 100 -10 100 -10 100	+10 100 +10 100 +10 100 500 1M 6k 1M 4k 1M 5Vout 9Vout 12Vout 100 -10 100 -10	+10 100 +10 100 +10 100 +10 500 1M 6k 1M 4k 1M 5k 5Vout 9Vout 12Vout 15Vout 15Vout 100 -10 100 -10 100	+10 100 +10 100 +10 100 +10 100 500 1M 6k 1M 4k 1M 5k 1M 5Vout 9Vout 12Vout 15Vout 15Vout 100 -10 100 -10 </td <td>+10 100 +10 100 +10 100 +10 100 +10 500 1M 6k 1M 4k 1M 5k 1M 12k 5Vout 9Vout 12Vout 15Vout 24V 100 -10 100 -10 100 -10 100</td> <td>+10 100 +10 100 +10 100 +10 100 +10 100 500 1M 6k 1M 4k 1M 5k 1M 12k 1M 5Vout 9Vout 12Vout 15Vout 24Vout 100 -10 100 -10 100 -10</td> <td>+10 100 +10 100 +10 100 +10 100 +10 100 +10 500 1M 6k 1M 4k 1M 5k 1M 12k 1M 12k 5Vout 9Vout 12Vout 15Vout 24Vout 48V 100 -10 100 -10 100 -10 100</td> <td>+10 100 -10 100 -10</td>	+10 100 +10 100 +10 100 +10 100 +10 500 1M 6k 1M 4k 1M 5k 1M 12k 5Vout 9Vout 12Vout 15Vout 24V 100 -10 100 -10 100 -10 100	+10 100 +10 100 +10 100 +10 100 +10 100 500 1M 6k 1M 4k 1M 5k 1M 12k 1M 5Vout 9Vout 12Vout 15Vout 24Vout 100 -10 100 -10 100 -10	+10 100 +10 100 +10 100 +10 100 +10 100 +10 500 1M 6k 1M 4k 1M 5k 1M 12k 1M 12k 5Vout 9Vout 12Vout 15Vout 24Vout 48V 100 -10 100 -10 100 -10 100	+10 100 -10 100 -10

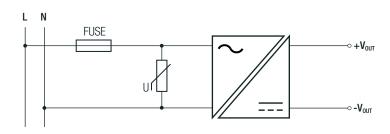
REGULATIONS				
Parameter	Condition	Value		
Output Accuracy		±2.0% max.		
Line Regulation	low line to high line, full load	±1.0% typ.		
Load Regulation (4)	5% to 100% load	1.0% typ.		

Notes:

Note4: Operation below 5% load will not harm the converter, but specifications may not be met

Series

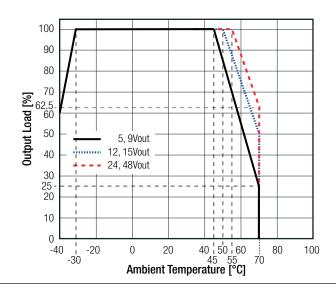
Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)


PROTECTIONS			
Parameter		Туре	Value
Short Circuit Protection (SCP)			continuous, hiccup, auto recovery
Over Voltage Protection (OVP)			zener diode clamp
Over Current Protection (OCP)			auto recovery
Over Voltage Category			OVCII
Isolation Voltage	I/P to O/P	tested for 1 minute	4kVAC
Isolation Resistance			100M Ω max.
Leakage Current			0.5mA max.

Notes:

Note5: Refer to local safety regulations if input over-current protection is also required. Recommended fuse: slow blow type

Note6: An external MOV is recommended. The varistor should comply with IEC-61051-2. e.g. 14S471K series


Protection Circuit

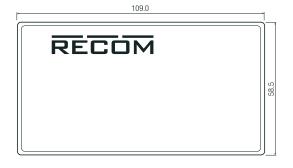
ENVIRONMENTAL				
Parameter		Condition		Value
			5, 9Vout	-30°C to +45°C
On anating Tanananatura Banana	@ natural convection	full load	12, 15Vout	-30°C to +50°C
Operating Temperature Range	0.1m/s		24, 48Vout	-30°C to +55°C
		refer to derating graph		-40°C to +70°C
Temperature Coefficient				0.02%/K typ.
Operating Altitude				2000m
Pollution Degree				PD2
MTBF	according to MIL-I	HDBK-217F, G.B.	+25°C	>300 x 10 ³ hours

Derating Graph

(@ Chamber and natural convection 0.1 m/s)

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)


SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)	Report / File Number	Standard
Information Technology Equipment, General Requirements for Safety	E196683	UL60950-1, 2nd Edition, 2007 CAN/CSA-C22.2 No. 60950-1-07, 2nd Edition, 2007
Information Technology Equipment, General Requirements for Safety		EN60950-1:2006 + A2:2013
EAC Safety of Low Voltage Equipment	RU-AT.49.09571	TP TC 004/2011
RoHS2+		RoHS-2011/65/EU + AM-2015/863
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment – Emission Requirements		EN55032:2015
Information technology equipment - Immunity characteristics - Limits and methods of measurement		EN55024:2010 + A1:2015
Limitation of voltage fluctuations/flicker in low-voltage systems		EN61000-3-3: 2013

DIMENSION AND PHYSICAL CHARACTER	ISTICS	
Parameter	Туре	Value
Material	case	epoxy with fibreglas, (UL94V-0)
Dimension (LxWxH)		109.0 x 58.5 x 30.0mm
Weight		310g typ.

Dimension Drawing (mm)

0.5 M3		 ø1.8

Pin#	Single	Dia. (mm)
1	FG	1.2
2	VAC in (L)	1.8
3	VAC in (N)	1.8
4	Trim	1.2
5	-VDC out	1.8
6	+VDC out	1.8

 $\begin{aligned} \text{FC} &= \text{Fixing Centers} \\ \text{Tolerance:} \quad & \text{xx.x} \pm 0.5 \text{mm} \\ & \text{xx.xx} \pm 0.25 \text{mm} \end{aligned}$

Pinning information

			0.0
		FC 96.32	6.1
10.16 19.05 13.70	· · · 1	Bottom View	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. +	-03		<u>M3</u>
	-	FC 97.3	5.85

	Recommended Footprint Deta	
	 	
. 7		
' ‡	♦ 3	
- 1		
1		
- 1	Top View	6 0
- #		5 ♦
-		
-		4 0
- ‡		
-	<u>·┝┝┽┩╕╒┝┾┥┥╕╒┝┼┩╕╒┝┾┥┩╕╒┝┾┽┩╕╒┝┼┥</u>	

Series

Specifications (measured @ Ta= 25°C, nom. Vin, full load and after warm-up unless otherwise stated)

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	cardboard box	120.0 x 65.0 x 55.0mm
Packaging Quantity		1pcs
Storage Temperature Range		-50°C to +85°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.

www.recom-power.com REV.: 1/2019 PA-5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

RECOM:

RAC60-05SB RAC60-09SB RAC60-12SB RAC60-15SB RAC60-24SB RAC60-48SB