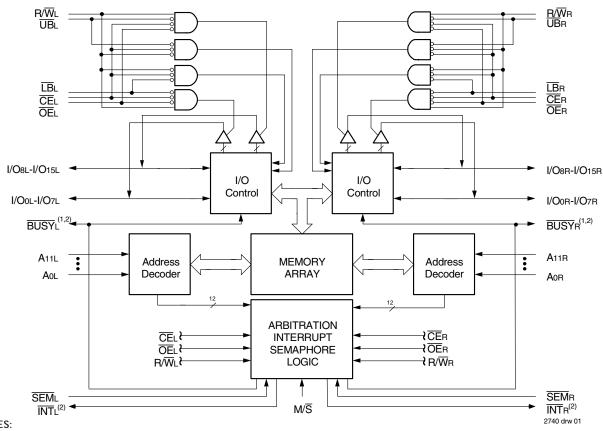


HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM


Features

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- High-speed access
 - Commercial: 15/17/20/25/35/55ns (max.)

Functional Block Diagram

- Industrial: 20ns (max.)
- Military: 20/25/35/55/70ns (max.)
- Low-power operation
 - IDT7024S Active: 750mW (typ.)
 - Standby: 5mW (typ.) – IDT7024L Anthone 750 and (typ.)
 - Active: 750mW (typ.)
 - Standby: 1mW (typ.)
- Separate upper-byte and lower-byte control for multiplexed bus compatibility

- IDT7024 easily expands data bus width to 32 bits or more using the Master/Slave select when cascading more than one device
- M/S = H for BUSY output flag on Master M/S = L for BUSY input on Slave
- Interrupt Flag
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- Battery backup operation—2V data retention
- TTL-compatible, single 5V (±10%) power supply
- Available in 84-pin PGA, Flatpack, PLCC, and 100-pin Thin Quad Flatpack
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

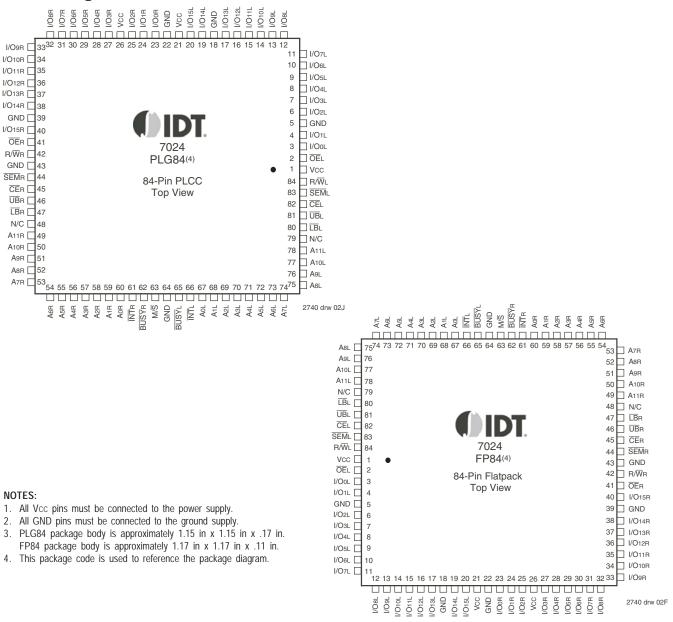
NOTES:

1. (MASTER): BUSY is output; (SLAVE): BUSY is input.

2. BUSY outputs and INT outputs are non-tri-stated push-pull.

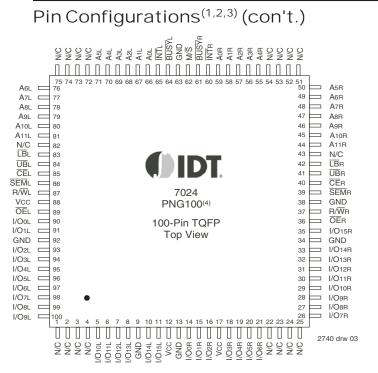
Feb.20.20

Description


The IDT7024 is a high-speed 4Kx 16 Dual-Port Static RAM. The IDT7024 is designed to be used as a stand-alone 64K-bit Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 32-bit or more word systems. Using the IDTMASTER/SLAVE Dual-Port RAM approach in 32-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

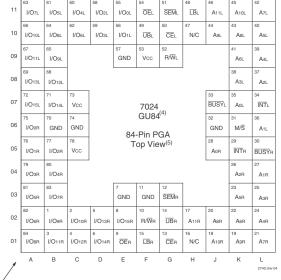
This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by chip enable (\overline{CE}) permits the on-chip circuitry of each

port to enter a very low standby power mode.


Fabricated using CMOS high-performance technology, these devices typically operate on only 750mW of power. Low-power (L) versions offer battery backup data retention capability with typical power consumption of 500μ W from a 2V battery.

The IDT7024 is packaged in a ceramic 84-pin PGA, an 84-pin Flatpack and PLCC, and a 100-pin TQFP. Military grade product is manufactured in compliance with the latest revision of MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)


NOTES:

1. All Vcc pins must be connected to the power supply.

2. All GND pins must be connected to the ground supply.

3. PNG100 package body is approximately 14mm x 14mm x 1.4mm.

4. This package code is used to reference the package diagram.

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. GU84 package body is approximately 1.12 in x 1.12 in x .16 in.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names
Ē	CE R	Chip Enable
R/WL	R/WR	Read/Write Enable
OEL	ŌĒR	Output Enable
Aol - A11l	Aor - A11r	Address
1/Ool - 1/O15l	1/00r - 1/015r	Data Input/Output
SEML	SEM R	Semaphore Enable
ŪBL	ŪBR	Upper Byte Select
ĹΒL	LB R	Lower Byte Select
ĪNTL	ĪNTR	Interrupt Flag
BUSYL	BUSYR	Busy Flag
	w/s	Master or Slave Select
,	Vcc	Power
(GND	Ground
		2740 tbl 01

$\label{eq:maximum} \begin{array}{l} Maximum \, Operating \, Temperature \\ and \, Supply \, Voltage^{(1)} \end{array}$

Grade	Ambient Temperature	GND	Vcc
Military	-55°C to +125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%
NOTE:			2740 tbl 02

1. This is the parameter TA. This is the "instant on" case temperature.

Military, Industrial and Commercial Temperature Ranges

2740 tbl 03

2740 tbl 04

Truth Table I: Non-Contention Read/Write Control

		Inpu	uts ⁽¹⁾			Out	puts	
ĈĒ	R/₩	ŌĒ	ŪB	LB	SEM	I/O8-15	I/O0-7	Mode
Н	Х	Х	Х	Х	Н	High-Z	High-Z	Deselcted: Power-Down
Х	Х	Х	Н	Н	Н	High-Z	High-Z	Both Bytes Deselected
L	L	Х	L	Н	Н	DATAIN	High-Z	Write to Upper Byte Only
L	L	Х	Н	L	Н	High-Z	DATAIN	Write to Lower Byte Only
L	L	Х	L	L	Н	DATAIN	DATAIN	Write to Both Bytes
L	Н	L	L	Н	Н	DATAOUT	High-Z	Read Upper Byte Only
L	Н	L	Н	L	Н	High-Z	DATAOUT	Read Lower Byte Only
L	Н	L	L	L	Н	DATAOUT	DATAOUT	Read Both Bytes
Х	Х	Н	Х	Х	Х	High-Z	High-Z	Outputs Disabled

NOTE:

1. AOL — A11L \neq AOR — A11R

Truth Table II: Semaphore Read/Write Control⁽¹⁾

		Inpu	uts ⁽¹⁾			Out	puts	
CE ⁽²⁾	R/₩	ŌĒ	ŪB	ĹΒ	SEM	I/O8-15	I/O0-7	Mode
Н	Н	L	Х	Х	L	DATAOUT	DATAOUT	Read Semaphore Flag Data Out
Х	Н	L	Н	Н	L	DATAOUT	DATAOUT	Read Semaphore Flag Data Out
Н	Ŷ	Х	Х	Х	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
Х	Ŷ	Х	Н	Н	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
L	Х	Х	L	Х	L			Not Allowed
L	Х	Х	Х	L	L			Not Allowed

NOTE:

1. There are eight semaphore flags written to via I/O₀ and read from all of the I/O's (I/O₀ - I/O₁₅). These eight semaphores are addressed by A₀ - A₂.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Military	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Tbias	Temperature Under Bias	-55 to +125	-65 to +135	٥C
Tstg	Storage Temperature	-65 to +150	-65 to +150	٥C
Ιουτ	DC Output Current	50	50	mA
NOTEC				2740 tbl 05

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc +10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period over VTERM \geq Vcc + 10%.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
Vih	Input High Voltage	2.2		6.0 ⁽²⁾	V
Vil	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V
					2740 tbl 06

NOTES:

1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 10%.

Capacitance (TA = +25°C, f = 1.0MHz)⁽¹⁾ Conditions⁽²⁾ Symbol Parameter Max. Unit Cin Input Capacitance VIN = 3dV9 рF Соит **Output Capacitance** VOUT = 3dV 10 рF 2740 tbl 07

NOTES:

1. This parameter are determined by device characterization, but is not production tested.

2. 3dV references the interpolated capacitance when the input and output signals switch from OV to 3V or from 3V to OV.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%)

			702	24S	702		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
Lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc	-	10		5	μA
Ilo	Output Leakage Current	$\overline{CE} = VIH$, Vout = 0V to Vcc	_	10		5	μA
Vol	Output Low Voltage	IOL = +4mA	_	0.4	_	0.4	V
Vон	Output High Voltage	Iон = -4mA	2.4	_	2.4		V
NOTE							2740 tbl 08

NOTE:

1. At Vcc < 2.0V input leakages are undefined.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾ ($Vcc = 5.0V \pm 10\%$)

						7024X15 Com'l Only		7024X17 Com'l Only		7024X20 Com'l, Ind & Military		7024X25 Com'l & Military		
Parameter	Test Condition	Versio	n	Тур. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Тур. ⁽²⁾	Max.	Тур. ⁽²⁾	Max.	Unit		
Dynamic Operating Current (Roth Darts Activo)	Ports Active) $\begin{array}{c} Outputs \ Disabled \\ SEM = V_{H} \\ f = f_{MAX}^{(3)} \end{array}$	COM'L	S L	170 170	310 260	170 170	310 260	160 160	290 240	155 155	265 220	mA		
(BOIT POILS ACTIVE)		MIL & IND	S L					160 160	370 320	155 155	340 280			
Standby Current (Both Ports - TTL	$\label{eq:entropy_state} \begin{split} \overline{\underline{C}} \overline{\underline{E}}_R &= \overline{\overline{C}} \overline{\underline{E}}_L = V_{IH} \\ \overline{S} \overline{\underline{E}} \overline{M}_R &= \overline{S} \overline{\underline{E}} \overline{M}_L = V_{IH} \\ f &= f_{MAX} x^{(5)} \end{split}$	COM'L	S L	20 20	60 50	20 20	60 50	20 20	60 50	16 16	60 50	mA		
Level Inputs)		MIL & IND	S L					20 20	90 70	16 16	80 65			
(One Port - TTL A	$\begin{array}{llllllllllllllllllllllllllllllllllll$	COM'L	S L	105 105	190 160	105 105	190 160	95 95	180 150	90 90	170 140	mA		
		MIL & IND	S L					95 95	240 210	90 90	215 180			
Full Standby Current (Both Ports -	Both Ports \overline{CE}_{L} and $\overline{CE}_{R} \ge Vcc - 0.2V$,	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	mA		
Civios Level Inpuls)	$V_{IN} < 0.2V$, f = 0 ⁽⁴⁾	MIL & IND	S L					1.0 0.2	30 10	1.0 0.2	30 10			
Full Standby Current (One Port - $\overline{CE}^{*}A^* \leq 0.2V$ and $\overline{CE}^{*}B^* > Vcc - 0.2V^{(5)}$	$\overline{CE}B^* > Vcc - 0.2V^{(5)}$	COM'L	S L	100 100	170 140	100 100	170 140	90 90	155 130	85 85	145 120	mA		
CMOS Level inputs)	Vin <u>></u> Vcc - 0.2 V or Vin <u><</u> 0.2V	MIL & IND	S L	_	-	_		90 90	225 200	85 85	200 170			
	Dynamic Operating Current (Both Ports Active) Standby Current (Both Ports - TTL Level Inputs) Standby Current (One Port - TTL Level Inputs) Full Standby Current (Both Ports - CMOS Level Inputs) Full Standby Current	Dynamic Operating Current (Both Ports Active) $\overline{CE} = VIL,$ Outputs Disabled $\overline{SEM} = VIH$ $f = fMAX^{(3)}$ Standby Current (Both Ports - TTL Level Inputs) $\overline{CE_R} = \overline{CE_L} = VIH$ $\overline{SEMR} = \overline{SEML} = VIH$ $f = fMAX^{(3)}$ Standby Current (One Port - TTL Level Inputs) $\overline{CE_R} = \overline{CE_L} = VIH$ $\overline{SEMR} = SEML = VIH$ $f = fMAX^{(3)}$ Standby Current (One Port - TTL Level Inputs) $\overline{CE_R} = VIL$ and $\overline{CE_B}^* = VIH^{(5)}$ $Active Port Outputs Disabled,f=fMAX^{(3)}Full Standby Current(Both Ports -CMOS Level Inputs)Both Ports \overline{CE} and\overline{CE_R} \ge Vcc - 0.2V,VIN \ge Vcc - 0.2V orVIN \ge Vcc - 0.2VFull Standby Current(One Port -CMOS Level Inputs)\overline{CE_R} \le Vcc - 0.2V\overline{SEMR} = \overline{SEML} \ge Vcc - 0.2VFull Standby Current(One Port -CMOS Level Inputs)\overline{CE_R} \le 0.2V and\overline{CE_B}^* \ge Vcc - 0.2V\overline{VIN} \ge Vcc - 0.2VFull Standby Current(One Port -CMOS Level Inputs)\overline{CE_R}^* \le 0.2V and\overline{CE_B}^* \ge Vcc - 0.2V\overline{VIN} \ge Vcc - 0.2V$		$ \begin{array}{c c} \mbox{Dynamic Operating Current (Both Ports Active)} & \hline \overline{CE} = VIL, \\ \mbox{Outputs Disabled SEM = VH} & \hline COM'L & L \\ \hline \mbox{Subsection} & S \\ \hline \mbox{Sem VH} & f = f_{MAX}^{(6)} & \hline \mbox{ND} & L \\ \hline \mbox{Simple Sem VH} & f = f_{MAX}^{(6)} & \hline \mbox{Sem VH} & F \\ \hline \mbox{Simple Sem VH} & \overline{CE_R} = \overline{CE_L} = V_{H} & \hline \mbox{Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML = V_{H} & \hline \mbox{Simple Sem R} = SEML \geq Vcc \cdot 0.2V, & \hline \mbox{ND } & L & \hline \mbox{Simple Sem R} = SEML \geq Vcc \cdot 0.2V & \hline \mbox{ND } & L & \hline \mbox{Simple Sem R} = SEML \geq Vcc \cdot 0.2V & \hline \mbox{ND } & L & \hline \mbox{Simple Sem R} = SEML \geq Vcc \cdot 0.2V & \hline \mbox{ND } & L & \hline \mbox{ND } & L & \hline \mbox{Simple Sem R} = SEML \geq Vcc \cdot 0.2V & \hline \mbox{ND } & L & \hline \mbox{ND } & L & \hline \mbox{ND } & L & \hline \mbox{Simple Sem R} = SEML \geq Vcc \cdot 0.2V & \hline \mbox{ND } & L & \hline ND $	ParameterTest ConditionVersionTyp. (2)Dynamic Operating Current (Both Ports Active) $\overline{CE} = V_{IL}$ Outputs Disabled SEM = V H f = fMax ⁽³⁾ $COM'L \ S \\ MIL \& S \\$ 170Standby Current (Both Ports - TTL Level Inputs) $\overline{CE}_R = \overline{CE}_L = V_{IH}$ SEMR = SEML = V H f = fMax ⁽³⁾ $COM'L \ S \\ 20$ 20Standby Current (Both Ports - TTL Level Inputs) $\overline{CE}_R = \overline{CE}_L = V_{IH} \\ \overline{SEMR} = SEML \\ \overline{SEMR} = SEML \\ \overline{SEMR} = SEML \\ \overline{SEMR} = SEML $	ParameterTest ConditionVersionTyp. (?)Max.Dynamic Operating Current (Both Ports Active) $\overline{CE} = VIL$, Outputs Disabled SEM = VIH f = fMAX^{(3)} $\overline{COM'L}$ S 170310Standby Current (Both Ports - TTL Level Inputs) $\overline{CER} = \overline{CEL} = VIH$ SEMR = SEML = VIH f = fMAX^{(3)} $\overline{COM'L}$ S 20 60MIL & S ND $$ $$ $$ $$ $$ Standby Current (Both Ports - TTL Level Inputs) $\overline{CER} = \overline{CEL} = VIH$ SEMR = SEML = VIH f = fMAX^{(3)} $\overline{COM'L}$ S 2060MIL & S (One Port - TTL Level Inputs) $\overline{CER} = VIL$ and $\overline{CER} = VIH^{(5)}$ Active Port Outputs Disabled, f=fMAX^{(6)} $\overline{COM'L}$ S 105190Standby Current (One Port - TTL Level Inputs) $\overline{CER} = VIL$ and $\overline{CER} = VIH^{(6)}$ SEMR = SEML = VIH $\overline{COM'L}$ S 1.0 15Standby Current (Both Ports - CMOS Level Inputs)Both Ports \overline{CEL} and $\overline{CER} \ge Vcc - 0.2V$ or $VIN \ge 0.2V, f = 0^{(4)}$ SEMR = SEML $\ge Vcc - 0.2V$ $\overline{COM'L}$ S 1.0 15Full Standby Current (One Port - CMOS Level Inputs) $\overline{CER} < 0.2V$ and $\overline{CER} \ge Vcc - 0.2V orVIN \ge Vcc - 0.2V\overline{COM'L}S100170Full Standby Current(One Port -CMOS Level Inputs)\overline{CER} \times 0.2V and\overline{CER} \ge Vcc - 0.2V orVIN \ge Vcc - 0.2V orVIN \ge Vcc - 0.2V orVIN \ge Vcc - 0.2V\overline{COM'L}S100170M$	Parameter Test Condition Version Typ. ⁽²⁾ Max Typ. ⁽²⁾ Dynamic Operating Current (Both Ports Active) $\overline{CE} = V_{IL}$ Outputs Disabled SEM = V_H f = fmax ⁽³⁾ $COM'L$ S mill & S model 170 310 170 Standby Current (Both Ports - TTL Level Inputs) $\overline{CE}_R = \overline{CE}_L = V_H$ SEMR = SEML = V/H f = fmax ⁽³⁾ $COM'L$ S mill & S model 20 60 20 Standby Current (Both Ports - TTL Level Inputs) $\overline{CE}_R = \overline{CE}_H = V_H$ SEMR = SEML = V/H f = fmax ⁽³⁾ $COM'L$ S mill & S model 20 60 20 Standby Current (One Port - TTL Level Inputs) $\overline{CE}_R^* = V_{IL and \overline{CE}_B^* = V_H f^{(3)}$ Active Port Outputs Disabled, f=fmax ⁽³⁾ SEMR = SEML = V/H $COM'L$ S mill & S model 105 190 105 Standby Current (One Port - TTL Level Inputs) Both Ports \overline{CE}_L and $\overline{CE}_R \ge V_{CC} - 0.2V$ or $V_N \ge 0.2V$ or 0.2V or $V_N \le 0.2V$ Active Port Outputs Disabled, $V_N \ge 0.2V$ or 0.2V or $V_N \le 0.2V$ $V_N \ge 0.2V$ or 0.2V or $V_N \le 0$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter Test Condition Version Typ. ⁽²⁾ Max Typ. ⁽²⁾	Parameter Test Condition Version Typ. ⁽²⁾ Max. Typ. ⁽²⁾	Parameter $\mathbf{Version}$ $\mathbf{Version}$ $\mathbf{Version}$ $\mathbf{Version}$ \mathbf{Max} \mathbf{Vy} \mathbf{Max} <th c<="" td=""><td>Parameter Test Condition Version $\overline{Upp.^{(2)}}$ Max Typ.⁽²⁾ Typ.⁽²⁾ Max Typ.⁽²⁾ Max Typ.⁽²⁾ Max Typ.⁽²⁾ Max Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Max Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Max <th colspa<="" td=""></th></td></th>	<td>Parameter Test Condition Version $\overline{Upp.^{(2)}}$ Max Typ.⁽²⁾ Typ.⁽²⁾ Max Typ.⁽²⁾ Max Typ.⁽²⁾ Max Typ.⁽²⁾ Max Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Max Typ.⁽²⁾ Typ.⁽²⁾ Typ.⁽²⁾ Max <th colspa<="" td=""></th></td>	Parameter Test Condition Version $\overline{Upp.^{(2)}}$ Max Typ. ⁽²⁾ Typ. ⁽²⁾ Max Typ. ⁽²⁾ Max Typ. ⁽²⁾ Max Typ. ⁽²⁾ Max Typ. ⁽²⁾ Typ. ⁽²⁾ Typ. ⁽²⁾ Typ. ⁽²⁾ Max Typ. ⁽²⁾ Typ. ⁽²⁾ Typ. ⁽²⁾ Max <th colspa<="" td=""></th>	

NOTES:

1. 'X' in part number indicates power rating (S or L)

2. Vcc = 5V, TA = +25°C, and are not production tested. Icc pc = 120mA (TYP.)

3. At f = fMAX, address and I/O's are cycling at the maximum frequency read cycle of 1/trc, and using "AC Test Conditions" of input levels of GND to 3V.

4. f = 0 means no address or control lines change.

5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾ (con't.) ($Vcc = 5.0V \pm 10\%$)

					7024 Com Mili	n'l &	7024 Com' & Mil	, Ind	7024 Military		
Symbol	Parameter	Test Condition	Versi	on	Тур. ⁽²⁾	Max.	Тур. ⁽²⁾	Мах.	Тур. ⁽²⁾	Max.	Uni
lcc	Dynamic Operating Current (Both Ports Active)	CE = VIL, Outputs Disabled SEM = V⊮	COM'L	S L	150 150	250 210	150 150	250 210			m/
	(Duil Fulls Active)	$f = f_{MAX}^{(3)}$	MIL & IND	S L	150 150	300 250	150 150	300 250	140 140	300 250	
ISB1	Standby Current (Both Ports - TTL	$\frac{\overline{CE}_{R} = \overline{CE}_{L} = V_{H}}{\overline{SEM}_{R} = \overline{SEM}_{L} = V_{H}}$ $f = f_{MAX}^{(3)}$	COM'L	S L	13 13	60 50	13 13	60 50			m
	Level Inputs) $f = f_{MAX}^{(0)}$	MIL & IND	S L	13 13	80 65	13 13	80 65	10 10	80 65		
ISB2	Standby Current (One Port - TTL Level Inputs)	$\overline{CE}_{A^*} = V_{IL}$ and $\overline{CE}_{B^*} = V_{H^{(5)}}$ Active Port Outputs Disabled,	COM'L	S L	85 85	155 130	95 95	155 130	_		m
	Level inputs)	$\frac{f=f_{MA}x^{(3)}}{\overline{SEMR}} = \overline{SEML} = V_{IH}$	MIL & IND	S L	85 85	190 160	95 95	190 160	80 80	190 160	
ISB3	Full Standby Current (Both Ports -	Both Ports \overline{CE}_{\perp} and $\overline{CE}_{R} \ge Vcc - 0.2V$,	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5			m
	$ \begin{array}{l} \mbox{CMOS Level Inputs)} & \mbox{V} \mbox{N} \geq \mbox{Vcc} - 0.2 \mbox{V or} \\ \mbox{V} \mbox{N} \leq 0.2 \mbox{V}, f = 0^{(4)} \\ \mbox{SEMR} = \mbox{SEML} \geq \mbox{Vcc} - 0 \end{array} $		MIL & IND	S L	1.0 0.2	30 10	1.0 0.2	30 10	1.0 0.2	30 10	
ISB4	Full Standby Current (One Port -	$\overline{CE}"B" > Vcc - 0.2V^{(5)}$	COM'L	S L	80 80	135 110	80 80	135 110			m
	CMOS Level Inputs)		MIL & IND	S L	80 80	175 150	80 80	175 150	75 75	175 150	1

2740 tbl 09b

NOTES:

1. 'X' in part number indicates power rating (S or L) 2. Vcc = 5V, TA = $+25^{\circ}$ C, and are not production tested.

3. At f = fMAX, address and I/O's are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.

4. f = 0 means no address or control lines change.

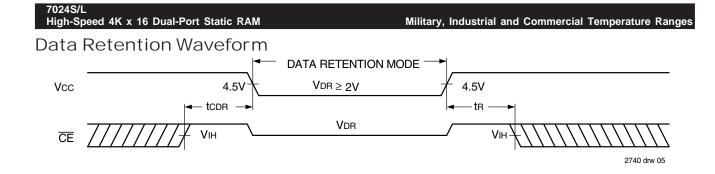
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

Data Retention Characteristics Over All Temperature Ranges (L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)⁽⁴⁾

Symbol	Parameter	Test Condit	ion	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	Vcc for Data Retention	Vcc = 2V	2.0	—	_	V	
ICCDR	Data Retention Current	CE ≥ VHC	MIL. & IND.	_	100	4000	μA
		$V_{IN} \ge V_{HC} \text{ or } \le V_{LC}$	COM'L.	_	100	1500	
tcdr ⁽³⁾	Chip Deselect to Data Retention Time	SEM > VHC		0	_	_	ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	—	_	ns

2740 thl 10

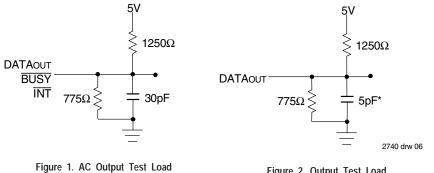
NOTES:

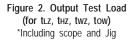

1. TA = +25°C, Vcc = 2V, and are by device characterization but are not production tested.

2. tRC = Read Cycle Time

3. This parameter is guaranteed but not tested.

4. At Vcc < 2.0V, input leakages are not defined.





AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2

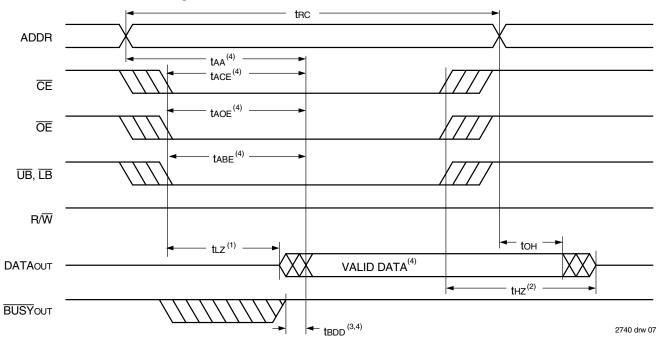
2740 tbl 11

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁴⁾

			7024X15 Com'l Only		7024X17 Com'l Only		4X20 'I, Ind ilitary	7024X25 Com'l & Military			
Symbol	Parameter	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit	
READ CYCLI	E						-		-		
trc	Read Cycle Time	15	—	17		20	_	25	_	ns	
taa	Address Access Time		15	-	17		20	-	25	ns	
tace	Chip Enable Access Time ⁽³⁾		15	-	17	_	20	_	25	ns	
tabe	Byte Enable Access Time ⁽³⁾		15	_	17	_	20	—	25	ns	
taoe	Output Enable Access Time		10	_	10	-	12	_	13	ns	
тон	Output Hold from Address Change	3	—	3		3	_	3	_	ns	
tLZ	Output Low-Z Time ^(1,2)	3	—	3		3	_	3	_	ns	
tHZ	Output High-Z Time ^(1,2)		10	-	10	_	12	_	15	ns	
tPU	Chip Enable to Power Up Time ^(1,2)	0	-	0	—	0	_	0	-	ns	
tpd	Chip Disable to Power Down Time ^(1,2)		15	_	17		20	—	25	ns	
tsop	Semaphore Flag Update Pulse (OE or SEM)	10	—	10		10	—	10	—	ns	
tsaa	Semaphore Address Access ⁽³⁾		15		17		20		25	ns	

		Con	4X35 n'I & itary	Com	4X55 'I, Ind litary		4X70 y Only	
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
READ CYCLE		-			-	-		-
tRC	Read Cycle Time	35		55		70		ns
taa	Address Access Time		35	_	55		70	ns
T ACE	Chip Enable Access Time ⁽³⁾		35	_	55		70	ns
tabe	Byte Enable Access Time ⁽³⁾		35	_	55		70	ns
taoe	Output Enable Access Time	_	20		30	_	35	ns
toн	Output Hold from Address Change	3		3		3		ns
tLZ	Output Low-Z Time ^(1,2)	3	_	3		3	-	ns
tHZ	Output High-Z Time ^(1,2)		15		25		30	ns
tPU	Chip Enable to Power Up Time ^(1,2)	0	_	0		0		ns
tpd	Chip Disable to Power Down Time ^(1,2)		35		50		50	ns
tsop	Semaphore Flag Update Pulse (OE or SEM)	15		15		15		ns
tsaa	Semaphore Address Access ⁽³⁾		35		55		70	ns
	·	-			-	-	-	2740 tbl 12b

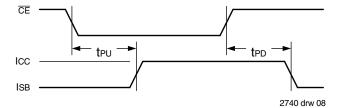
NOTES:


1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested.

3. To access RAM, \overrightarrow{CE} = VIL, \overrightarrow{UB} or \overrightarrow{LB} = VIL, and \overrightarrow{SEM} =VIH. To access semaphore, \overrightarrow{CE} = VIH or \overrightarrow{UB} & \overrightarrow{LB} = VIH, and \overrightarrow{SEM} =VIL.

4. 'X' in part number indicates power rating (S or L).


Waveform of Read Cycles⁽⁵⁾

NOTES:

- 1. Timing depends on which signal is asserted last, \overline{CE} , \overline{OE} , \overline{LB} , or \overline{UB} .
- 2. Timing depends on which signal is de-asserted first, \overline{CE} , \overline{OE} , \overline{LB} , or \overline{UB} .
- 3. tepp delay is required only in cases where opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
- 4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.
- 5. $\overline{\text{SEM}} = \text{VIH}.$

Timing of Power-Up Power-Down

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

			4X15 I Only		4X17 I Only	Com	4X20 'I, Ind ilitary	Con	4X25 n'I & itary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYCLI	E									
twc	Write Cycle Time	15		17		20		25		ns
tew	Chip Enable to End-of-Write ⁽³⁾	12	_	12	_	15		20	_	ns
taw	Address Valid to End-of-Write	12	_	12	-	15	_	20	—	ns
tas	Address Set-up Time ⁽³⁾	0	_	0	_	0	-	0	_	ns
twp	Write Pulse Width	12	_	12		15	-	20	_	ns
twr	Write Recovery Time	0	_	0	_	0		0	_	ns
tow	Data Valid to End-of-Write	10	_	10	_	15		15	_	ns
tHZ	Output High-Z Time ^(1,2)	_	10	_	10	-	12	_	15	ns
tDH	Data Hold Time ⁽⁴⁾	0	_	0		0	-	0	_	ns
twz	Write Enable to Output in High-Z ^(1,2)		10	_	10	-	12	_	15	ns
tow	Output Active from End-of-Write ^(1,2,4)	0		0		0	_	0		ns
tswrd	SEM Flag Write to Read Time	5		5		5	-	5	_	ns
tsps	SEM Flag Contention Window	5		5		5	_	5	_	ns

2740 tbl 13a

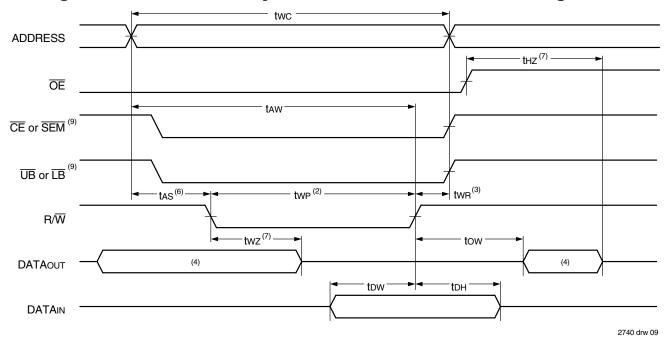
2740 tbl 13b

		Con	4X35 n'l & itary	Com	4X55 'I, Ind litary		4X70 'y Only	
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
WRITE CYCLE								
twc	Write Cycle Time	35	_	55	-	70	-	ns
tew	Chip Enable to End-of-Write ⁽³⁾	30	_	45		50	_	ns
taw	Address Valid to End-of-Write	30		45	I	50	_	ns
tas	Address Set-up Time ⁽³⁾	0	_	0	-	0		ns
twp	Write Pulse Width	25		40		50		ns
twr	Write Recovery Time	0	_	0		0	_	ns
tow	Data Valid to End-of-Write	15	_	30	I	40	_	ns
tHZ	Output High-Z Time ^(1,2)		15		25	_	30	ns
tDH	Data Hold Time ⁽⁴⁾	0	_	0	-	0		ns
twz	Write Enable to Output in High-Z ^(1,2)	_	15		25	_	30	ns
tow	Output Active from End-of-Write ^(1,2,4)	0		0		0		ns
tswrd	SEM Flag Write to Read Time	5		5		5		ns
tsps	SEM Flag Contention Window	5		5		5		ns

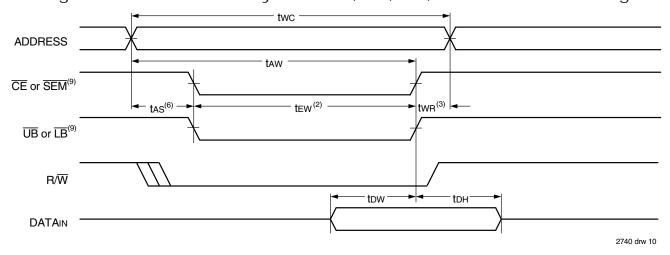
NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested.


3. To access RAM, $\overrightarrow{CE} = V_{IL}$, \overrightarrow{UB} or $\overrightarrow{LB} = V_{IL}$, $\overrightarrow{SEM} = V_{IH}$. To access semaphore, $\overrightarrow{CE} = V_{IH}$ or $\overrightarrow{UB} \& \overrightarrow{LB} = V_{IH}$, and $\overrightarrow{SEM} = V_{IL}$.

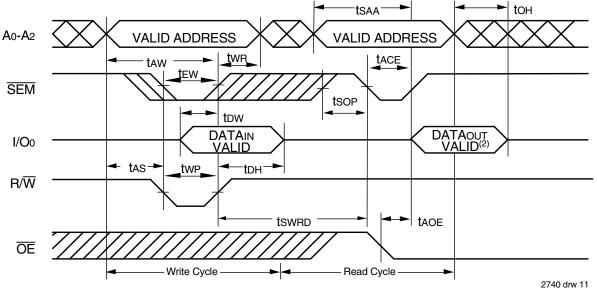
Either condition must be valid for the entire tew time. 4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH


and tow values will vary over voltage and temperature, the actual toH will always be smaller than the actual tow.

5. 'X' in part number indicates power rating (S or L).

Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(1,5,8)

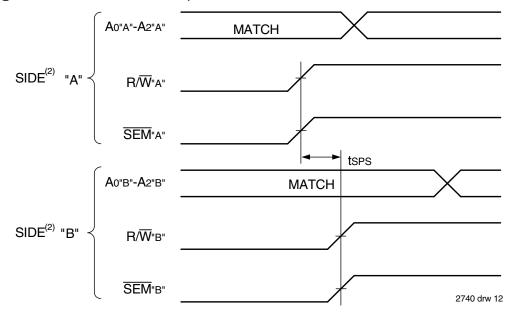
Timing Waveform of Write Cycle No. 2, **CE**, **UB**, **LB** Controlled Timing^(1,5)


NOTES:

- 1. R/ \overline{W} or \overline{CE} or \overline{UB} & \overline{LB} = VIH during all address transitions.
- 2. A write occurs during the overlap (\overline{tew} or twp) of a \overline{UB} or \overline{LB} = VIL and a \overline{CE} = VIL and a \overline{RW} = VIL for memory array writing cycle.
- 3. two is measured from the earlier of \overline{CE} or $\overline{R/W}$ (or \overline{SEM} or R/\overline{W}) going HIGH = VIL to the end-of-write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the CE or SEM LOW = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, \overline{CE} , R/W, UB, or LB.
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV steady state with the Output Test Load (Figure 2).
- 8. If $\overline{OE} = V_{IL}$ during R/W controlled write cycle, the write pulse width must be the larger of twp for (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If $\overline{OE} = V_{IH}$ during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, $\overline{CE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$, and $\overline{SEM} = V_{IH}$. To access Semaphore, $\overline{CE} = V_{IH}$ or $\overline{UB} \& \overline{LB} = V_{IH}$, and $\overline{SEM} = V_{IL}$. tew must be met for either condition.

Military, Industrial and Commercial Temperature Ranges

Timing Waveform of Semaphore Read after Write Timing, Either Side⁽¹⁾



NOTES:

1. $\overline{CE} = V_{IH}$ or $\overline{UB} \& \overline{LB} = V_{IH}$ for the duration of the above timing (both write and read cycle).

2. "DATAOUT VALID" represents all I/O's (I/Oo-I/O15) equal to the semaphore value.

Timing Waveform of Semaphore Write Contention^(1,3,4)

NOTES:

- 1. DOR = DOL = VIL, $\overline{CE}R = \overline{CE}L = VIH$, or both $\overline{UB} \& \overline{LB} = VIH$, semaphore flag is released from both sides (reads as ones from both sides) at cycle start.
- 2. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 3. This parameter is measured from R/\overline{W}_A or \overline{SEM}_A going HIGH to R/\overline{W}_B or \overline{SEM}_B going HIGH.
- 4. If tsps is not satisfied, there is no guarantee which side will obtain the semaphore flag.

7024S/L

2740 tbl 14a

2740 tbl 14b

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾

			4X15 I Only		4X17 I Only	Com	4X20 'I, Ind ilitary	Con	4X25 n'I & itary	
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
BUSY TIMIN	G (M/S = VIH)						-	-		
tbaa	BUSY Access Time from Address Match	—	15		17		20	_	20	ns
tBDA	BUSY Disable Time from Address Not Match		15	-	17	-	20	_	20	ns
t BAC	BUSY Access Time from Chip Enable Low	_	15	_	17	-	20	_	20	ns
tBDC	BUSY Disable Time from Chip Enable High		15	_	17	_	17		17	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5	_	5		5		5		ns
tBDD	BUSY Disable to Valid Data ⁽³⁾	_	18	_	18	_	30		30	ns
twн	Write Hold After BUSY ⁽⁵⁾	12	_	13		15		17		ns
BUSY INPUT	TIMING (M/S = VIH)									
twв	BUSY Input to Write ⁽⁴⁾	0	_	0	-	0		0	-	ns
twн	Write Hold After BUSY ⁽⁵⁾	12	_	13		15	_	17		ns
PORT-TO-PC	ORT DELAY TIMING									
twdd	Write Pulse to Data Delay ⁽¹⁾		30	_	30		45		50	ns
todd	Write Data Valid to Read Data Delay ⁽¹⁾		25		25		35		35	ns

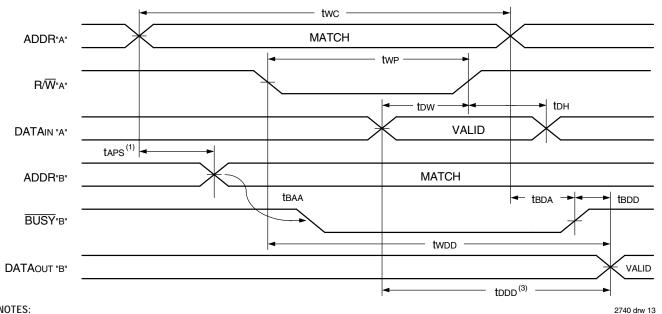
7024X35 7024X55 7024X70 Com'l, Ind Com'l & Military Only Military & Military Symbol Parameter Min. Max. Min. Max. Min. Max. Unit BUSY TIMING (M/S = VIH) **t**BAA **BUSY** Access Time from Address Match 20 45 45 ns 20 40 **t**BDA **BUSY** Disable Time from Address Not Match ____ ____ ____ 40 ns **t**BAC 20 40 40 **BUSY** Access Time from Chip Enable Low ns _ ____ 20 **t**BDC **BUSY** Disable Time from Chip Enable High ____ ____ 35 ____ 35 ns Arbitration Priority Set-up Time⁽²⁾ 5 5 5 taps ns **BUSY** Disable to Valid Data⁽³⁾ tBDD 35 40 45 ____ ____ ns ____ Write Hold After BUSY⁽⁵⁾ 25 25 25 twн ns **BUSY** INPUT TIMING (M/S = VIH) **BUSY** Input to Write⁽⁴⁾ 0 0 0 twв ____ ____ ns Write Hold After BUSY⁽⁵⁾ 25 25 25 twн ns PORT-TO-PORT DELAY TIMING twdd Write Pulse to Data Delay(1) 80 60 95 ns ____ ____ Write Data Valid to Read Data Delay⁽¹⁾ todd 45 65 80 ns

NOTES:

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write Port-to-Port Read and BUSY (M/S = VI-)".

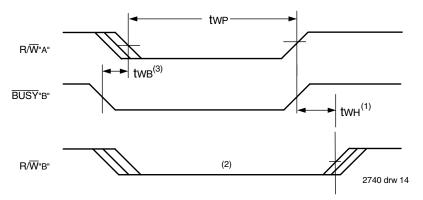
2. To ensure that the earlier of the two ports wins.

3. tBDD is a calculated parameter and is the greater of Ons, twDD - twp (actual) or tDDD - tDw (actual).


4. To ensure that the write cycle is inhibited on port 'B' during contention with port 'A'.

5. To ensure that a write cycle is completed on port 'B' after contention with port 'A'.

6. 'X' in part number indicates power rating (S or L).

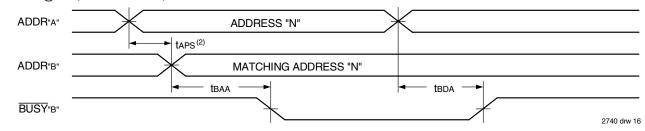

Timing Waveform of Write with Port-to-Port Read and $\overline{\text{BUSY}}^{(2,4,5)}$ (M/ $\overline{\text{S}}$ = VIH)

NOTES:

- 1. To ensure that the earlier of the two ports wins. taps is ignored for $M/\overline{S} = V_{IL}$ (SLAVE).
- 2. $\overline{CE}L = \overline{CE}R = VIL$.
- 3. $\overline{OE} = V_{IL}$ for the reading port.
- 4. If $M/\overline{S} = V_{IL}$ (slave) then \overline{BUSY} is an input $\overline{BUSY}^*A^* = V_{IL}$ and $\overline{BUSY}^*B^* = don't$ care, for this example.
- 5. All timing is the same for both left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

Timing Waveform of Write with **BUSY**

NOTES:


- 1. twH must be met for both BUSY input (slave) and output (master).
- 2. BUSY is asserted on port "B" Blocking R/W"B", until BUSY"B" goes HIGH.

3. twb is only for the 'Slave' Version.

Military, Industrial and Commercial Temperature Ranges

Waveform of **BUSY** Arbitration Controlled by **CE** Timing⁽¹⁾ (M/**S** = VIH) ADDR^{*A*} and "B" CE"A" CE"B" BUSY"B" ADDRESSES MATCH ADDRESSES MATCH

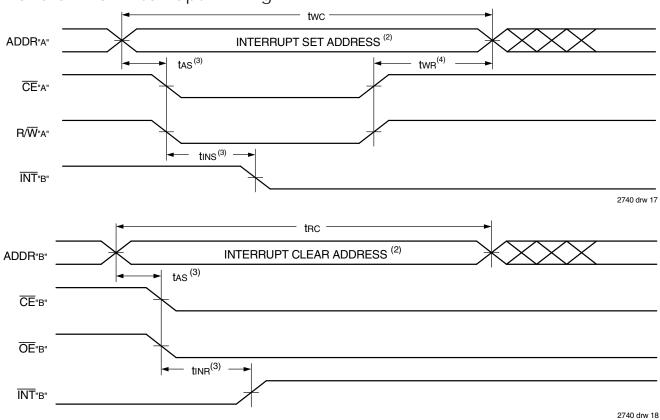
Waveform of **BUSY** Arbitration Cycle Controlled by Address Match Timing⁽¹⁾ (M/S = VIH)

NOTES:

- 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A".
- 2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾

			4X15 I Only		4X17 'I Only	Com'	4X20 I , Ind litary	Con	4X25 n'I & itary	
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
INTERRUPT 1	riming									
tas	Address Set-up Time	0		0		0		0		ns
twr	Write Recovery Time	0	_	0		0		0		ns
tins	Interrupt Set Time	—	15	_	15	_	20	_	20	ns
tinr	Interrupt Reset Time	—	15		15	_	20	_	20	ns
	-			•	•		•			2740 tbl 15


		Cor	4X35 n'I & itary	Com	4X55 'I, Ind litary		4X70 y Only	
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
INTERRUPT	TIMING	-			-			
tas	Address Set-up Time	0		0		0		ns
twr	Write Recovery Time	0	_	0	_	0	—	ns
tins	Interrupt Set Time		25		40	_	50	ns
tinr	Interrupt Reset Time	_	25		40		50	ns

NOTES:

1. 'X' in part number indicates power rating (S or L).

Waveform of Interrupt Timing⁽¹⁾

NOTES:

- 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A".
- 2. See Interrupt Truth Table III.
- 3. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last. 4. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is de-asserted first.

Truth Table III — Interrupt Flag^(1,4)

		Left Port					Right Por	t		
R/₩L	ĒĒ∟	OEL	A11L-A0L	ĪNT∟	R/WR	CER	OE R	A11R-A0R	Ī NT R	Function
L	L	Х	FFF	Х	Х	Х	Х	Х	L ⁽²⁾	Set Right INTR Flag
Х	Х	Х	Х	Х	Х	L	L	FFF	H ⁽³⁾	Reset Right INTR Flag
Х	Х	Х	Х	L ⁽³⁾	L	L	Х	FFE	Х	Set Left ĪNT∟ Flag
Х	L	L	FFE	H ⁽²⁾	Х	Х	Х	Х	Х	Reset Left INT∟ Flag

NOTES:

1. Assumes $\overline{\text{BUSY}}_{L} = \overline{\text{BUSY}}_{R} = V_{IH}$.

2. If $\overline{\text{BUSY}}_{L} = V_{IL}$, then no change.

3. If $\overline{\text{BUSY}}_{R} = V_{IL}$, then no change.

4. INTR and INTL must be initialized at power-up.

Military, Industrial and Commercial Temperature Ranges

2740 tbl 16

Truth Table IV — Address **BUSY** Arbitration

	In	puts	Out	puts	
<u>C</u> E		A0L-A11L A0R-A11R	BUSYL ⁽¹⁾	BUSYR ⁽¹⁾	Function
Х	Х	NO MATCH	Н	Н	Normal
Η	Х	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

NOTES:

2740 tbl 17

1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYx outputs on the IDT7024 are push pull, not open drain outputs. On slaves, the BUSY asserted input internally inhibits write.

2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.

3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.

Truth Table V — Example of Semaphore Procurement Sequence^(1,2,3)

Functions	Do - D15 Left	Do - D15 Right	Status
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

NOTES:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7024.

2. There are eight semaphore flags written to via I/Oo and read from all the I/O's. These eight semaphores are addressed by A0-A2.

3. CE = VIH, SEM = VIL, to access the Semaphores. Refer to the Semaphore Read/Write Control Truth Table.

Functional Description

The IDT7024 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7024 has an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{CE} = VIH$). When a port is enabled, access to the entire memory array is permitted.

or message center) is assigned to each port. The left port interrupt flag $(\overline{INT}L)$ is asserted when the right port writes to memory location FFE (HEX), where a write is defined as the $\overline{CE} = R/\overline{W} = V_{IL}$ per the Truth Table III. The left port clears the interrupt by access address location FFE access when $\overline{CE}R = \overline{OE}R = V_{IL}$, R/W is a "don't care". Likewise, the right port interrupt flag $(\overline{INT}R)$ is asserted when the left port writes to memory location FFF (HEX) and to clear the interrupt flag $(\overline{INT}R)$, the right port must access the memory location FFF. The message (16 bits) at FFE or FFF is user-defined, since it is an addressable SRAM location. If the interrupt function

2740 thl 18

Interrupts

If the user chooses the interrupt function, a memory location (mail box

Military, Industrial and Commercial Temperature Ranges

is not used, address locations FFE and FFF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table III for the interrupt operation.

BusyLogic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "busy". The BUSY pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a BUSY indication, the write signal is gated internally to prevent the write from proceeding.

The use of BUSY logic is not required or desirable for all applications. In some cases it may be useful to logically OR the BUSY outputs together and use any BUSY indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of BUSY logic is not desirable, the BUSY logic can be disabled by placing the part in slave mode with the M/S pin. Once in slave mode the BUSY pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the BUSY pins HIGH. If desired, unintended write operations can be prevented to a port by tying the BUSY pin for that port LOW.

The BUSY outputs on the IDT 7024 SRAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate.

Width Expansion with **BUSY** Logic Master/Slave Arrays

When expanding an IDT7024 RAM array in width while using \overline{BUSY} logic, one master part is used to decide which side of the RAM array will receive a \overline{BUSY} indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the \overline{BUSY} signal as a write inhibit signal. Thus on the IDT7024 RAM the \overline{BUSY} pin is an output if the part is used as a master (M/ \overline{S} pin = VIH), and the \overline{BUSY} pin is an input if the part used as a slave (M/ \overline{S} pin = VIL) as shown in Figure 3.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating BUSY on one side of the array and another master indicating BUSY on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The BUSY arbitration, on a master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a BUSY flag to be output from the master before the actual write pulse can be initiated with either the R/W signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Semaphores

The IDT7024 is an extremely fast Dual-Port 4K x 16 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be

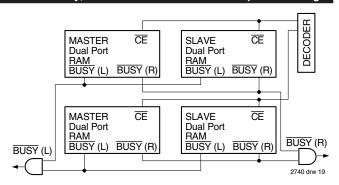


Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7024 RAMs.

used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, or written to, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port RAM. These devices have an automatic power-down feature controlled by \overline{CE} , the Dual-Port RAM enable, and SEM, the semaphore enable. The CE and SEM pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table I where \overline{CE} and $\overline{SEM} = VIH$.

Systems which can best use the IDT7024 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT7024's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT7024 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems.

How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading

Military, Industrial and Commercial Temperature Ranges

it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token, the left side should succeed in gaining control.

The semaphore flags are active LOW. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT7024 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a LOW input on the \overline{SEM} pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/\overline{W}) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0 – A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Do is used. If a low level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Truth Table III). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (SEM) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (SEM or \overline{OE}) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Truth Table III). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles. It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

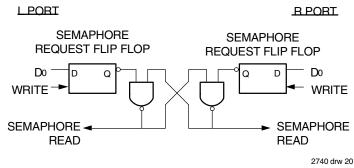
Using Semaphores—Some Examples

Perhaps the simplest application of semaphores is their application as resource markers for the IDT7024's Dual-Port RAM. Say the 4K x 16 RAM was to be divided into two 2K x 16 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be defined as the indicator for the upper section of memory.

To take a resource, in this example the lower 2K of Dual-Port RAM, the processor on the left port could write and then read a zero in to Semaphore 0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 2K. Meanwhile the right processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 2K section by writing, then reading a zero into Semaphore 1. If it succeeded in gaining control, it would lock out the left side.

Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphore request and perform other tasks until it was able to write, then

Military, Industrial and Commercial Temperature Ranges


read a zero into Semaphore 1. If the right processor performs a similar task with Semaphore 0, this protocol would allow the two processors to swap 2K blocks of Dual-Port RAM with each other.

The blocks do not have to be any particular size and can even be variable, depending upon the complexity of the software using the semaphore flags. All eight semaphores could be used to divide the Dual-Port RAM or other shared resources into eight parts. Semaphores can even be assigned different meanings on different sides rather than being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaces where the CPU must be locked out of a section of memory during a transfer and the I/O device cannot tolerate any wait states. With the use of semaphores, once the two devices has determined which memory area was "off-limits" to the CPU, both the CPU and the I/O devices could access their assigned portions of memory continuously without any wait states.

Semaphores are also useful in applications where no memory "WAIT" state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incomplete data structure, a major error condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates for the block, locks it and then is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to come back and read the complete data structure, thereby guaranteeing a consistent data structure.

Ordering Information

XXXXX	A	999	Α	Α_	A	Α		
Device Type	Power	Speed	Package		Process/ Temperature Range			
							Blank 8	Tube or Tray Tape & Reel
							Blank I ⁽¹⁾ B	Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Military (-55°C to +125°C) Compliant to MIL-PRF-38535 QML
							- G ⁽²⁾	Green
							PF G J F	100-pin TQFP (PN100, PNG100) 84-pin PGA (GU84) 84-pin PLCC (PL84 / PLG84) 84-pin Flatpack (FP84)
							15 17 20 25 35 55	Commercial Only Commercial Only Commercial, Industrial & Military Commercial & Military Commercial & Military Commercial & Military
							70 S	Military Only
	I						Ϊ	Low Power
							7024	64K (4K x 16) Dual-Port RAM 2740 drw 21

NOTE:

- 1. Industrial temperature range is available on selected PLCC packages in low power. For other speeds, packages and powers contact your sales office.
- Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (SnPb) parts are Obsolete excluding PGA & Flatpack. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
15	7024L15JG	PLG84	PLCC	С
	7024L15JG8	PLG84	PLCC	С
	7024L15PFG	PNG100	TQFP	С
	7024L15PFG8	PNG100	TQFP	С
17	7024L17G	GU84	PGA	С
20	7024L20FB	FP84	FPACK	М
	7024L20G	GU84	PGA	С
	7024L20GB	GU84	PGA	М
	7024L20JGI	PLG84	PLCC	I
	7024L20JG18	PLG84	PLCC	I
	7024L20PFGI	PNG100	TQFP	I
	7024L20PFGI8	PNG100	TQFP	I
25	7024L25G	GU84	PGA	С
	7024L25GB	GU84	PGA	М
35	7024L35FB	FP84	FPACK	М
	7024L35G	GU84	PGA	С
	7024L35GB	GU84	PGA	М
55	7024L55G	GU84	PGA	С
	7024L55GB	GU84	PGA	М
70	7024L70GB	GU84	PGA	М

|--|

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
17	7024S17G	GU84	PGA	С
20	7024S20G	GU84	PGA	С
25	7024S25G	GU84	PGA	С
	7024S25GB	GU84	PGA	М
35	7024S35FB	FP84	FPACK	М
	7024S35G	GU84	PGA	С
	7024S35GB	GU84	PGA	М
55	7024S55FB	FP84	FPACK	М
	7024S55G	GU84	PGA	С
	7024S55GB	GU84	PGA	М
70	7024S70FB	FP84	FPACK	М
	7024S70GB	GU84	PGA	М

Datasheet Document History

01/13/99:	Initiated datasheet document history			
	Converted to new format			
	Cosmetic and typographical corrections			
	Pages 2 and 3 Added additional notes to pin configurations			
06/04/99:	Changed drawing format			
	Page 1 Corrected DSC number			
04/04/00:	Replaced IDT logo			
	Page 6 Corrected typo in Data Retention chart			
	Changed ±500mV to 0mV in notes			
05/19/00:	Page 3 Clarified TA parameter			
	Page 4 Increased storage temperature parameter			
	Pages 5 and 6 DC Electrical parameters-changed wording from "open" to "disabled"			
09/12/01:	Page 2 & 3 Added date revision for pin configurations			
	Page 5 Added Industrial temp to the column heading for 20ns to DC Electrical Characteristics			
	Pages 8, 10, 13&15 Added Industrial temp to the column headings for 20ns to AC Electrical Characteristics			
	Pages 3,5,6,8,10,13&15 Removed Industrial temp note from all tables footnotes			
	Page 21 Added Industrial to 20ns ordering information			
07/25/05:	Page 1 Added green availability to features			
	Page 21 Added green indicator to ordering information			
	Page 1 & 21 Replaced old IDT ${ m I}{ m B}$ logo with the new IDT TM logo			
	Page 21 Updated address and phone contact information			
10/29/08:	Page 21 Removed "IDT" from orderable part number			
06/11/13:	Page 21 Ordering Information. Added T&R			
05/23/18:	Product Discontinuation Notice - PDN# SP-17-02			
	Last time buy expires June 15, 2018			
12/05/19:	Pages 1 & 21 Deleted obsolete Industrial 55ns speed grade and added Industrial 20ns speed grade			
	Pages 2 & 3 Rotated PLG84 PLCC, FP84 Flatpack and PNG100 TQFP pin configurations to accurately reflect pin 1			
	orientation			
	Page 21 Added Orderable Part Information tables			
02/20/20:	Pages 1 - 23 Rebranded as Renesas datasheet			

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.