

STF40NF03L STP40NF03L

N-channel 30 V, 0.018 Ω 40 A TO-220, TO-220FP STripFET™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	۱ _D
STF40NF03L	30 V	0.022 Ω	23 A
STP40NF03L	30 V	0.022 Ω	40 A

Low threshold device

Application

Switching applications

Description

This Power MOSFET is the latest development of STMicroelectronics unique "single feature size" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

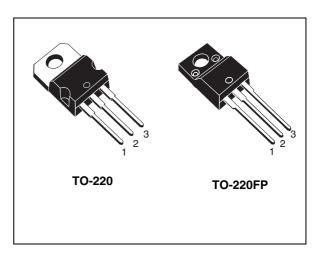
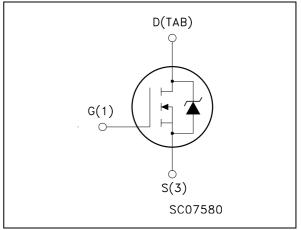



Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STF40NF03L	F40NF03L	TO-220FP	Tube
STP40NF03L	P40NF03L	TO-220	Tube

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data 10
5	Revision history

1 Electrical ratings

Symbol	Parameter	Va	lue	Unit
Symbol	Parameter	TO-220	TO-220FP	Onit
V_{DS}	Drain-source voltage ($V_{GS} = 0$)	3	0	V
V _{GS}	Gate- source voltage	±	16	V
I _D	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	40	23	Α
I _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	28	16	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	160	92	А
P _{tot}	Total dissipation at $T_C = 25 \ ^{\circ}C$	70	25	W
	Derating factor	0.	46	W/°C
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C)		2500	v
E _{AS} ⁽²⁾	Single pulse avalanche energy	25	50	mJ
T _{stg}	Storage temperature	_55 +/	o 175	°C
Тj	Max. operating junction temperature	-55 10	5175	

Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area.

2. Starting $T_j = 25 \text{ °C}$, $I_D = 20 \text{ A}$, $V_{DD} = 15 \text{ V}$

	Table	3.	Thermal	data
--	-------	----	---------	------

Symbol	Parameter	Package	Va	lue	Unit
Symbol	Falameter	Fachage	Тур.	Max.	Omit
Dthi o	Thermal registered junction eaco	TO-220	1.8	2.1	°C/W
Rthj-c	Thermal resistance junction-case	TO-220FP		6	C/VV
Rthj-amb	Thermal resistance junction-ambient max			62.5	°C/W
Т _Ј	Maximum lead temperature for soldering purpose			300	°C

2 Electrical characteristics

(T_{CASE}=25 $^{\circ}\text{C}$ unless otherwise specified)

	On/on states					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max ratings V_{DS} = max ratings, T_{C} = 125 °C			1 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 16 V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS}=V_{GS},\ I_{D}=250\ \mu A$	1	1.7	2.5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 20 \text{ A}$		0.018 0.028	0.022 0.035	Ω Ω

Table 4. On/off states

Table 5. Dynamic

	-,					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	-	20	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	-	770 255 60	-	pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 15 \text{ V}, I_D = 20 \text{ A}$ $R_G = 4.7 \Omega V_{GS} = 4.5 \text{ V}$ (see <i>Figure 16</i>)	-	14 80 25 16	-	ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 15 \text{ V}, I_D = 40 \text{ A},$ $V_{GS} = 4.5 \text{ V}$ (see <i>Figure 17</i>)	-	10.5 4 4.5	15	nC nC nC

1. Pulsed: Pulse duration = $300 \ \mu s$, duty cycle 1.5%.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		40 160	A A
V_{SD} ⁽²⁾	Forward on voltage	I _{SD} = 40 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 40 A, di/dt = 100 A/μs, V _{DD} = 15 V, T _j = 150 °C (see <i>Figure 18</i>)	-	34.5 30 2		ns nC A

 Table 6.
 Source drain diode

1. Pulse width limited by safe operating area.

2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

 $Z_{th} = k R_{thJ-c}$

10⁻¹ + p (s)

 $\delta=\,{\rm t_p}/\tau$

 $Z_{th} = k R_{thJ-c}$

10⁰ † p (s)

тогрвс

 $\delta=\,{\rm t_p}\,/\tau$

Thermal impedance for TO-220

0.05

0.01

SINGLE PULSE

10-3

0.05

0.01

Ħ

10-2

Thermal impedance for TO-220FP

Figure 3.

κ

10

10⁻² 10⁻⁵

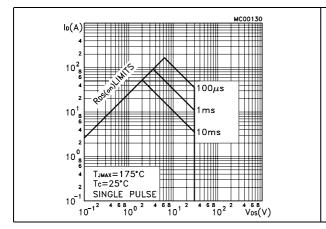
δ = 0.5 0.2

0.1

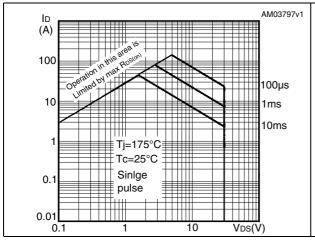
Figure 5.

10

10


10-4

 $\delta = 0.5$


0.

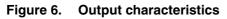

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220

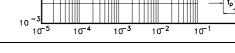
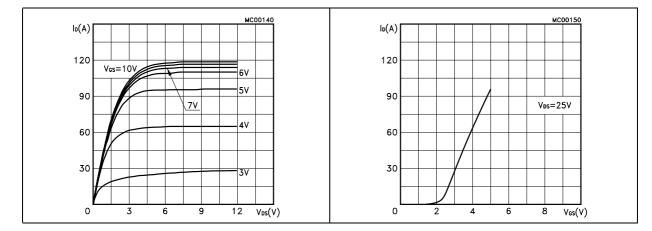



Figure 7. Transfer characteristics

SINGLE PULSE

Figure 8. Transconductance

Figure 9. Static drain-source on resistance

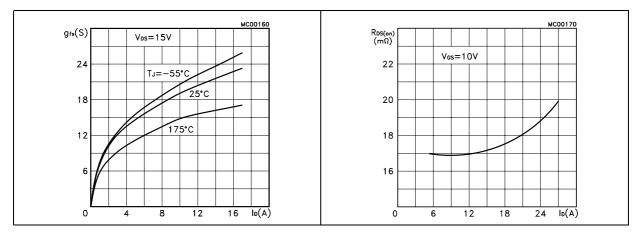
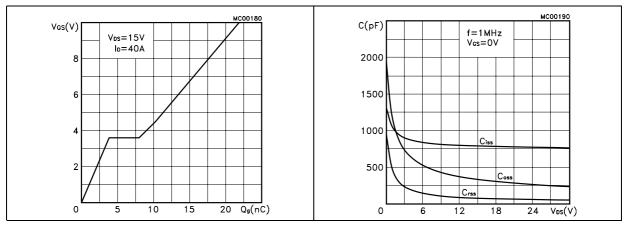
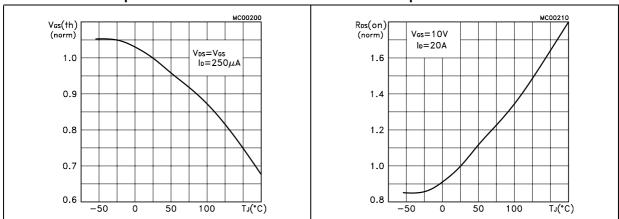


Figure 10. Gate charge vs. gate-source voltage Figure 11. Capacitance variations

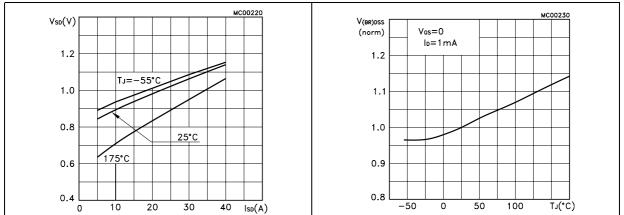

Figure 12. Normalized gate threshold voltage vs. temperature

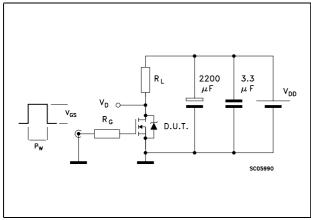
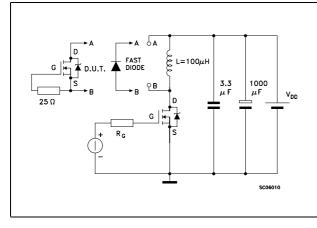
Figure 13. Normalized on resistance vs. temperature

Figure 14. Source-drain diode forward characteristics

Figure 15. Normalized B_{VDSS} vs. temperature

3 **Test circuits**

Figure 16. Switching times test circuit for resistive load

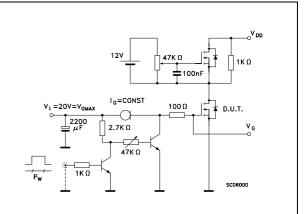
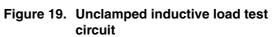



Figure 18. Test circuit for inductive load switching and diode recovery times

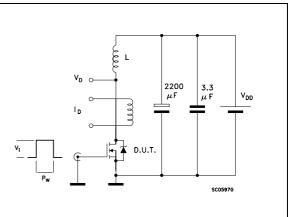


Figure 21. Switching time waveform

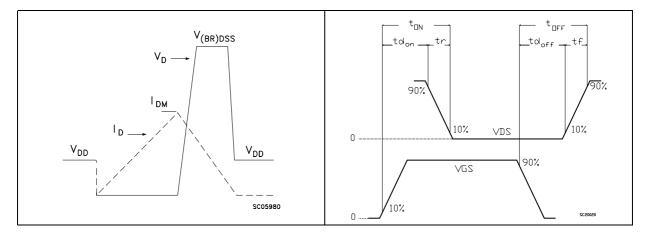
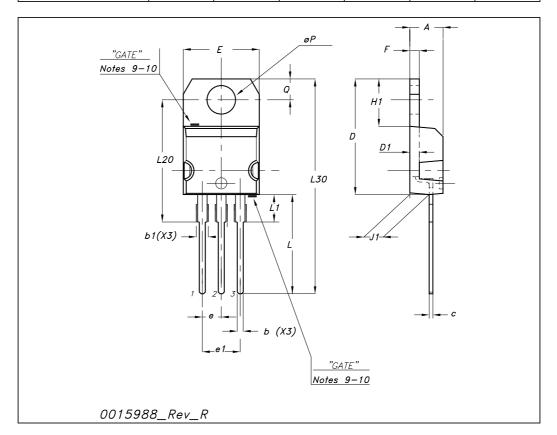


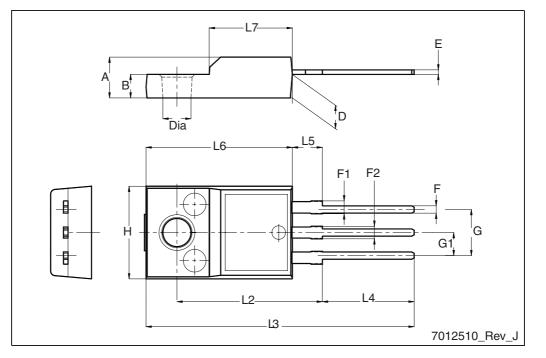
Figure 17. Gate charge test circuit

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

57

TO-220	mechanical	data


Dim		mm			inch	
Dim	Min	Тур	Max	Min	Тур	Max
A	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.48		0.70	0.019		0.027
D	15.25		15.75	0.6		0.62
D1		1.27			0.050	
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.051
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
ØP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

Package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.5
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Doc ID 6794 Rev 8

5 Revision history

Table 7.Document revision history

Date	Revision	Changes
09-Sep-2004	1	Preliminary version
21-Jun-2005	2	Complete version with curves
16-Aug-2006	3	New template, no content change
21-Feb-2007	4	Typo mistake on page 1
20-Nov-2008	5	Figure 9: Static drain-source on resistance has been corrected.
14-Apr-2009	6	The device in TO-220FP has been added
03-Feb-2010	7	Updated Table 3: Thermal data.
22-Feb-2010	8	Updated Table 3: Thermal data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 6794 Rev 8

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STP40NF03L STF40NF03L