
RabbitCore RCM3200
C-Programmable Module with Ethernet

User’s Manual
019–0118 • 080528–N

RabbitCore RCM3200

Rabbit Semiconductor Inc.
www.rabbit.com

RabbitCore RCM3200 User’s Manual

Part Number 019-0118 • 080528–N • Printed in U.S.A.
©2002–2008 Digi International Inc. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit, RabbitCore, and Dynamic C are registered trademarks of Digi International Inc.

Rabbit 3000 is a trademark of Digi International Inc.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com,
for free, unregistered download.

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

User’s Manual

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCM3200 Features ...2
1.2 Comparing the RCM3209/RCM3229 and RCM3200/RCM3220 ..4
1.3 Advantages of the RCM3200 ...5
1.4 Development and Evaluation Tools..6

1.4.1 RCM3200 Development Kit ...6
1.4.2 Software ..7
1.4.3 Connectivity Interface Kits ...7
1.4.4 Online Documentation ..7

Chapter 2. Hardware Setup 9
2.1 Install Dynamic C ...9
2.2 Hardware Connections..10

2.2.1 Step 1 — Attach Module to Prototyping Board..11
2.2.2 Step 2 — Connect Programming Cable ..12

2.2.2.1 RCM3209 and RCM3229 .. 12
2.2.2.2 RCM3200 and RCM3220 .. 13

2.2.3 Step 3 — Connect Power ..14
2.2.3.1 Overseas Development Kits ... 15

2.3 Starting Dynamic C ..16
2.4 Run a Sample Program ...16

2.4.1 Troubleshooting ..16
2.5 Where Do I Go From Here? ...17

2.5.1 Technical Support ...17

Chapter 3. Running Sample Programs 19
3.1 Introduction...19
3.2 Sample Programs ..20

3.2.1 Serial Communication...21
3.2.2 Other Sample Programs ..22

Chapter 4. Hardware Reference 23
4.1 RCM3200 Digital Inputs and Outputs ..24

4.1.1 Memory I/O Interface ...29
4.1.2 Other Inputs and Outputs ..29
4.1.3 5 V Tolerant Inputs ...29

4.2 Serial Communication ..30
4.2.1 Serial Ports ..30
4.2.2 Ethernet Port (RCM3200 only)...31
4.2.3 Serial Programming Port...32

4.3 Serial Programming Cable..33
4.3.1 Changing Between Program Mode and Run Mode ..33
4.3.2 Standalone Operation of the RCM3200..34

4.4 Other Hardware...35
4.4.1 Clock Doubler ...35
4.4.2 Spectrum Spreader ..35

RabbitCore RCM3200

4.5 Memory .. 36
4.5.1 SRAM... 36
4.5.2 Flash EPROM... 36
4.5.3 Dynamic C BIOS Source Files... 36

Chapter 5. Software Reference 37
5.1 More About Dynamic C... 37
5.2 Dynamic C Function Calls ... 39

5.2.1 Digital I/O... 39
5.2.2 SRAM Use.. 39
5.2.3 Serial Communication Drivers ... 40
5.2.4 TCP/IP Drivers ... 40
5.2.5 Prototyping Board Function Calls .. 40

5.2.5.1 Board Initialization .. 41
5.3 Upgrading Dynamic C ... 42

5.3.1 Extras.. 42

Chapter 6. Using the TCP/IP Features 43
6.1 TCP/IP Connections ... 43
6.2 TCP/IP Primer on IP Addresses ... 45

6.2.1 IP Addresses Explained.. 47
6.2.2 How IP Addresses are Used ... 48
6.2.3 Dynamically Assigned Internet Addresses... 49

6.3 Placing Your Device on the Network .. 50
6.4 Running TCP/IP Sample Programs.. 51

6.4.1 How to Set IP Addresses in the Sample Programs... 52
6.4.2 How to Set Up your Computer’s IP Address for Direct Connect .. 53
6.4.3 Dynamic C Compiler Settings.. 53

6.5 Run the PINGME.C Sample Program.. 54
6.6 Running More Sample Programs With Direct Connect... 54
6.7 Where Do I Go From Here? ... 55

Appendix A. RCM3200 Specifications 57
A.1 Electrical and Mechanical Characteristics .. 58

A.1.1 Headers .. 61
A.1.2 Physical Mounting... 62

A.2 Bus Loading .. 63
A.3 Rabbit 3000 DC Characteristics .. 66
A.4 I/O Buffer Sourcing and Sinking Limit... 67
A.5 Conformal Coating .. 68
A.6 Jumper Configurations .. 69

Appendix B. Prototyping Board 71
B.1 Introduction ... 72

B.1.1 Prototyping Board Features ... 73
B.2 Mechanical Dimensions and Layout ... 75
B.3 Power Supply... 76
B.4 Using the Prototyping Board ... 77

B.4.1 Adding Other Components .. 78
B.4.2 Measuring Current Draw ... 78
B.4.3 Other Prototyping Board Modules and Options .. 79

B.5 Use of Rabbit 3000 Parallel Ports.. 80

Appendix C. LCD/Keypad Module 83
C.1 Specifications... 83
C.2 Contrast Adjustments for All Boards .. 85

User’s Manual

C.3 Keypad Labeling ..86
C.4 Header Pinouts ...87

C.4.1 I/O Address Assignments...87
C.5 Mounting LCD/Keypad Module on the Prototyping Board ..88
C.6 Bezel-Mount Installation..89

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board...91
C.7 LCD/Keypad Module Function Calls ..92

C.7.1 LCD/Keypad Module Initialization..92
C.7.2 LEDs...92
C.7.3 LCD Display...93
C.7.4 Keypad..108

C.8 Sample Programs ...111

Appendix D. Power Supply 113
D.1 Power Supplies...113

D.1.1 Battery Backup...113
D.1.2 Battery-Backup Circuit ..114
D.1.3 Reset Generator ..115

D.2 Optional +5 V Output ..115

Appendix E. Motor Control Option 117
E.1 Overview ..117
E.2 Header J6 ..118
E.3 Using Parallel Port F ..119

E.3.1 Parallel Port F Registers ...119
E.4 PWM Outputs...122
E.5 PWM Registers...123
E.6 Quadrature Decoder ...124

Index 127

Schematics 131

RabbitCore RCM3200

User’s Manual 1

1. INTRODUCTION

The RCM3200 RabbitCore® module is designed to be the heart
of embedded control systems. The RCM3200 features an inte-
grated 10/100Base-T Ethernet port and provides for LAN and
Internet-enabled systems to be built as easily as serial-communi-
cation systems.

Throughout this manual, the term RCM3200 refers to the complete series of RCM3200
RabbitCore modules unless other production models are referred to specifically.

The RCM3200 has a Rabbit® 3000 microprocessor operating at 44.2 MHz, data and pro-
gram execution SRAM, flash memory, two clocks (main oscillator and timekeeping), and
the circuitry necessary for reset and management of battery backup of the Rabbit 3000’s
internal real-time clock and the data SRAM. Two 34-pin headers bring out the Rabbit
3000 I/O bus lines, parallel ports, and serial ports.

The RCM3200 receives its +3.3 V power from the customer-supplied motherboard on
which it is mounted. The RabbitCore RCM3200 can interface with all kinds of CMOS-
compatible digital devices through the motherboard.

2 RabbitCore RCM3200

1.1 RCM3200 Features
• Small size: 1.85" x 2.73" x 0.86"

(47 mm x 69 mm x 22 mm)

• Microprocessor: Rabbit 3000 running at 44.2 MHz

• (RCM3200 only) 10/100Base-T Ethernet port with supporting LEDs

• 52 parallel 5 V tolerant I/O lines: 44 configurable for I/O, 4 fixed inputs, 4 fixed outputs

• Two additional digital inputs, two additional digital outputs

• External reset input

• Alternate I/O bus can be configured for 8 data lines and 6 address lines (shared with
parallel I/O lines), I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 512K flash memory, 512K program execution SRAM, 256K data SRAM

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J2

• 10-bit free-running PWM counter and four width registers

• Two-channel Input Capture can be used to time input signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder
modules

• Six CMOS-compatible serial ports: maximum asynchronous baud rate of 5.5 Mbps. Four
ports are configurable as a clocked serial port (SPI), and two ports are configurable as
SDLC/HDLC serial ports.

• Supports 1.15 Mbps IrDA transceiver.

The RCM3209 and RCM3229 modules are similar in form, dimensions, and function to
the RCM3200/RCM3220, and based on the RCM3900 RabbitCore modules which were
first released in 2008.

There are two RCM3200 production models. Contact your Rabbit sales representative for
details.

User’s Manual 3

Table 1 below summarizes the main features of the RCM3200.

The RCM3200 can be programed locally, remotely, or via a network using appropriate
interface hardware.

Appendix A, “RCM3200 Specifications,” provides detailed specifications for the
RCM3200.

Table 1. RCM3200 Features

Feature RCM3200 RCM3210*

* The RCM3210 was discontinued in July, 2004, and is no longer offered.

RCM3220

Microprocessor Rabbit 3000 running at
44.2 MHz

Rabbit 3000 running at
29.5 MHz

Rabbit 3000 running at
44.2 MHz

Flash Memory 512K 256K 512K

Program Data SRAM 256K 128K 256K

Program Execution SRAM 512K — 512K

RJ-45 Ethernet Connector,
Filter Capacitors, and LEDs Yes No

Serial Ports

6 shared high-speed, CMOS-compatible ports:
6 are configurable as asynchronous serial ports;
4 are configurable as clocked serial ports (SPI);
2 are configurable as SDLC/HDLC serial ports;
1 asynchronous serial port is dedicated for programming

4 RabbitCore RCM3200

1.2 Comparing the RCM3209/RCM3229 and RCM3200/RCM3220
We can no longer obtain certain components for the RCM3200/RCM3220 RabbitCore
modules that support the originally specified -40°C to +70°C temperature range. Instead of
changing the design of the RCM3200/RCM3220 RabbitCore modules to handle available
components specified for the original temperature range, we decided to develop a new
product line — the RCM3209/RCM3229 — based on the RCM3900 RabbitCore modules
that were released for the same reason.

The RCM3209/RCM3229 modules are similar in form, dimensions, and function to the
RCM3200/RCM3220 modules. We strongly recommend that existing RCM3200/RCM3220
customers and designers of new systems consider using the new RCM3209/RCM3229
RabbitCore modules.

This section compares the two lines of RabbitCore modules.

• Temperature Specifications — RCM3200/RCM3220 RabbitCore modules manufac-
tured after May, 2008, are specified to operate at 0°C to +70°C. The RCM3209/
RCM3229, rated for -40°C to +85°C, are offered to customers requiring a larger
temperature range after May, 2008.

• Maximum Current — The RCM3200/RCM3220 draws 255 mA vs. the 325 mA
required by the RCM3209 (with Ethernet) or 190 mA (RCM3229 without Ethernet).

• LEDs — The LNK/ACT LEDs have been combined to one LED on the RCM3209, and
the RCM3209 has an FDX/COL LED where the ACT LED was on the RCM3200. The
RCM3229, like the RCM3220, has no LEDs and no Ethernet.

• Ethernet chip. A different Ethernet controller chip is used on the RCM3209. The
Ethernet chip is able to detect automatically whether a crossover cable or a straight-
through cable is being used in a particular setup, and will configure the signals on the
Ethernet jack interface. The RCM3229, like the RCM3220, has no Ethernet interface.

• Dynamic C — You may run an application developed for the RCM3200/RCM3220 on
the RCM3209/RCM3229 after you recompile it using Dynamic C v. 9.60 or later. The
new Dynamic C release incorporates many of the modules that previously had to be
purchased separately.

User’s Manual 5

1.3 Advantages of the RCM3200
• Fast time to market using a fully engineered, “ready to run” microprocessor core.

• Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

• Easy C-language program development and debugging

• Program Download Utility and cloning board options for rapid production loading of
programs.

• Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

• Integrated Ethernet port for network connectivity, royalty-free TCP/IP software.

6 RabbitCore RCM3200

1.4 Development and Evaluation Tools
1.4.1 RCM3200 Development Kit

The RCM3200 Development Kit contains the hardware you need to use your RCM3200
series RabbitCore module.

• RCM3209 module.

• Prototyping Board.

• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K.,
and European style plugs).

• USB programming cable with 10-pin header.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Figure 1. RCM3200 Development Kit

����������	
���
���
������ �
������������	
�

�����
���	
����

�
������������	
�

�
��
	�����
�	���

Rabbit, RabbitCore, Dynamic C, and Digi are registered trademarks of Digi International Inc.

RabbitCore® RCM3200
RCM3200 RabbitCore modules feature the Rabbit 3000 microprocessor operating at 44.2 MHz with an
option for 10/100 Base-T Ethernet. These Getting Started instructions included with the Development Kit
will help you get the RCM3209 included with the Development Kit up and running so that you can run the
sample programs to explore its capabilities and develop your own applications.

Development Kit Contents
The RCM3200 Development Kit contains the following items:

• RCM3209 module.

• Prototyping Board.

• Universal AC adapter, 12 V DC, 1 A (includes Canada/Japan/U.S., Australia/N.Z., U.K., and
European style plugs).

• USB programming cable with 10-pin header.

• Dynamic C® CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• A bag of accessory parts for use on the Prototyping
Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Visit our online Rabbit store at www.rabbit.com/store/ for
the latest information on peripherals and accessories that
are available for the RCM3200 RabbitCore modules.

Installing Dynamic C®

Insert the CD from the Development Kit in
your PC’s CD-ROM drive. If the installation
does not auto-start, run the setup.exe pro-
gram in the root directory of the Dynamic C
CD. Install any optional Dynamic C modules
or packs after you install Dynamic C.

�����
	�
�����	���

���������

�����

���

�����

���

��� ��� ���

���

���

���

����������

��
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

���
���
���

�

�������
���
��� ���

��
�

��
�

	��

	��

	��

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �

!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���	��
�

	���
�

��

��

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	�
�%

��

	�
�

	�� # �

��

��

�%

��

��

����
	���
�

	��

������

�����

������

�����

	�
�

	�
�

��
�

���

���

��

��
�

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���
	���

��

���
#�

#�
���

�

	��

�

	�� 	��

��
�

��
�

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�� ��

�

��
�

��
�

��

��
�

��
�

��
�

��
�

��
�

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �

!	��
"�

	��
	���

	��

	���

	���

	���

	���

	�

	��

	�	%

	�

	� 	��

	��

	���

	���

�)**+,-

#�

��
	���
�

�	��

�"��

User’s Manual 7

1.4.2 Software

The RCM3200 and the RCM3220 are programmed using version 9.21 or later of Rabbit’s
Dynamic C. A compatible version is included on the Development Kit CD-ROM.
Dynamic C v. 9.60, which is required for the related RCM3209 and RCM3229 RabbitCore
modules, includes the popular µC/OS-II real-time operating system, point-to-point proto-
col (PPP), FAT file system, RabbitWeb, and other select libraries that were previously sold
as indidual Dynamic C modules.

Rabbit also offers for purchase the Rabbit Embedded Security Pack featuring the Secure
Sockets Layer (SSL) and a specific Advanced Encryption Standard (AES) library. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support subscription is also available for purchase. Visit our Web site at
www.rabbit.com for further information and complete documentation, or contact your
Rabbit sales representative or authorized distributor.

1.4.3 Connectivity Interface Kits

Rabbit has available a Connector Adapter Board.

• Connector Adapter Board (Part No. 151-0114)—allows you to plug the RCM3200/
RCM3220 whose headers have a 2 mm pitch into header sockets with a 0.1" pitch.

Visit our Web site at www.rabbit.com or contact your Rabbit sales representative or autho-
rized distributor for further information.

1.4.4 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, use your browser to find and load default.htm in the docs
folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.

http://www.rabbit.com/products/dc/
http://www.rabbit.com/products/Peripherals/

8 RabbitCore RCM3200

User’s Manual 9

2. HARDWARE SETUP

This chapter describes how to set up and connect an RCM3200 series
module and the Prototyping Board included in the Development Kit.

NOTE: This chapter (and this manual) assume that you have the RCM3200 Development
Kit. If you purchased an RCM3200 series module by itself, you will have to adapt the
information in this chapter and elsewhere to your test and development setup.

2.1 Install Dynamic C
To develop and debug programs for an RCM3200 series RabbitCore module (and for all
other Rabbit hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C, do so now by inserting the Dynamic C CD from
the Development Kit in your PC’s CD-ROM drive. If autorun is enabled, the CD installa-
tion will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows
Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system.
The installation allows you to choose the COM port that will be used. The default selec-
tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer-
tain which port is available, select COM1. This selection can be changed later within
Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop.
One icon is for Dynamic C, one opens the documentation menu, and the third is for the
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased the optional Dynamic C Rabbit Embedded Security Pack, install it
after installing Dynamic C. You must install the Rabbit Embedded Security Pack in the
same directory where Dynamic C was installed.

10 RabbitCore RCM3200

2.2 Hardware Connections
There are three steps to connecting the Prototyping Board for use with Dynamic C and the
sample programs:

1. Attach the RCM3200 series RabbitCore module to the Prototyping Board.
2. Connect the programming cable between the RCM3200 series RabbitCore module and

the workstation PC.
3. Connect the power supply to the Prototyping Board.

User’s Manual 11

2.2.1 Step 1 — Attach Module to Prototyping Board

Turn the RCM3200 series module so that the Ethernet jack extends off the Prototyping
Board, as shown in Figure 2 below. Align the pins from the headers on the bottom side of
the module into header sockets RCM2JA and RCM2JB on the Prototyping Board (these
sockets were labeled J12 and J13 on earlier versions of the Prototyping Board).

Figure 2. Install the RCM3200 Series Module on the Prototyping Board

Although you can install a single module into either the MASTER or the SLAVE position
on the Prototyping Board, all the Prototyping Board features (switches, LEDs, serial port
drivers, etc.) are connected to the MASTER position — install a single module in the
MASTER position.

NOTE: It is important that you line up the pins from the headers on the bottom side of the
RCM3200 module exactly with the corresponding pins of header sockets RCM2JA and
RCM2JB on the Prototyping Board. The header pins may become bent or damaged if
the pin alignment is offset, and the module will not work. Permanent electrical damage
to the module may also result if a misaligned module is powered up.

Press the module’s pins firmly into the Prototyping Board header sockets—press down in
the area above the header pins using your thumbs or fingers over the connectors as shown
in Figure 2. Do not press down on the middle of the RCM3200 series module to avoid
flexing the module, which could damage the module or the components on the module.

Should you need to remove the RCM3200 module, grasp it with your fingers along the sides
by the connectors and gently work the module up to pull the pins away from the sockets
where they are installed. Do not remove the module by grasping it at the top and bottom.

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���
	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

�� !"##��
��
�	������
��������

������������

$�������
������
��
�%

#�

	
�

	�

	��

�
�

�

#�

�
�

	�

��
�

	�

��
��
��
�� 	

�

&���

	
�

	
%

�
�

�
�

	��

#�

	
�

#�

�
�

	
�

	��
�

�%
��#

���

���

�
��

�
��

�
�� ��%

	
��

�
�

�
�

�
�

�
%

��

�

�
��

�
��

�
��

���

��

�
��

�
��

�
��

�
�

�
��

�
��

���

���

�
��#�

�
�%

	�%

�
��

���
&�

	��	��	��

���
��

	��

���
���

���

�
��

	�� #�

	�

	��

�
��

�
�%

	��

	��
	��	��

�

�
��

� #
%

�
��

�
��

�
�

�
��

�
��

���
���

�
��

	
��

&�

	
��

�
�

��� ���

#�

���
	��

	�%

	
�

.�
	�����

	��

	
�����

���

�
	

�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

���

	
��

	����
��

#�

.�

�
��

�
�%

	
��

/	����!	������0112
30456*0-�7488+,+9*:

12 RabbitCore RCM3200

2.2.2 Step 2 — Connect Programming Cable

The programming cable connects the RCM3200 to the PC running Dynamic C to down-
load programs and to monitor the RCM3200 module during debugging.

2.2.2.1 RCM3209 and RCM3229

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on
the RCM3209/RCM3229 module as shown in Figure 3(a). Be sure to orient the marked
(usually red) edge of the cable towards pin 1 of the connector. (Do not use the DIAG
connector, which is used for a normal serial connection.)

Figure 3(a). Connect Programming Cable to RCM3209/RCM3229

Connect the other end of the programming cable to an available USB port on your PC or
workstation. Your PC should recognize the new USB hardware, and the LEDs in the
shrink-wrapped area of the USB programming cable will flash.

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���

	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

#�

	
�

	�

	��

�
�

�

#�

�
�

	�

��
�

	�

��
��
��
�� 	

�

&���

	
�

	
%

�
�

�
�

	��

#�

	
�

#�

�
�

	
�

	��
�

�%
��#

���

���

�
��

�
��

�
�� ��%

	
��

�
�

�
�

�
�

�
%

��

�

�
��

�
��

�
��

���

��

�
��

�
��

�
��

�
�

�
��

�
��

���

���

�
��#�

�
�%

	�%

�
��

���
&�

	��	��	��

���
��

	��

���
���

���

�
��

	�� #�

	�

	��

�
��

�
�%

	��

	��
	��	��

�

�
��

� #
%

�
��

�
��

�
�

�
��

�
��

���
���

�
��

	
��

&�

	
��

�
�

��� ���

#�

���
	��

	�%

	
�

.�
	�����

	��

	
�����

���

�
	

�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

���

	
��

	����
��

#�

.�

�
��

�
�%

	
��

�1
�������;1,*

�
	
�
�

�

�
"�
�

�
	
�
�

�101,+7�+75+

�
��
	�������	���

User’s Manual 13

2.2.2.2 RCM3200 and RCM3220

Connect the 10-pin connector of the programming cable labeled PROG to header J3 on
the RCM3200 module as shown in Figure 3(b). Be sure to orient the marked (usually red)
edge of the cable towards pin 1 of the connector. (Do not use the DIAG connector, which is
used for a normal serial connection.)

Figure 3(b). Connect Programming Cable to RCM3200

NOTE: Be sure to use the serial programming cable (part number 101-0542)—the pro-
gramming cable has blue shrink wrap around the RS-232 converter section located in
the middle of the cable. The USB programming cable and programming cables with red
or clear shrink wrap from other Rabbit kits are not designed to work with
RCM3200/RCM3220 modules.

Connect the other end of the programming cable to a COM port on your PC.

NOTE: It may be possible to use an RS-232/USB converter with the serial programming
described in this section. An RS-232/USB converter (part number 20-151-0178) is
available through the Web store. Note that not all RS-232/USB converters work with
Dynamic C.

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��
	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���

	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

#�

#�

	
�%

	
�%

	��

��

���
�

�
%

�
�� �
��

�
��

�
�

�
�%

�
��

�
��

�
��

	��

	��

	��

	�

	
��

&�

��� 	��

	
��

	
��

	��

���

	
��

	
�
� ���

&�

�
%�

�%����

	��

	
��

	��
���

���

	���	��

����
��

��%

���
���

��

#%

	
��

	
�%

���

	
��

�
�� 	
��	
�����

�
��

���

��

	��

	
��

	��

�
��

�
��

	�%

���

���

�
�%

�
��

�
��

�
��

�
�

���

�
�

�
�

�
�%

�
��

�
��

�
��

�
��

	
��

	��

�
��

	��

�
��

	��
�

	��

�
��

�
��

	��
	�%

	�
	�

	�
	%�

�

	�
	��

�
�

�
�
�
���

�
��
�
�

�

#�

#�

��

.�

�
��

	��

�
"�
�

�
	
�
�

�101,+7�+75+

�1
�������;1,*

�
��
	�������	���

�
	
�
�

�

�101,+7
36,492�<,);

http://www.rabbit.com/store/

14 RabbitCore RCM3200

2.2.3 Step 3 — Connect Power

When all other connections have been made, you can connect power to the Prototyping
Board.

If you have the universal power supply, prepare the AC adapter for the country where it
will be used by selecting the plug. The RCM3200 Development Kit presently includes
Canada/Japan/U.S., Australia/N.Z., U.K., and European style plugs. Snap in the top of the
plug assembly into the slot at the top of the AC adapter as shown in Figure 4, then press
down on the spring-loaded clip below the plug assembly to allow the plug assembly to
click into place.

Connect the 3-pin connector from the AC adapter to header J9 on the Prototyping Board as
shown in Figure 4 below. A plug-type jack is available at J11 for other AC adapters.

Figure 4. Power Supply Connections

Plug in the AC adapter. The red power lamp on the Prototyping Board to the left of jack
J11 should light up. The RCM3200 and the Prototyping Board are now ready to be used.

NOTE: A RESET button is provided on the Prototyping Board to allow hardware reset
without disconnecting power.

To power down the Prototyping Board, unplug the power connector from J11. You should
disconnect power before making any circuit adjustments in the prototyping area, changing
any connections to the board, or removing the RCM3200 from the Prototyping Board.

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���

	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

���	
	���
#�

	
�

	�

	��

�
�

�

#�

�
�

	�

��
�

	�

��
��
��
�� 	

�

&���

	
�

	
%

�
�

�
�

	��

#�

	
�

#�

�
�

	
�

	��
�

�%
��#

���

���

�
��

�
��

�
�� ��%

	
��

�
�

�
�

�
�

�
%

��

�

�
��

�
��

�
��

���

��

�
��

�
��

�
��

�
�

�
��

�
��

���

���

�
��#�

�
�%

	�%

�
��

���
&�

	��	��	��

���
��

	��

���
���

���

�
��

	�� #�

	�

	��

�
��

�
�%

	��

	��
	��	��

�

�
��

� #
%

�
��

�
��

�
�

�
��

�
��

���
���

�
��

	
��

&�

	
��

�
�

��� ���

#�

���
	��

	�%

	
�

.�
	�����

	��

	
�����

���

�
	

�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

���

	
��

	����
��

#�

.�

�
��

�
�%

	
��

�����
�������������

�&�&'

"93+,*�*)=�49*1�301*

�,+33�71<9�19�>04;?
39);�;0@5�49*1�;0)>+�

�
������
�����	���

�����	�
�������������

User’s Manual 15

2.2.3.1 Overseas Development Kits

Development kits sold outside North America up to May, 2008, included a header connec-
tor that may be connected to 3-pin header J9 on the Prototyping Board. The connector may
be attached either way as long as it is not offset to one side. The red and black wires from
the connector can then be connected to the positive and negative connections on your
power supply. The power supply should deliver 8 V–24 V DC at 8 W.

16 RabbitCore RCM3200

2.3 Starting Dynamic C
NOTE: Dynamic C v. 9.60 or a later version is required if you are using an RCM3209 or

an RCM3229 RabbitCore module.

Once the RCM3200 is connected as described in the preceding pages, start Dynamic C by
double-clicking on the Dynamic C icon on your desktop or in your Start menu. Select
Code and BIOS in Flash, Run in RAM on the “Compiler” tab in the Dynamic C Options
> Project Options menu. Click OK.

If you are using a USB port to connect your computer to the RCM3200 module, choose
Options > Project Options and select “Use USB to Serial Converter” under the
Communications tab. Click OK.

2.4 Run a Sample Program
Use the File menu to open the sample program PONG.C, which is in the Dynamic C
SAMPLES folder. Press function key F9 to compile and run the program. The STDIO
window will open on your PC and will display a small square bouncing around in a box.

This program shows that the CPU is working. The sample program described in
Section 6.5, “Run the PINGME.C Sample Program,” tests the TCP/IP portion of the board.

2.4.1 Troubleshooting

If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

• Check that the RCM3200 is powered correctly — the red power lamp on the Prototyping
Board should be lit when the RCM3200 is mounted on the Prototyping Board and the AC
adapter is plugged in.

• Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the PROG connector, not the DIAG connector, is plugged in to the program-
ming port on the RCM3200 with the marked (colored) edge of the programming cable
towards pin 1 of the programming header.

• Ensure that the RCM3200 module is firmly and correctly installed in its connectors on
the Prototyping Board.

• Dynamic C uses the COM port or USB port specified during installation. Select a dif-
ferent COM port within Dynamic C. From the Options menu, select Project Options,
then select Communications. Select another COM port from the list, then click OK.
Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C still reports it
is unable to locate the target system, repeat the above steps until you locate the COM
port used by the programming cable.

• If you get an error message when you plugged the programming cable into a USB port,
you will have to install USB drivers. Drivers for Windows XP are available in the
Dynamic C Drivers\Rabbit USB Programming Cable\WinXP_2K folder —
double-click DPInst.exe to install the USB drivers. Drivers for other operating sys-
tems are available online at www.ftdichip.com/Drivers/VCP.htm.

http://www.ftdichip.com/Drivers/VCP.htm

User’s Manual 17

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load the sample program, it is possible that
your PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate.

2.5 Where Do I Go From Here?
If the sample program ran fine, you are now ready to go on to other sample programs and to
develop your own applications. The source code for the sample programs is provided to allow
you to modify them for your own use. The RCM3200 User’s Manual also provides
complete hardware reference information and describes the software function calls for the
RCM3200 and the RCM3220, the Prototyping Board, and the optional LCD/keypad module.
The RCM3209/RCM3229 User’s Manual also provides complete hardware reference infor-
mation and describes the software function calls for the RCM3209 and the RCM3229, the
Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual and the
Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1 Technical Support

NOTE: If you purchased your RCM3200 through a distributor or through a Rabbit partner,
contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

18 RabbitCore RCM3200

User’s Manual 19

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3200 (and for all
other Rabbit hardware), you must install and use Dynamic C.

3.1 Introduction
To help familiarize you with the RCM3200 modules, Dynamic C includes several sample
programs. Loading, executing and studying these programs will give you a solid hands-on
overview of the RCM3200’s capabilities, as well as a quick start using Dynamic C as an
application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C
programming language. If you do not, see the introductory pages of the Dynamic C
User’s Manual for a suggested reading list.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3200 module must be plugged in to the Prototyping Board as described in
Chapter 2, “Hardware Setup.”

2. Dynamic C must be installed and running on your PC.

3. The RCM3200 module must be connected to your PC through the serial programming
cable.

4. Power must be applied to the RCM3200 through the Prototyping Board.

Refer to Chapter 2, “Hardware Setup,” if you need further information on these steps.

If you are using an RCM3200 or RCM3220, remember to allow the compiler to run the
application in the program execution SRAM by selecting Code and BIOS in Flash, Run
in RAM from the Dynamic C Options > Project Options > Compiler menu.

To run a sample program, open it with the File menu, then press function key F9 to com-
pile and run the program.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

20 RabbitCore RCM3200

3.2 Sample Programs
Of the many sample programs included with Dynamic C, several are specific to the
RCM3200. Sample programs illustrating the general operation of the RCM3200, and
serial communication are provided in the SAMPLES\RCM3200 folder. Each sample pro-
gram has comments that describe the purpose and function of the program. Follow the
instructions at the beginning of the sample program.

• CONTROLLED.C—uses the STDIO window to demonstrate digital outputs by toggling
LEDs DS1 and DS2 on the Prototyping Board on and off.

Parallel Port G bit 6 = LED DS1
Parallel Port G bit 7 = LED DS2

Once you have compiled and run this program, you will be prompted via the Dynamic
C STDIO window to select LED DS1 or DS2. Use your PC keyboard to make your
selection.

Once you have selected the LED, you will be prompted to select to turn the LED either
ON or OFF. A logic low will light up the LED you selected.

• FLASHLED1.c—demonstrates the use of costatements to flash LEDs DS1 and DS2 on
the Prototyping Board at different rates. Once you have compiled and run this program,
LEDs DS1 and DS2 will flash on/off at different rates.

• FLASHLED2.c—demonstrates the use of cofunctions and costatements to flash LEDs
DS1 and DS2 on the Prototyping Board at different rates. Once you have compiled and
run this program, LEDs DS1 and DS2 will flash on/off at different rates.

• TOGGLESWITCH.c—demonstrates the use of costatements to detect switches using the
press-and-release method of debouncing. LEDs DS1 and DS2 on the Prototyping
Board are turned on and off when you press switches S2 and S3.

• IR_DEMO.c—Demonstrates sending Modbus ASCII packets between two Prototyping
Board assemblies via the IrDA transceivers with the IrDA transceivers facing each other.
Note that this sample program will only work with the RCM30/31/32XX Prototyping
Board.

First, compile and run this program on one Prototyping Board assembly, then remove
the programming cable and press the RESET button on the Prototyping Board so that
the first RabbitCore module is operating in the Run mode. Then connect the program-
ming cable to the second Prototyping Board assembly with the RCM3200 and compile
and run the same sample program. With the programming cable still connected to the
second Prototyping Board assembly, press switch S2 on the second Prototyping Board
to transmit a packet. Once the first Prototyping Board assembly receives a test packet, it
will send back a response packet that will be displayed in the Dynamic C STDIO win-
dow. The test packets and response packets have different codes.

Once you have loaded and executed these five programs and have an understanding of
how Dynamic C and the RCM3200 modules interact, you can move on and try the other
sample programs, or begin building your own.

User’s Manual 21

3.2.1 Serial Communication
The following sample programs can be found in the SAMPLES\RCM3200\SERIAL folder.

• FLOWCONTROL.C—This program demonstrates hardware flow control by configuring
Serial Port C (PC3/PC2) for CTS/RTS with serial data coming from TxB at 115,200 bps.
One character at a time is received and is displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie TxB and RxB
together on the RS-232 header at J5, and you will also tie TxC and
RxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

A repeating triangular pattern should print out in the STDIO window.
The program will periodically switch flow control on or off to demonstrate the effect of
no flow control.

• PARITY.C—This program demonstrates the use of parity modes by
repeatedly sending byte values 0–127 from Serial Port B to Serial Port
C. The program will switch between generating parity or not on Serial
Port B. Serial Port C will always be checking parity, so parity errors
should occur during every other sequence.

To set up the Prototyping Board, you will need to tie TxB and RxC together on the
RS-232 header at J5 using the jumpers supplied in the Development Kit as shown in the
diagram.

The Dynamic C STDIO window will display the error sequence.

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial
communication. Lower case characters are sent by TxC, and are
received by RxB. The characters are converted to upper case and are
sent out by TxB, are received by RxC, and are displayed in the
Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie TxB and RxC together on the
RS-232 header at J5, and you will also tie RxB and TxC together using the jumpers
supplied in the Development Kit as shown in the diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication
with flow control on Serial Port C and data flow on Serial Port B.

To set up the Prototyping Board, you will need to tie TxB and RxB
together on the RS-232 header at J5, and you will also tie TxC and
RxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

Once you have compiled and run this program, you can test flow con-
trol by disconnecting TxC from RxC while the program is running. Characters will no
longer appear in the STDIO window, and will display again once TxC is connected
back to RxC.

()
	(����(�

����(���	(�

()
	(�

�	(�������(�

�(�

()
	(����(�

����(���	(�

()
	(����(�

����(���	(�

22 RabbitCore RCM3200

• SWITCHCHAR.C—This program demonstrates transmitting and then receiving an
ASCII string on Serial Ports B and C. It also displays the serial data received from both
ports in the STDIO window.

To set up the Prototyping Board, you will need to tie TxB and RxC
together on the RS-232 header at J5, and you will also tie RxB and
TxC together using the jumpers supplied in the Development Kit as
shown in the diagram.

Once you have compiled and run this program, press and release S2
and S3 on the Prototyping Board. The data sent between the serial ports will be dis-
played in the STDIO window.

Two sample programs,
SIMPLE485MASTER.C and
SIMPLE485SLAVE.C, are available to
illustrate RS-485 master/slave com-
munication. To run these sample pro-
grams, you will need a second Rabbit-
based system with RS-485, and you
will also have to add an RS-485 trans-
ceiver such as the SP483E and bias
resistors to the RCM30/31/32XX
Prototyping Board.

The diagram shows the connections. You will have to connect PC0 and PC1 (Serial Port D)
on the RCM30/31/32XX Prototyping Board to the RS-485 transceiver, and you will con-
nect PD4 to the RS-485 transceiver to enable or disable the RS-485 transmitter.

The RS-485 connections between the slave and master devices are as follows.

• RS485+ to RS485+

• RS485– to RS485–

• GND to GND

• SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a slave RCM3200. The slave will send back converted upper case
letters back to the master RCM3200 and display them in the STDIO window. Use
SIMPLE485SLAVE.C to program the slave RCM3200.

• SIMPLE485SLAVE.C—This program demonstrates a simple RS-485 transmission of
lower case letters to a master RCM3200. The slave will send back converted upper case
letters back to the master RCM3200 and display them in the STDIO window. Use
SIMPLE485MASTER.C to program the master RCM3200.

3.2.2 Other Sample Programs

Section 6.5 describes the TCP/IP sample programs, and Appendix C.8 provides sample
programs for the optional LCD/keypad module that can be installed on the Prototyping
Board.

()
	(����(�

����(���	(�

�%���

����

�%���

�%��

�%�A

�

�

������
����	�

���

���

�

��
���
���
���

�"

	�

��

!	�

�

��*+,)
�-��

User’s Manual 23

4. HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware
subsystems of the RCM3200. Appendix A, “RCM3200 Specifica-
tions,” provides complete physical and electrical specifications.

Figure 5 shows these Rabbit-based subsystems designed into the RCM3200.

Figure 5. RCM3200 Subsystems

��������
���

������
���

�	������
�� �����

�����'�.
!###

	���� !
�" �#

� �$�����
%&���� !'

 $
����

�$#(�)($

� $$(�*+� ��,&
�-��,-$

������
*�������
�/��
�	��!�0��	���
�

��+���.���+/01
�(�- "���!!,)-� $-�)
2�-3(����)�!�$#(�4� �2

�,�$�!(�+�&(�-5-�
 &&"-� $-�)�

�(3("
��)3(�$(�

� 1�*���������	�

24 RabbitCore RCM3200

4.1 RCM3200 Digital Inputs and Outputs
The RCM3200 has 52 parallel I/O lines grouped in seven 8-bit ports available on headers
J1 and J2. The 44 bidirectional I/O lines are located on pins PA0–PA7, PB0, PB2–PB7,
PD2–PD7, PE0–PE1, PE3–PE7, PF0–PF7, and PG0–PG7.

Figure 6 shows the RCM3200 pinouts for headers J1 and J2.

Figure 6. RCM3200 Pinouts

The pinouts for the RCM3000, RCM3100, and RCM3200 are compatible. Visit the Web site for
further information.

Headers J1 and J2 are standard 2 × 34 headers with a nominal 2 mm pitch. An RJ-45 Ether-
net jack is also included with the RCM3200 series.

The signals labeled PD2, PD3, PD6, and PD7 on header J1 (pins 29–32) and the pins that
are not connected (pins 33–34 on header J1 and pin 33 on header J2) are reserved for
future use.

2���3 ������������	��	�������
�����������������������
���

!	��
���
���
���
���
���
���
���
���
��
���
���

!"�	�
�����
�	��
�����
9�>�

��
���
���
���
���
���
���
���
���
���
���
!"��	
����
!	����B"�
����B� �
���
���

��
����#�
���
���
���
��
���
��
���
���
���
���'	(�
���
���
���
���
���
9�>�

���
���
���
���
���
���
���
��
���
���

���'�(�
��
���
���
���
���
9�>�

��

9�>��C�91*�>199+>*+7

User’s Manual 25

Figure 7 shows the use of the Rabbit 3000 microprocessor ports in the RCM3200 modules.

Figure 7. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3200 are configurable, and
so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000 factory defaults
and the alternate configurations.

�����'�.
!###

	��$�� 	��$�� 	��$�

%��$#(�)($�	��$'

	��$��

��A��� ��?
���A���

��A���?
���A���

���A���

!	����
!"�	�
!"��	

6 $�#2��
����-!(��

�"����
�,4"(�
�" 3(�	��$

�("+�-!(��"���

��� � ��,&�� $$(�*
�,&&��$ �" �#

	��$��
%�(�- "�	��$���.��7�
'

	���� !!-)�
	��$

%�(�- "�	��$��'

�$#(�)($
	��$���*6+,9+*�3459)03

���?����?�����#�

��?����?����

���?����?����

	��$�8
%�(�- "�	��$����7��'

���?����

���?����
	��$�� ��A���

��A���?
���A���

	��$�8
%��(�- "�	��$�'

�-����9:� !	��B"�

���?�!	��?
�����?�������

26 RabbitCore RCM3200

Table 2. RCM3200 Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes

H
ea

de
r J

1

1 GND

2 STATUS Output (Status) Output

3–10 PA[7:0] Parallel I/O

External data bus
(ID0–ID7)

Slave port data bus
(SD0–SD7)

11 PF3 Input/Output QD2A

12 PF2 Input/Output QD2B

13 PF1 Input/Output
QD1A
CLKC

14 PF0 Input/Output
QD1B
CLKD

15 PC0 Output TXD
Serial Port D

16 PC1 Input RXD

17 PC2 Output TXC
Serial Port C

18 PC3 Input RXC

19 PC4 Output TXB
Serial Port B

20 PC5 Input RXB

21 PC6 Output TXA Serial Port A
(programming port)22 PC7 Input RXA

23 PG0 Input/Output TCLKF Serial Clock F output

24 PG1 Input/Output RCLKF Serial Clock F input

25 PG2 Input/Output TXF
Serial Port F

26 PG3 Input/Output RXF

27 PD4 Input/Output ATXB

28 PD5 Input/Output ARXB

29 PD2 Input/Output TPOUT– *
Ethernet transmit port

30 PD3 Input/Output TPOUT+ *

31 PD6 Input/Output TPIN– *
Ethernet receive port

32 PD7 Input/Output TPIN+ *

33 LNK_OUT Output Max. current draw 1 mA
(see Note 1)34 ACT_OUT Output

* Pins 29–32 are reserved for future use.

User’s Manual 27

H
ea

de
r J

2
1 /RES Reset output Reset input Reset output from Reset

Generator

2 PB0 Input/Output CLKB

3 PB2 Input/Output
IA0
/SWR

External Address 0
Slave port write

4 PB3 Input/Output
IA1
/SRD

External Address 1
Slave port read

5 PB4 Input/Output
IA2
SA0

External Address 2
Slave port Address 0

6 PB5 Input/Output
IA3
SA1

External Address 3
Slave port Address 1

7 PB6 Input/Output IA4 External Address 4

8 PB7 Input/Output
IA5
/SLAVEATTN

External Address 5
Slave Attention

9 PF4 Input/Output
AQD1B
PWM0

10 PF5 Input/Output
AQD1A
PWM1

11 PF6 Input/Output
AQD2B
PWM2

12 PF7 Input/Output
AQD2A
PWM3

13 PE7 Input/Output
I7
/SCS

14 PE6 Input/Output I6

15 PE5 Input/Output
I5
INT1B

16 PE4 Input/Output
I4
INT0B

17 PE3 Input/Output I3

18 PE1 Input/Output
I1
INT1A

I/O Strobe 1
Interrupt 1A

19 PE0 Input/Output
I0
INT0A

I/O Strobe 0
Interrupt 0A

Table 2. RCM3200 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes

28 RabbitCore RCM3200

Notes

1. When using pins 33–34 on header J1 to drive LEDs, you must use an external buffer to
drive these external LEDs. These pins are not connected on the RCM3220, which does
not have the LEDs installed.

2. The VRAM voltage is temperature-dependent. If the VRAM voltage drops below about
1.2 V to 1.5 V, the contents of the battery-backed SRAM may be lost. If VRAM drops
below 1.0 V, the 32 kHz oscillator could stop running. Pay careful attention to this volt-
age if you draw any current from this pin.

Locations R45, R46, R53, R57, and R74 allow the population of 0 Ω resistors (jumpers)
that will be used to enable future options. These locations are currently unused.

H
ea

de
r J

2

20 PG7 Input/Output RXE
Serial Port E

21 PG6 Input/Output TXE

22 PG5 Input/Output RCLKE Serial Clock E input

23 PG4 Input/Output TCLKE Serial Clock E ouput

24 /IOWR Output External write strobe

25 /IORD Output External read strobe

26–27 SMODE0,
SMODE1

(0,0)—start executing at address zero
(0,1)—cold boot from slave port
(1,0)—cold boot from clocked Serial Port A

SMODE0 =1, SMODE1 = 1
Cold boot from asynchronous Serial Port A at
2400 bps (programming cable connected)

Also connected to
programming cable

28 /RESET_IN Input Input to Reset Generator

29 VRAM Output See Notes below table

30 VBAT_EXT 3 V battery Input Minimum battery
voltage 2.85 V

31 +3.3V Input 3.15–3.45 V DC

32 GND

33 n.c. Reserved for future use

34 GND

Table 2. RCM3200 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes

User’s Manual 29

4.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0–A19) and all the data lines (D0–D7) are routed inter-
nally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the
main data bus. Parallel Port B pins PB2–PB7 can also be used as an auxiliary address bus.

When using the external I/O bus, you must add the following line at the beginning of your
program.

#define PORTA_AUX_IO // required to enable external I/O bus

The STATUS output has three different programmable functions:

3. It can be driven low on the first op code fetch cycle.

4. It can be driven low during an interrupt acknowledge cycle.

5. It can also serve as a general-purpose output.

4.1.2 Other Inputs and Outputs

Two status mode pins, SMODE0 and SMODE1, are available as inputs. The logic state of
these two pins determines the startup procedure after a reset.

/RESET_IN is an external input used to reset the Rabbit 3000 microprocessor and the
RCM3200 memory. /RES is an output from the reset circuitry that can be used to reset
other peripheral devices.

4.1.3 5 V Tolerant Inputs

The RCM3200 operates over a voltage from 3.15 V to 3.45 V, but most RCM3200 input
pins, except /RESET_IN, VRAM, VBAT_EXT, and the power-supply pins, are 5 V toler-
ant. When a 5 V signal is applied to 5 V tolerant pins, they present a high impedance even if
the Rabbit power is off. The 5 V tolerant feature allows 5 V devices that have a suitable
switching threshold to be connected directly to the RCM3200. This includes HCT family
parts operated at 5 V that have an input threshold between 0.8 and 2 V.

NOTE: CMOS devices operated at 5 V that have a threshold at 2.5 V are not suitable for
direct connection because the Rabbit 3000 outputs do not rise above VDD, and is often
specified as 3.3 V. Although a CMOS input with a 2.5 V threshold may switch at 3.3 V,
it will consume excessive current and switch slowly.

In order to translate between 5 V and 3.3 V, HCT family parts powered from 5 V can be
used, and are often the best solution. There is also the “LVT” family of parts that operate
from 2.0 V to 3.3 V, but that have 5 V tolerant inputs and are available from many suppli-
ers. True level-translating parts are available with separate 3.3 V and 5 V supply pins, but
these parts are not usually needed, and have design traps involving power sequencing.

30 RabbitCore RCM3200

4.2 Serial Communication
The RCM3200 board does not have an RS-232 or an RS-485 transceiver directly on the
board. However, an RS-232 or RS-485 interface may be incorporated on the board the
RCM3200 is mounted on. For example, the Prototyping Board has a standard RS-232
transceiver chip.

4.2.1 Serial Ports

There are six serial ports designated as Serial Ports A, B, C, D, E, and F. All six serial
ports can operate in an asynchronous mode up to the baud rate of the system clock divided
by 8. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where
an additional bit is sent to mark the first byte of a message, is also supported. Serial Ports
A, B, C, and D can also be operated in the clocked serial mode. In this mode, a clock line
synchronously clocks the data in or out. Either of the two communicating devices can sup-
ply the clock. When the Rabbit 3000 provides the clock, the baud rate can be up to 80% of
the system clock frequency divided by 128, or 276,250 bps for a 44.2 MHz clock speed.

Serial Ports E and F can also be configured as SDLC/HDLC serial ports. The IrDA proto-
col is also supported in SDLC format by these two ports.

Serial Port A is available only on the programming port.

User’s Manual 31

4.2.2 Ethernet Port (RCM3200 only)

Figure 8 shows the pinout for the RJ-45 Ethernet port (J4). Note that some Ethernet con-
nectors are numbered in reverse to the order used here.

Figure 8. RJ-45 Ethernet Port Pinout

Three LEDs are placed next to the RJ-45 Ethernet
jack, one to indicate an Ethernet link (LNK), one to
indicate Ethernet activity (ACT), and one to indicate
when the RCM3200 is connected to a functioning
100Base-T network (SPD).

The transformer/connector assembly ground is con-
nected to the RCM3200 printed circuit board digital
ground via a ferrite bead, R42, as shown in Figure 9.

The RJ-45 connector is shielded to minimize EMI
effects to/from the Ethernet signals.

Figure 9. Isolation Resistor R42

��������

�(*+)�����

�����B�(�
�����B�(A
�����B	(�
�����B	(A

� %

�(*+)�(�4

��� !�"�������	�#

	��

��	����
$����

��	�

$����

32 RabbitCore RCM3200

4.2.3 Serial Programming Port

The RCM3200 serial programming port is accessed using header J3 or over an Ethernet
connection via the RabbitLink EG2110. The programming port uses the Rabbit 3000’s
Serial Port A for communication. Dynamic C uses the programming port to download and
debug programs.

The programming port is also used for the following operations.

• Cold-boot the Rabbit 3000 on the RCM3200 after a reset.

• Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

• Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODE0, SMODE1), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose CMOS output.

The /RESET_IN pin is an external input that is used to reset the Rabbit 3000 and the
RCM3200/RCM3220 onboard peripheral circuits. The serial programming port can be
used to force a hard reset on the RCM3200/RCM3220 by asserting the /RESET_IN signal.

Alternate Uses of the Serial Programming Port

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS I/O pin

The programming port may also be used as a serial port once the application is running.
The SMODE pins may then be used as inputs and the status pin may be used as an output.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

User’s Manual 33

4.3 Serial Programming Cable
The programming cable is used to connect the serial programming port of the RCM3200
to a PC serial COM port. The programming cable converts the RS-232 voltage levels used
by the PC serial port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3200
serial programming port at header J3, programs can be downloaded and debugged over the
serial interface.

The DIAG connector of the programming cable may be used on header J3 of the RCM3200
with the RCM3200 operating in the Run Mode. This allows the programming port to be
used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The RCM3200 is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in Run Mode when no programming
cable is attached. When the Rabbit 3000 is reset, the operating mode is determined by the
state of the SMODE pins. When the programming cable’s PROG connector is attached,
the SMODE pins are pulled high, placing the Rabbit 3000 in the Program Mode. When the
programming cable’s PROG connector is not attached, the SMODE pins are pulled low,
causing the Rabbit 3000 to operate in the Run Mode.

Figure 10. Switching Between Program Mode and Run Mode

�&�&'

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���

	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

#�

#�

	
�%

	
�%

	��

��

���
�

�
%

�
��

�
��

�
��

�
�

�
�%

�
��

�
��

�
��

	��

	��

	��

	�

	
��

&�

��� 	��

	
��

	
��

	��

���

	
��

	
�
� ���

&�

�
%�

�%����

	��

	
��

	��
���

���

	���	��

����
��

��%

���
���

��

#%

	
��

	
�%

���

	
��

�
�� 	
��	
�����

�
��

���

��

	��

	
��

	��

�
��

�
��

	�%

���

���

�
�%

�
��

�
��

�
��

�
�

���

�
�

�
�

�
�%

�
��

�
��

�
��

�
��

	
��

	��

�
��

	��

�
��

	��
�

	��

�
��

�
��

	��
	�%

	�
	�

	�
	%�

�

	�
	��

�
�

�
�
�
���

�
��
�
�

�

#�

#�

��

.�

�
��

	��

�
"�
�

�
	
�
�

�101,+7�+75+

�1
�������;1,*

�
��
	�������	���

�����������;;�<#()��#)�-)��!�2(=
����������������%&'�%�����	
���%(���
�)����	�����*������+�������,�)�����-���,���	�
.(���
��-�����������/��
 5$(���(!�3-)����� $$ �#-)��&���� !!-)��� 4"(�

34 RabbitCore RCM3200

A program “runs” in either mode, but can only be downloaded and debugged when the
RCM3200 is in the Program Mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port.

4.3.2 Standalone Operation of the RCM3200

The RCM3200 must be programmed via the Prototyping Board or via a similar arrange-
ment on a customer-supplied board. Once the RCM3200 has been programmed success-
fully, remove the serial programming cable from the programming connector and reset the
RCM3200. The RCM3200 may be reset by cycling the power off/on or by pressing the
RESET button on the Prototyping Board. The RCM3200 module may now be removed
from the Prototyping Board for end-use installation.

CAUTION: Disconnect power to the Prototyping Board or other boards when removing
or installing your RCM3200 module to protect against inadvertent shorts across the
pins or damage to the RCM3200 if the pins are not plugged in correctly. Do not reapply
power until you have verified that the RCM3200 module is plugged in correctly.

User’s Manual 35

4.4 Other Hardware
4.4.1 Clock Doubler

The RCM3200 takes advantage of the Rabbit 3000 microprocessor’s internal clock doubler.
A built-in clock doubler allows half-frequency crystals to be used to reduce radiated emis-
sions. The 44.2 MHz frequency specified for the RCM3200 and the RCM3220 is gener-
ated using a 22.12 MHz resonator.

The clock doubler may be disabled if 44.2 MHz clock speeds are not required. Disabling
the Rabbit 3000 microprocessor’s internal clock doubler will reduce power consumption
and further reduce radiated emissions. The clock doubler is disabled with a simple config-
uration macro as shown below.

4.4.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. By
default, the spectrum spreader is on automatically, but it may also be turned off or set to a
stronger setting. The means for doing so is through a simple configuration macro as shown
below.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information
on the spectrum-spreading setting and the maximum clock speed.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Normal spreading is the default, and usually no entry is needed. If you need to specify

normal spreading, add the line
ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is unnecessary for the RCM3200.

3. Click OK to save the macro. The spectrum spreader will now be set to the state specified
by the macro value whenever you are in the project file where you defined the macro.

36 RabbitCore RCM3200

4.5 Memory
4.5.1 SRAM

The RCM3200 and the RCM3220 have 512K of program execution SRAM installed at U8.
The RCM3200 and RCM3220 data SRAM installed at U6 is 256K, and the RCM3210 has
128K data SRAM installed at U6..

4.5.2 Flash EPROM

The RCM3200 is also designed to accept 256K to 512K of flash EPROM at U7.

NOTE: Rabbit recommends that any customer applications should not be constrained by
the sector size of the flash EPROM since it may be necessary to change the sector size
in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead,
define a “user block” area to store persistent data. The functions writeUserBlock()
and readUserBlock() are provided for this. Refer to the Rabbit 3000 Microprocessor
Designer’s Handbook and the Dynamic C Function Reference Manual for additional infor-
mation.

A Flash Memory Bank Select jumper configuration option based on 0 Ω surface-mounted
resistors exists at header JP4 on the RCM3200 RabbitCore modules. This option, used in
conjunction with some configuration macros, allows Dynamic C to compile two different
co-resident programs for the upper and lower halves of a 256K flash in such a way that both
programs start at logical address 0000. This option is not relevant to the RCM3200 Rabbit-
Core modules, which use 512K flash memories.

4.5.3 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes
automatically.

User’s Manual 37

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with Rabbit controllers and other controllers
based on the Rabbit microprocessor. Chapter 4 provides the
libraries and function calls related to the RCM3200.

5.1 More About Dynamic C
Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging in the real
environment. A complete reference guide to Dynamic C is contained in the Dynamic C
User’s Manual.

You have a choice of doing your software development in the flash memory or in the data
SRAM included on the RCM3200. The flash memory and SRAM options are selected
with the Options > Project Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application should be run from the program execution SRAM after the pro-
gramming cable is disconnected. Your final code must always be stored in flash memory
for reliable operation. For RCM3200 modules running at 44.2 MHz, which have a fast
program execution SRAM that is not battery-backed, you should select Code and
BIOS in Flash, Run in RAM from the Dynamic C Options > Project Options >
Compiler menu to store the code in flash and copy it to the fast program execution
SRAM at run-time to take advantage of the faster clock speed. This option optimizes
the performance of RCM3200 modules running at 44.2 MHz.

NOTE: Do not depend on the flash memory sector size or type. Due to the volatility of
the flash memory market, the RCM3200 and Dynamic C were designed to accommo-
date flash devices with various sector sizes.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 2000 and
later—see Rabbit’s Technical Note TN257, Running Dynamic C® With Windows Vista®,

38 RabbitCore RCM3200

for additional information if you are using a Dynamic C release prior to v. 9.60 under
Windows Vista. Programs can be downloaded at baud rates of up to 460,800 bps after the
program compiles.

Dynamic C has a number of standard features.

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.

User’s Manual 39

5.2 Dynamic C Function Calls
5.2.1 Digital I/O

The RCM3200 was designed to interface with other systems, and so there are no drivers
written specifically for the I/O. The general Dynamic C read and write functions allow
you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use
WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the external I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable external I/O bus

to the beginning of any programs using the external I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3200 directory provide further
examples.

5.2.2 SRAM Use

The RCM3200 has a battery-backed data SRAM and a program-execution SRAM.
Dynamic C provides the protected keyword to identify variables that are to be placed
into the battery-backed SRAM. The compiler generates code that creates a backup copy of
a protected variable before the variable is modified. If the system resets while the protected
variable is being modified, the variable's value can be restored when the system restarts.

The sample code below shows how a protected variable is defined and how its value can
be restored.

protected nf_device nandFlash;

int main() {
 ...

 _sysIsSoftReset(); // restore any protected variables

The bbram keyword may also be used instead if there is a need to store a variable in bat-
tery-backed SRAM without affecting the performance of the application program. Data
integrity is not assured when a reset or power failure occurs during the update process.

Additional information on bbram and protected variables is available in the Dynamic C
User’s Manual.

40 RabbitCore RCM3200

5.2.3 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delim-
ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both
libraries provide blocking functions, which do not return until they are finished transmit-
ting or receiving, and nonblocking functions, which must be called repeatedly until they
are finished. For more information, see the Dynamic C Function Reference Manual and
Technical Note 213, Rabbit 2000 Serial Port Software.

5.2.4 TCP/IP Drivers

The TCP/IP drivers are located in the TCPIP directory.

Complete information on these libraries and the TCP/IP functions is provided in the
Dynamic C TCP/IP User’s Manual.

5.2.5 Prototyping Board Function Calls

The functions described in this section are for use with the Prototyping Board features.
The source code is in the RCM32xx.LIB library in the Dynamic C SAMPLES\RCM3200
folder if you need to modify it for your own board design.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

User’s Manual 41

5.2.5.1 Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G
for use with the RCM3200 Prototyping Board.

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.

2. Unused configurable I/O are set as high outputs.

3. Only one RabbitCore module is plugged in, and is in the MASTER position on the Prototyping
Board.

3. The LCD/keypad module is disabled.

4. RS-485 is not enabled.

5. RS-232 is not enabled.

6. The IrDA transceiver is disabled.

7. LEDs are off.

RETURN VALUE
None.

void brdInit (void);

42 RabbitCore RCM3200

5.3 Upgrading Dynamic C
Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

The default installation of a patch or bug fix is to install the file in a directory (folder) dif-
ferent from that of the original Dynamic C installation. Rabbit recommends using a differ-
ent directory so that you can verify the operation of the patch without overwriting the
existing Dynamic C installation. If you have made any changes to the BIOS or to libraries,
or if you have programs in the old directory (folder), make these same changes to the
BIOS or libraries in the new directory containing the patch. Do not simply copy over an
entire file since you may overwrite a bug fix; of course, you may copy over any programs
you have written.

5.3.1 Extras

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits.

Starting with Dynamic C version 9.60, Dynamic C includes the popular µC/OS-II real-
time operating system, point-to-point protocol (PPP), FAT file system, RabbitWeb, and
other select libraries. Rabbit also offers for purchase the Rabbit Embedded Security Pack
featuring the Secure Sockets Layer (SSL) and a specific Advanced Encryption Standard
(AES) library.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support subscription is also available for purchase.

Visit our Web site at www.rabbit.com for further information and complete documentation.

http://www.rabbit.com/support/
http://www.rabbit.com/products/dc/

User’s Manual 43

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections
Programming and development can be done with the RCM3200 RabbitCore modules
without connecting the Ethernet port to a network. However, if you will be running the
sample programs that use the Ethernet capability or will be doing Ethernet-enabled devel-
opment, you should connect the RCM3200 module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card
(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

The Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit in a TCP/IP
tool kit. More information is available at www.rabbit.com.

NOTE: Although 10Base-T is the minimum required, 10/100Base-T or 100Base-T is
recommended to allow you to work with the full speed capabilities of the RCM3200.

1. Connect the AC adapter and the programming cable as shown in Section 2.2.2, “Step 2
— Connect Programming Cable.”

2. Ethernet Connections

There are four options for connecting the RCM3200 module to a network for develop-
ment and runtime purposes. The first two options permit total freedom of action in
selecting network addresses and use of the “network,” as no action can interfere with
other users. We recommend one of these options for initial development.

• No LAN — The simplest alternative for desktop development. Connect the
RCM3200’s Ethernet port directly to the PC’s network interface card using an RJ-45
crossover cable. A crossover cable is a special cable that flips some connections
between the two connectors and permits direct connection of two client systems. A
standard RJ-45 network cable will not work for this purpose.

• Micro-LAN — Another simple alternative for desktop development. Use a small Eth-
ernet 10Base-T hub and connect both the PC’s network interface card and the
RCM3200’s Ethernet port to it, using standard network cables.

http://www.rabbit.com/

44 RabbitCore RCM3200

The following options require more care in address selection and testing actions, as
conflicts with other users, servers and systems can occur:

• LAN — Connect the RCM3200’s Ethernet port to an existing LAN, preferably one to
which the development PC is already connected. You will need to obtain IP addressing
information from your network administrator.

• WAN — The RCM3200 is capable of direct connection to the Internet and other Wide
Area Networks, but exceptional care should be used with IP address settings and all
network-related programming and development. We recommend that development and
debugging be done on a local network before connecting a RabbitCore system to the
Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before
connecting the system to a LAN or WAN.

The PC running Dynamic C through the serial port on the RCM3200 does not need to
be the PC with the Ethernet card.

3. Apply Power

Plug in the AC adapter. The RCM3200 module is now ready to be used.

User’s Manual 45

6.2 TCP/IP Primer on IP Addresses
Obtaining IP addresses to interact over an existing, operating, network can involve a num-
ber of complications, and must usually be done with cooperation from your ISP and/or
network systems administrator. For this reason, it is suggested that the user begin instead
by using a direct connection between a PC and the RCM3200 board using an Ethernet
crossover cable or a simple arrangement with a hub. (A crossover cable should not be con-
fused with regular straight through cables.)

In order to set up this direct connection, the user will have to use a PC without networking,
or disconnect a PC from the corporate network, or install a second Ethernet adapter and set
up a separate private network attached to the second Ethernet adapter. Disconnecting your
PC from the corporate network may be easy or nearly impossible, depending on how it is
set up. If your PC boots from the network or is dependent on the network for some or all
of its disks, then it probably should not be disconnected. If a second Ethernet adapter is
used, be aware that Windows TCP/IP will send messages to one adapter or the other,
depending on the IP address and the binding order in Microsoft products. Thus you should
have different ranges of IP addresses on your private network from those used on the cor-
porate network. If both networks service the same IP address, then Windows may send a
packet intended for your private network to the corporate network. A similar situation will
take place if you use a dial-up line to send a packet to the Internet. Windows may try to
send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the
Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to
192.168.255.255.

The RCM3200 board uses a 10/100Base-T type of Ethernet connection, which is the most
common scheme. The RJ-45 connectors are similar to U.S. style telephone connectors, are
except larger and have 8 contacts.

An alternative to the direct connection using a crossover cable is a direct connection using
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are
low in cost and are readily available. The RCM3200 board uses 10 Mbps or 100 Mbps
Ethernet, so the hub or Ethernet adapter must be either a 10 Mbps unit or a 10/100 unit that
adapts to either 10 or 100 Mbps.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines
include a combination of proxy servers and firewalls that filter and multiplex Internet traf-
fic. In the configuration below, the RCM3200 board could be given a fixed address so any
of the computers on the local network would be able to contact it. It may be possible to
configure the firewall or proxy server to allow hosts on the Internet to directly contact the
controller, but it would probably be easier to place the controller directly on the external
network outside of the firewall. This avoids some of the configuration complications by
sacrificing some security.

46 RabbitCore RCM3200

If your system administrator can give you an Ethernet cable along with its IP address, the
netmask and the gateway address, then you may be able to run the sample programs with-
out having to setup a direct connection between your computer and the RCM3200 board.
You will also need the IP address of the nameserver, the name or IP address of your mail
server, and your domain name for some of the sample programs.

Hub(s)

Firewall
Proxy
Server

T1 in
Adapter

Ethernet Ethernet

Network

RCM3200
BoardTypical Corporate Network

User’s Manual 47

6.2.1 IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods,
for example:

216.103.126.155

10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32-bit number
consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-
cent IP addresses. There are always 2N IP addresses in a local network. The netmask (also
called subnet mask) determines how many IP addresses belong to the local network. The
netmask is also a 32-bit address expressed in the same form as the IP address. An example
netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion, and this means that 28
addresses are a part of the local network. Applied to the IP address above
(216.103.126.155), this netmask would indicate that the following IP addresses belong to
the local network:

216.103.126.0

216.103.126.1

216.103.126.2

etc.

216.103.126.254

216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address
(216.102.126.0) is used to identify the local network. The highest address
(216.102.126.255) is used as a broadcast address. Usually one other address is used for the
address of the gateway out of the network. This leaves 256 - 3 = 253 available IP
addresses for the example given.

48 RabbitCore RCM3200

6.2.2 How IP Addresses are Used

The actual hardware connection via an Ethernet uses Ethernet adapter addresses (also
called MAC addresses). These are 48-bit addresses and are unique for every Ethernet
adapter manufactured. In order to send a packet to another computer, given the IP address
of the other computer, it is first determined if the packet needs to be sent directly to the
other computer or to the gateway. In either case, there is an IP address on the local net-
work to which the packet must be sent. A table is maintained to allow the protocol driver
to determine the MAC address corresponding to a particular IP address. If the table is
empty, the MAC address is determined by sending an Ethernet broadcast packet to all
devices on the local network asking the device with the desired IP address to answer with
its MAC address. In this way, the table entry can be filled in. If no device answers, then
the device is nonexistent or inoperative, and the packet cannot be sent.

IP addresses are arbitrary and can be allocated as desired provided that they don’t conflict
with other IP addresses. However, if they are to be used with the Internet, then they must
be numbers that are assigned to your connection by proper authorities, generally by dele-
gation via your service provider.

Each RCM3200 RabbitCore module has its own unique MAC address, which consists of
the prefix 0090C2 followed by the code that appears on the label affixed to the RCM3200
module. For example, a MAC address might be 0090C2C002C0.

TIP: You can always verify the MAC address on your board by running the sample pro-
gram DISPLAY_MAC.C from the SAMPLES\TCPIP folder.

User’s Manual 49

6.2.3 Dynamically Assigned Internet Addresses

In many instances, there are no fixed IP addresses. This is the case when, for example, you
are assigned an IP address dynamically by your dial-up Internet service provider (ISP) or
when you have a device that provides your IP addresses using the Dynamic Host Configu-
ration Protocol (DHCP). The RCM3200 RabbitCore modules can use such IP addresses to
send and receive packets on the Internet, but you must take into account that this IP
address may only be valid for the duration of the call or for a period of time, and could be
a private IP address that is not directly accessible to others on the Internet. These private
address can be used to perform some Internet tasks such as sending e-mail or browsing the
Web, but usually cannot be used to participate in conversations that originate elsewhere on
the Internet. If you want to find out this dynamically assigned IP address, under Windows
XP you can run the ipconfig program while you are connected and look at the interface
used to connect to the Internet.

Many networks use private IP addresses that are assigned using DHCP. When your com-
puter comes up, and periodically after that, it requests its networking information from a
DHCP server. The DHCP server may try to give you the same address each time, but a
fixed IP address is usually not guaranteed.

If you are not concerned about accessing the RCM3200 from the Internet, you can place
the RCM3200 on the internal network using a private address assigned either statically or
through DHCP.

50 RabbitCore RCM3200

6.3 Placing Your Device on the Network
In many corporate settings, users are isolated from the Internet by a firewall and/or a
proxy server. These devices attempt to secure the company from unauthorized network
traffic, and usually work by disallowing traffic that did not originate from inside the net-
work. If you want users on the Internet to communicate with your RCM3200, you have
several options. You can either place the RCM3200 directly on the Internet with a real
Internet address or place it behind the firewall. If you place the RCM3200 behind the fire-
wall, you need to configure the firewall to translate and forward packets from the Internet
to the RCM3200.

User’s Manual 51

6.4 Running TCP/IP Sample Programs
We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require you to connect your PC and the
RCM3200 board together on the same network. This network can be a local private net-
work (preferred for initial experimentation and debugging), or a connection via the Internet.

RCM3200

User’s PC

Ethernet
crossover
cable

Direct Connection
(network of 2 computers)

RCM3200

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

Board
Board

52 RabbitCore RCM3200

6.4.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. Instead of the MY_IP_ADDRESS and other macros, you will
see a TCPCONFIG macro. This macro tells Dynamic C to select your configuration from a
list of default configurations. You will have three choices when you encounter a sample
program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS,
MY_NETMASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
to 10.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the RCM3200 board, and 10.1.1.1 for your PC, you can edit
the values in the section that directly follows the “General Configuration” comment in
the TCP_CONFIG.LIB library. You will find this library in the LIB/TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB file.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the
TCP_CONFIG.LIB library. More information is available in the Dynamic C TCP/IP
User’s Manual.

IP Addresses Before Dynamic C 7.30

Most of the sample programs such as shown in the example below use macros to define the
IP address assigned to the board and the IP address of the gateway, if there is a gateway.

#define MY_IP_ADDRESS "10.10.6.170"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"

In order to do a direct connection, the following IP addresses can be used for the RCM3200:

#define MY_IP_ADDRESS "10.1.1.2"
#define MY_NETMASK "255.255.255.0"
// #define MY_GATEWAY "10.10.6.1"
// #define MY_NAMESERVER "10.10.6.1"

In this case, the gateway and nameserver are not used, and are commented out. The IP
address of the board is defined to be 10.1.1.2. The IP address of your PC can be defined
as 10.1.1.1.

User’s Manual 53

6.4.2 How to Set Up your Computer’s IP Address for Direct Connect

When your computer is connected directly to the RCM3200 board via an Ethernet connec-
tion, you need to assign an IP address to your computer. To assign the PC the address
10.10.6.101 with the netmask 255.255.255.0, do the following.

Click on Start > Settings > Control Panel to bring up the Control Panel, and then dou-
ble-click the Network icon. Depending on which version of Windows you are using, look
for the TCP/IP Protocol/Network > Dial-Up Connections/Network line or tab. Double-
click on this line or select Properties or Local Area Connection > Properties to bring
up the TCP/IP properties dialog box. You can edit the IP address and the subnet mask
directly. (Disable “obtain an IP address automatically.”) You may want to write down the
existing values in case you have to restore them later. It is not necessary to edit the gate-
way address since the gateway is not used with direct connect.

6.4.3 Dynamic C Compiler Settings

If you are using an RCM3200 or RCM3220, remember to allow the compiler to run the
application in the program execution SRAM by selecting Code and BIOS in Flash, Run
in RAM from the Dynamic C Options > Project Options > Compiler menu.

RCM3200

User’s PC

Ethernet
crossover
cable

IP 10.10.6.101
Netmask
255.255.255.0

Direct Connection PC to RCM3200 Board

Board

54 RabbitCore RCM3200

6.5 Run the PINGME.C Sample Program
Connect the crossover cable from your computer’s Ethernet port to the RCM3200 board’s
RJ-45 Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP
folder, compile the program, and start it running under Dynamic C. When the program
starts running, the green LNK light on the RCM3200 board should be on to indicate an
Ethernet connection is made. (Note: If the LNK light does not light, you may not have a
crossover cable, or if you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the pingme program:

ping 10.10.6.100

or by Start > Run

and typing the entry

ping 10.10.6.100

Notice that the red ACT light flashes on the RCM3200 board while the ping is taking
place, and indicates the transfer of data. The ping routine will ping the board four times
and write a summary message on the screen describing the operation.

6.6 Running More Sample Programs With Direct Connect
The sample programs discussed here are in the Dynamic C SAMPLES\RCM3200\TCPIP\
folder.

• BROWSELED.C—This program demonstrates a basic controller running a Web page.
Two “LEDs” are created on the Web page, and two buttons on the Prototyping Board
then toggle them. Users can change the status of the lights from the Web browser. The
LEDs on the Prototyping Board match the ones on the Web page. As long as you have
not modified the TCPCONFIG 1 macro in the sample program, enter the following server
address in your Web browser to bring up the Web page served by the sample program.

http://10.10.6.100.

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

• ECHOCLIENT.C—This program demonstrates a basic client that will send a packet and
wait for the connected server to echo it back. After every number of sends and receives,
transfer times are shown in the STDIO window.

Use ECHO_SERVER.C to program a server controller.

• ECHOSERVER.C—This program demonstrates a basic server that will echo back any
data sent from a connected client.

Use ECHO_CLIENT.C to program a client controller.

• ENET_AD.C—This program demonstrates Ethernet communication between two
single-board computers. The program sends an A/D voltage value to the second single-
board computer via Ethernet for display.

Use ENET_MENU.C to program the other single-board computer.

User’s Manual 55

• ENET_MENU.C—This program demonstrates how to implement a menu system using a
highlight bar on a graphic LCD display and to communicate it to another single-board
computer via Ethernet.

Use ENET_AD.C to program the other single-board computer with analog inputs and
outputs.

• MBOXDEMO.C—Implements a Web server that allows e-mail messages to be entered
and then shown on the LCD/keypad module.

• SMTP.C—This program allows you to send an E-mail when a switch on the Prototyp-
ing Board is pressed. Follow the instructions included with the sample program.

• PINGLED.C—This program demonstrates ICMP by pinging a remote host. It will flash
LEDs DS1 and DS2 on the Prototyping Board when a ping is sent and received.

6.7 Where Do I Go From Here?
NOTE: If you purchased your RCM3200 through a distributor or through a Rabbit

partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Please refer to the Dynamic C TCP/IP User’s Manual to develop your own applications.
An Introduction to TCP/IP provides background information on TCP/IP, and is available
on the CD and on our Web site.

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

56 RabbitCore RCM3200

User’s Manual 57

APPENDIX A. RCM3200 SPECIFICATIONS

Appendix A provides the specifications for the RCM3200, and
describes the conformal coating.

58 RabbitCore RCM3200

A.1 Electrical and Mechanical Characteristics
Figure A-1 shows the mechanical dimensions for the RCM3200.

Figure A-1. RCM3200 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

���	��
���
���������� !"##
�����
������	�
	���	��
�������
	������/���
��
�������	��

���	����%

�
�
�

/�
��
:

�
�
�

/�
��
:

#�

#�

	
�%

	
�%

	��

��

�� �
�

�
%

�
��

�
��

�
��

�
�

�
�%

�
��

�
��

�
��

	��

	��

	��

	�

	
��

&�

���	��

	
��

	
��

	��

���

	
��

	
�

����
&�

�
%�

�%� ���

	��

	
��

	��
���

���

	���	��

��� ���

��%

���
���

��

#%

	
��

	
�%

���

	
��

�
��	
��

	
�� ���

�
��

���

��

	��

	
��

	��

�
��

�
��

	�%

���

���

�
�%

�
��

�
��

�
��

�
�

���
�
�

�
�

�
�%

�
��

�
��

�
��

�
��

	
��

	��

�
��

	��

�
��

	� �
�

	��

�
��

�
��

	��
	�%

	�
	�

	�
	% �

�

	�
	��

�
�

�
�
�
��
�
�
��
�
�

�

#�

#�

��

.�

�
��

	��

���74)
/���:

���
/���:

�
�

��
��
�

/�
��
�:

�%��
/����:

����
/����:

��%�
/���:

�
��

/�
��
�:

�
��

/�
��
�:

�����
/����:

��%�
/���:

��
��

/�
��
�:

�����
/����:

�
��

/�
�:

�
%
�

/�
��
:

�
��
�

/�
��
:

�
%�

/�
�:

�
��

/�
�:

�
%
�

/�
��
:

�
��
�

/�
��
:

�
%�

/�
�:

User’s Manual 59

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
RCM3200 in all directions (except above the RJ-45 plug) when the RCM3200 is incorpo-
rated into an assembly that includes other printed circuit boards. This “exclusion zone”
that you keep free of other components and boards will allow for sufficient air flow, and
will help to minimize any electrical or electromagnetic interference between adjacent
boards. An “exclusion zone” of 0.08" (2 mm) is recommended below the RCM3200
when the RCM3200 is plugged into another assembly using the shortest connectors for
headers J1 and J2. Figure A-2 shows this “exclusion zone.”

Figure A-2. RCM3200 “Exclusion Zone”

�
% /�
:

�
% /�
:

�
�

/�
�:

����
/���:

�
�

/�
�:

�
�

&/������
5���

�����
/����:

��%�
/���:

��%�
/����:

60 RabbitCore RCM3200

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3200.

Table A-1. RabbitCore RCM3200 Specifications

Feature RCM3200 RCM3210* RCM3220

Microprocessor Rabbit 3000® at
44.2 MHz

Rabbit 3000® at
29.5 MHz

Rabbit 3000® at
44.2 MHz

EMI Reduction Spectrum spreader for reduced EMI (radiated emissions)

Ethernet Port 10/100Base-T, RJ-45, 3 LEDs —

Flash Memory 512K 256K 512K

Data SRAM 256K 128K 256K

Program Execution SRAM 512K — 512K

Backup Battery Connection for user-supplied backup battery
(to support RTC and data SRAM)

General-Purpose I/O

52 parallel digital I/0 lines:
• 44 configurable I/O
• 4 fixed inputs
• 4 fixed outputs

Additional Inputs Startup mode (2), reset in

Additional Outputs Status, reset out

External I/O Bus Can be configured for 8 data lines and
6 address lines (shared with parallel I/O lines), plus I/O read/write

Serial Ports

6 shared high-speed, CMOS-compatible ports:
• all 6 configurable as asynchronous (with IrDA), 4 as clocked serial (SPI),

and 2 as SDLC/HDLC (with IrDA)

• 1 asynchronous serial port dedicated for programming

• support for MIR/SIR IrDA transceiver

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface
A slave port allows the RCM3200 to be used as an intelligent peripheral
device slaved to a master processor, which may either be another Rabbit
3000 or any other type of processor

Real-Time Clock Yes

Timers Ten 8-bit timers (6 cascadable), one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Pulse-Width Modulators 10-bit free-running counter and four pulse-width registers

Input Capture 2- channel input capture can be used to time input signals from various port
pins

Quadrature Decoder 2-channel quadrature decoder accepts inputs from external incremental
encoder modules

User’s Manual 61

A.1.1 Headers

The RCM3200 uses headers at J1 and J2 for physical connection to other boards. J1 and J2
are 2 × 17 SMT headers with a 2 mm pin spacing. J3, the programming port, is a 2 × 5
header with a 1.27 mm pin spacing.

Figure A-3 shows the layout of another board for the RCM3200 to be plugged into. These
values are relative to the mounting hole.

Power 3.15 V to 3.45 V DC
255 mA @ 3.3 V

Operating Temperature -40°C to +70°C (boards manufactured up to May, 2008)
0°C to +70°C (boards manufactured after May, 2008)

Humidity 5% to 95%, noncondensing

Connectors Two 2 × 17, 2 mm pitch

Board Size 1.850" × 2.725" × 0.86"
(47 mm × 69 mm × 22 mm)

* The RCM3210 was discontinued in July, 2004, and is no longer offered.

Table A-1. RabbitCore RCM3200 Specifications (continued)

Feature RCM3200 RCM3210* RCM3220

62 RabbitCore RCM3200

A.1.2 Physical Mounting

A 9/32” (7 mm) standoff with a 2-56 screw is recommended to attach the RCM3200 to a
user board at the hole position shown in Figure A-3. Either use plastic hardware, or use
insulating washers to keep any metal hardware from shorting out signals on the RCM3200.

Figure A-3. User Board Footprint for RCM3200

�
��
��
�

/�
%�
�: ��
��
�

/�
��
�:

�
�

	������11*;,49*

�
�
�

/�
�
:

�
�
�
74
)

/�
��
:

�
�
�
3D
�*-
;

/
��
:

�
�
�

/�
�
:

�
��
�

/%
�
:

��
��
%

/�
�
�:

��
��
�

/�
%�
�:

�
��
�

/%
��
:

�
��
�

/�
��
�:

��
��
�

/�
%�
�:��
�
�

/�
��
�:

User’s Manual 63

A.2 Bus Loading
You must pay careful attention to bus loading when designing an interface to the
RCM3200. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3200 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3200 output ports.
Be sure to add the loads for the devices you are using in your custom system and verify
that they do not exceed the values in Table A-3.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

I/O Ports
Input

Capacitance
(pF)

Output
Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3. External Capacitive Bus Loading -40°C to +70°C

Output Port Clock Speed
(MHz)

Maximum External
Capacitive Loading (pF)

All I/O lines with clock
doubler enabled 44.2 100

64 RabbitCore RCM3200

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external
I/O read and write cycles.

Figure A-4. I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

�)7,

�)7,

&/��
�	���61���	��7����/�
	��	����	��8

���

�E��FG

&/��
�	���61�9
����7����/�
	��	����	��8

���

�E��FG

!"�	�

�����

�� �<

�� �< ��

�����

��

!�#���

!"���(

!"��	

!�#���

�E�FG �����

�3+*@;

�6107

!��(

!"���(

���(

�"���(

�"�	�

��#���

���(

�"���(

�"�	�

��#���

������E�FG

!��(
���(

�"���(

�"��	

���(

�"���(

�"��	

��#��� ��#���

��$H� ���$H

User’s Manual 65

Table A-4 lists the delays in gross memory access time for VDD = 3.3 V.

The measurements are taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = VDD ±10%

• Internal clock to nonloaded CLK pin delay ≤ 1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.

• Tadr, the clock to address delay

• TCSx, the clock to memory chip select delay

• TIOCSx, the clock to I/O chip select delay

• TIORD, the clock to I/O read strobe delay

• TIOWR, the clock to I/O write strobe delay

• TBUFEN, the clock to I/O buffer enable delay

The data setup time delays are similar for both Tsetup and Thold.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is
shortened (sometimes lengthened) by a maximum amount given in the table above. The
shortening takes place by shortening the high part of the clock. If the doubler is not
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Technical Note TN227, Interfacing External I/O with Rabbit 2000/3000 Designs, con-
tains suggestions for interfacing I/O devices to the Rabbit 3000 microprocessors.

Table A-4. Data and Clock Delays VDD ±10%, Temp, -40°C–+85°C (maximum)

VDD

Clock to Address Output Delay
(ns) Data Setup

Time Delay
(ns)

Spectrum Spreader Delay
(ns)

30 pF 60 pF 90 pF
Normal

dbl/no dbl
Strong

dbl/no dbl

3.3 6 8 11 1 3/4.5 4.5/9

66 RabbitCore RCM3200

A.3 Rabbit 3000 DC Characteristics
Table A-5 outlines the DC characteristics for the Rabbit at 3.3 V over the recommended
operating temperature range from Ta = –55°C to +125°C, VDD = 3.0 V to 3.6 V.

Table A-5. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

IIH Input Leakage High VIN = VDD, VDD = 3.3 V 1 µA

IIL
Input Leakage Low
(no pull-up)

VIN = VSS, VDD = 3.3 V -1 µA

IOZ Output Leakage (no pull-up)
VIN = VDD or VSS,
VDD = 3.3 V -1 1 µA

VIL CMOS Input Low Voltage 0.3 x VDD V

VIH CMOS Input High Voltage 0.7 x VDD V

VT CMOS Switching Threshold VDD = 3.3 V, 25°C 1.65 V

VOL Low-Level Output Voltage
IOL = See (sinking)
 VDD = 3.0 V

0.4 V

VOH High-Level Output Voltage
IOH = See (sourcing)
 VDD = 3.0 V

0.7 x VDD V

User’s Manual 67

A.4 I/O Buffer Sourcing and Sinking Limit
Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a
29.4 MHz CPU clock and capacitive loading on address and data lines of less than 70 pF
per pin. The absolute maximum operating voltage on all I/O is 5.5 V.

Table A-6 shows the AC and DC output drive limits of the parallel I/O buffers when the
Rabbit 3000 is used in the RCM3200.

Under certain conditions, you can exceed the limits outlined in Table A-6. See the Rabbit
3000 Microprocessor User’s Manual for additional information.

Table A-6. I/O Buffer Sourcing and Sinking Capability

Pin Name

Output Drive (Full AC Switching)

Sourcing/Sinking Limits
(mA)

Sourcing Sinking

All data, address, and I/O
lines with clock doubler
enabled

6.8 6.8

68 RabbitCore RCM3200

A.5 Conformal Coating
The areas around the 32 kHz real-time clock crystal oscillator has had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-5. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Figure A-5. RCM3200 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303, Con-
formal Coatings.

�1981,I)00-�>1)*+7
),+)

#�

#�

	
�%

	
�%

	��

��

�� �
�

�
%

�
��

�
��

�
��

�
�

�
�%

�
��

�
��

�
��

	��

	��

	��

	�

	
��

&�

���	��

	
��

	
��

	��

���

	
��

	
�

����
&�

�
%�

�%� ���

	��

	
��

	��
���

���

	���	��

��� ���

��%

���
���

��

#%

	
��

	
�%

���

	
��

�
��	
��

	
�� ���

�
��

���

��

	��

	
��

	��

�
��

�
��

	�%

���

���

�
�%

�
��

�
��

�
��

�
�

���
�
�

�
�

�
�%

�
��

�
��

�
��

�
��

	
��

	��

�
��

	��

�
��

	� �
�

	��

�
��

�
��

	��
	�%

	�
	�

	�
	% �

�

	�
	��

�
�

�
�
�
��
�
�
��
�
�

�

#�

#�

��

.�

�
��

	��

User’s Manual 69

A.6 Jumper Configurations
Figure A-6 shows the header locations used to configure the various RCM3200 options
via jumpers.

Figure A-6. Location of RCM3200 Configurable Positions

Table A-7 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-7. RCM3200 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 External I/O data bus
1–2 Buffer disabled

2–3 Buffer enabled ×

JP2 Program Execution SRAM Size
1–2 128K/256K

2–3 512K ×

JP3 Flash Memory Size
1–2 128K/256K

2–3 512K ×

JP4 Flash Memory Bank Select
1–2 Normal Mode ×
2–3 Bank Mode

JP5 Data SRAM Size
1–2 256K ×
2–3 512K

��

��

��
��

��

'������� �����������

70 RabbitCore RCM3200

User’s Manual 71

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board, and explains the use of the Prototyping Board to
demonstrate the RCM3200 and to build prototypes of your own
circuits.

72 RabbitCore RCM3200

B.1 Introduction
The Prototyping Board included in the Development Kit makes it easy to connect an
RCM3200 module to a power supply and a PC workstation for development. It also pro-
vides some basic I/O peripherals (switches and LEDs), as well as a prototyping area for
more advanced hardware development.

For the most basic level of evaluation and development, the Prototyping Board can be
used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the
RCM3200 module itself.

The Prototyping Board is shown below in Figure B-1, with its main features identified.

Figure B-1. Prototyping Board

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���
�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���

	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

	���!	����!
	������0)J+��17@0+

�199+>*1,3

�10*)5+
	+5@0)*1,3 �1<+,

"9;@*
�1<+,
���

	+3+*
�<4*>6

#3+,
���3

�6,1@56'$10+
�,1*1*-;495��,+)

�)3*+,��17@0+
�(*+93419�$+)7+,3

����?������?�)97
�����@3+3

	���!	����!
	������)3*+,
�17@0+��199+>*1,3

�0)J+��17@0+
�(*+93419�$+)7+,3

	�'���
�459)0
$+)7+,

#3+,
�<4*>6+3

�����,1*1*-;495
�,+)

�����,1*1*-;495
�,+)

���!�+-;)7
�17@0+

�199+>*4193

",��
�,)93>+4J+,

�@,,+9*'
�+)3@,+I+9*

$+)7+,

User’s Manual 73

B.1.1 Prototyping Board Features

• Power Connection—A power-supply jack and a 3-pin header are provided for con-
nection to the power supply. Note that the 3-pin header is symmetrical, with both outer
pins connected to ground and the center pin connected to the raw V+ input. The cable
of the AC adapter provided with the North American version of the Development Kit
ends in a plug that connects to the power-supply jack. The header plug leading to bare
leads provided for overseas customers can be connected to the 3-pin header in either
orientation.

Users providing their own power supply should ensure that it delivers 8–24 V DC at
8 W. The voltage regulators will get warm while in use.

• Regulated Power Supply—The raw DC voltage provided at the POWER IN jack is
routed to a 5 V switching voltage regulator, then to a separate 3.3 V linear regulator.
The regulators provide stable power to the RCM3200 module and the Prototyping
Board.

• Power LED—The power LED lights whenever power is connected to the Prototyping
Board.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the
RCM3200’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PG0 and PG1 pins of the master RCM3200 module and may be read as
inputs by sample applications.

Two LEDs are connected to the PG6 and PG7 pins of the master module, and may be
driven as output indicators by sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation
of through-hole components. +3.3 V, +5 V, and Ground buses run around the edge of
this area. Several areas for surface-mount devices are also available. (Note that there
are SMT device pads on both top and bottom of the Prototyping Board.) Each SMT pad
is connected to a hole designed to accept a 30 AWG solid wire.

• Master Module Connectors—A set of connectors is pre-wired to permit installation
of the first RCM3000, RCM3100, or RCM3200 module that serves as the primary or
“master module.”

• Slave Module Connectors—A second set of connectors is pre-wired to permit instal-
lation of a second, slave RCM3200, RCM3100, or RCM3000 module. This capability
is reserved for future use, although the schematics in this manual contain all of the
details an experienced developer will need to implement a master-slave system.

• Module Extension Headers—The complete pin sets of both the MASTER and
SLAVE RabbitCore modules are duplicated at these two sets of headers. Developers
can solder wires directly into the appropriate holes, or, for more flexible development,
26-pin header strips can be soldered into place. See Figure B-4 for the header pinouts.

74 RabbitCore RCM3200

• RS-232—Two 3-wire or one 5-wire RS-232 serial port are available on the Prototyping
Board. Refer to the Prototyping Board schematic (090-0137) for additional details.

A 10-pin 0.1-inch spacing header strip is installed at J5 to permit connection of a ribbon
cable leading to a standard DE-9 serial connector.

• Current Measurement Option—Jumpers across pins 1–2 and 5–6 on header JP1 can
be removed and replaced with an ammeter across the pins to measure the current drawn
from the +5 V or the +3.3 V supplies, respectively.

• Motor Encoder—A motor/encoder header is provided at header J6 for future use.

• LCD/Keypad Module—Rabbit’s LCD/keypad module may be plugged in directly to
headers J7, J8, and J10.

User’s Manual 75

B.2 Mechanical Dimensions and Layout
Figure B-2 shows the mechanical dimensions and layout for the Prototyping Board.

Figure B-2. RCM30/31/32XX Prototyping Board Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of ±0.01" (0.25 mm).

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�
�

��

�
�

	�

	�

	�

�

�� �����

	�����

	���

	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

��

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���
	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
��
�
��������
���

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����

��

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

	���!��!��
��	�����#��

	���!��!��
��	�����#��

�)**+,-

#�

��

�����
/���:

��
�

/�
��
:

����
/��:

���
/%�:

���
/��:

��
/�:

�
� /�
:

��
��

/�
��
:

�
�� /�
:

����
/���:

����
/��:

��
/�:

�����74)
/���:

K��

76 RabbitCore RCM3200

Table B-1 lists the electrical, mechanical, and environmental specifications for the Proto-
typing Board.

B.3 Power Supply
The RCM3200 requires a regulated 3.3 V ± 0.15 V DC power source to operate. Depend-
ing on the amount of current required by the application, different regulators can be used
to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the
Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a Shottky diode at D2
as shown in Figure B-3.

Figure B-3. Prototyping Board Power Supply

Table B-1. Prototyping Board Specifications

Parameter Specification

Board Size 5.30" × 6.775" × 1.00" (135 mm × 172 mm × 25 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 8 V to 24 V DC

Maximum Current Draw
(including user-added circuits)

800 mA max. for +3.3 V supply,
1 A total +3.3 V and +5 V combined

Prototyping Area 2.0" × 3.5" (50 mm × 90 mm) throughhole, 0.1" spacing,
additional space for SMT components

Standoffs/Spacers 5, accept 4-40 × 3/8 screws

�"���	�����	
	��#����	

�
�
�
�
	

"�

�!
��

��L�

������
#��	��

������

�

�

�

�

�

� ����

��

���L� ���L�

����

��

���
���L$

��
���%��

��"��$"�������	�	��#����	

��"�
#�

������

User’s Manual 77

B.4 Using the Prototyping Board
The Prototyping Board is actually both a demonstration board and a prototyping board. As
a demonstration board, it can be used to demonstrate the functionality of the RCM3200
right out of the box without any modifications to either board. There are no jumpers or dip
switches to configure or misconfigure on the Prototyping Board so that the initial setup is
very straightforward.

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the RCM3200. Two LEDs (DS1 and DS2) are connected to PG6 and PG7,
and two switches (S2 and S3) are connected to PG1 and PG0 to demonstrate the interface
to the Rabbit 3000 microprocessor. Reset switch S1 is the hardware reset for the
RCM3200.

The Prototyping Board provides the user with RCM3200 connection points brought out con-
veniently to labeled points at headers J2 and J4 on the Prototyping Board. Small to medium
circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire between the
prototyping area and the holes at locations J2 and J4. The holes are spaced at 0.1" (2.5 mm),
and 40-pin headers or sockets may be installed at J2 and J4. The pinouts for locations J2 and
J4, which correspond to headers J1 and J2, are shown in Figure B-4.

Figure B-4. Prototyping Board Pinout
(Top View)

The small holes are also provided for surface-mounted components that may be installed
around the prototyping area.

There is a 2.0" × 3.5" through-hole prototyping space available on the Prototyping Board.
+3.3 V, +5 V, and GND traces run along the edge of the Prototyping Board for easy access.

9�>��C�91*�>199+>*+7

��
9�>�
�����
�	��
������
!"�	�
���
���
��
���
���
���
���
���
���
���
���
!	��

���
���

����B� �
!	����B"�
�����

�
��
���
���
���
���
���
���
���
���
���
���
��

�/
��
���
���
���
���
��
���
���
���
��
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
��
���
��
���
���
���

����#�

78 RabbitCore RCM3200

B.4.1 Adding Other Components

There are pads that can be used for surface-mount prototyping involving SOIC devices.
There is provision for seven 16-pin devices (six on one side, one on the other side). There
are 10 sets of pads that can be used for 3- to 6-pin SOT23 packages. There are also pads
that can be used for SMT resistors and capacitors in an 0805 SMT package. Each compo-
nent has every one of its pin pads connected to a hole in which a 30 AWG wire can be sol-
dered (standard wire wrap wire can be soldered in for point-to-point wiring on the
Prototyping Board). Because the traces are very thin, carefully determine which set of
holes is connected to which surface-mount pad.

B.4.2 Measuring Current Draw

The Prototyping Board has a current-measurement feature available on header JP1. Nor-
mally, a jumper connects pins 1–2 and pins 5–6 on header JP1, which provide jumper con-
nections for the +5 V and the +3.3 V regulated voltages respectively. You may remove a
jumper and place an ammeter across the pins instead, as shown in the example in
Figure B-5, to measure the current being drawn.

Figure B-5. Prototyping Board Current-Measurement Option

��

�������
	������	���

���
�

�����

���

�

User’s Manual 79

B.4.3 Other Prototyping Board Modules and Options

With the RCM3200 plugged into the MASTER slots, it has full access to the RS-232 trans-
ceiver, and can act as the “master” relative to another RabbitCore RCM3000, RCM3100,
or RCM3200 plugged into the SLAVE slots, which acts as the “slave.”

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. Refer to Appendix C, “LCD/Keypad Module,” for complete information.

The RCM3200 has a 2-channel quadrature decoder and a 10-bit free-running PWM
counter with four pulse-width registers. These features allow the RCM3200 to be used in a
motor control application, although Rabbit does not offer the drivers or a compatible step-
per motor control board at this time.

The Prototyping Board has a header at J6 to which a customer-developed motor encoder
may be connected. Figure B-6 shows the motor encoder pinout at header J6.

Figure B-6. Prototyping Board Motor Encoder
Connector Pinout

Refer to Appendix E, “Motor Control Option,” for complete information on using the
Rabbit 3000’s Parallel Port F in conjunction with this application.

�>
��
���
���
���
����

���
���
���
���
���

80 RabbitCore RCM3200

B.5 Use of Rabbit 3000 Parallel Ports
Table B-2 lists the Rabbit 3000 parallel ports and their use for the RCM30/31/32XX
Prototyping Board.

Table B-2. RCM30/31/32XX Prototyping Board
Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

PA0–PA7 Output Configurable external I/O bus High when not driven
by I/O bus

PB0–PB1 Input Not used Pulled up on RCM3200

PB2–PB5 Input Configurable external I/O bus High when not driven
by I/O bus

PB6–PB7 Output Not used Pulled up on RCM3200

PC0 Output Not used High (disabled)

PC1 Input Not used Pulled up on RCM3200

PC2 Output TXC
Serial Port C

High (disabled)

PC3 Input RXC Pulled up on RCM3200

PC4 Output TXB
Serial Port B

High (disabled)

PC5 Input RXB Pulled up on RCM3200

PC6 Output TXA Programming Port
Serial Port A

High (disabled)

PC7 Input RXA Programming Port Pulled up on RCM3200

PD0 Output Ethernet RSTDRV High

PD1 Input Not used Pulled up on RCM3200

PD2–PD4 Output Not used High

PD5 Input Not used Pulled up on
Prototyping Board

PD6–PD7 Output Not used High

PE0–PE1 Output Not used High

PE2 Output Ethernet chip select High

PE3 Output LCD device select Low (disabled)

PE4 Output IrDA speed select Low (disabled)

PE5 Output Not used High

PE6 Output External I/O strobe High (disabled)

PE7 Output Not used High (disabled)

User’s Manual 81

PF0–PF7 Input Reserved for future use Pulled up on
Prototyping Board

PG0 Input Switch S3 (normally open) High

PG1 Input Switch S2 (normally open) High

PG2 Output TXF IrDA
Serial Port F

Pulled down

PG3 Input RXF IrDA Driven by IrDA driver

PG4 Input IrDA MD1 Pulled up on
Prototyping Board

PG5 Input IrDA MD0 Pulled down on
Prototyping Board

PG6 Output LED DS1 High (disabled)

PG7 Output LED DS2 High (disabled)

Table B-2. RCM30/31/32XX Prototyping Board
Use of Rabbit 3000 Parallel Ports (continued)

Port I/O Use Initial State

82 RabbitCore RCM3200

User’s Manual 83

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the Prototyping Board.
Appendix C describes the LCD/keypad and provides the soft-
ware function calls to make full use of the LCD/keypad.

C.1 Specifications
Two optional LCD/keypad modules—with or without a panel-mounted bezel—are available
for use with the Prototyping Board. They are shown in Figure C-1.

Figure C-1. LCD/Keypad Modules Models

Only the version without the bezel can mount directly on the Prototyping Board; if you
have the version with a bezel, you will have to remove the bezel to be able to mount the
LCD/keypad module on the Prototyping Board. Either version of the LCD/keypad module
can be installed at a remote location up to 60 cm (24") away. Contact your Rabbit sales
representative or your authorized distributor for further assistance in purchasing an LCD/
keypad module.

:�$6;���	�� �����

84 RabbitCore RCM3200

Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/key-
pad module through your sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/
keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size 2.60" × 3.00" × 0.75"
(66 mm × 76 mm × 19 mm)

Bezel Size 4.50" × 3.60" × 0.30"
(114 mm × 91 mm × 7.6 mm)

Temperature Operating Range: 0°C to +50°C
Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections Connects to high-rise header sockets on the Prototyping Board

LCD Panel Size 122 × 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs

The LCD/keypad module has 0.1"
IDC headers at J1, J2, and J3 for
physical connection to other boards or
ribbon cables. Figure C-2 shows the
LCD/keypad module footprint. These
values are relative to one of the
mounting holes.

NOTE: All measurements are in
inches followed by millimeters
enclosed in parentheses. All dimen-
sions have a manufacturing toler-
ance of ±0.01" (0.25 mm).

Figure C-2. User Board Footprint for
LCD/Keypad Module

("

(<

��
/���:

��
/���:

��
/����:

����
/���%:

(!

���
/����:

��
�

/�
�
�:
�
��
%

/�
��
�:

�
�
�

/�
��
�:

User’s Manual 85

C.2 Contrast Adjustments for All Boards
Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast
based on the voltage of the system they would be used in. Be sure to select a KDU5V
LCD/keypad module for use with the RCM3000/3100/3200 Prototyping Board — these
modules operate at 5 V. You may adjust the contrast using the potentiometer at R2 as
shown in Figure C-3. LCD/keypad modules configured for 3.3 V should not be used with
the 5 V RCM3000/3100/3200 Prototyping Board because the higher voltage will reduce
the backlight service life dramatically.

Figure C-3. LCD/Keypad Module Voltage Settings

You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust-
ing the potentiometer at R2 or by setting the voltage for 5 V by removing the jumper across
pins 1–2 on header J5 as shown in Figure C-3. Only one of these two options is available
on these LCD/keypad modules.

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-
ment potentiometer at R2 are limited to operate only at 5 V, and will work with the
Prototyping Board. The older LCD/keypad modules are no longer being sold.

�
�

	�

	
�

�
�

�� �� ��

�
�

#�

�� 	�
#�

��

�
�

�	�

	
�

���
���

	
�

	%

	��

	��

	�� 	�� 	�� 	� 	� 	�� 	��

	
�%

.%

	
��

.�

	
��.�

#�

�

�"����&
���	�

�

���

	
�� .�

	
�� .�

	
�� .�

	
�

.
� 	
��

#� ���

	
��

�
��

�
��

#�

#�

����
#�

���� ���

	�
	�

��

�

.�

�

��� 	��

�

����
��%��

��$�	
�����

�

�

�

�

9�>��C����

:�$6;���	�� ������(����
��������
	����

�(2(�
(���-&$-�) 	-)�
��))(�$(2

� �$��*

(5 ,"$

��

�	
��

	��

���

���

��

�	�	

�

�
�

�

�

�

�
),
*��
1�
��
�
'
��
�

�����	��
�
0������

86 RabbitCore RCM3200

C.3 Keypad Labeling
The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5. Removing and Inserting Keypad Label

���
/�%:

����
/�:

�+-;)7�0)=+0�43�01>)*+7
��
��*6+�=0@+�2+-;)7�I)**+�

User’s Manual 87

C.4 Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function

0xC000 Device select base address (/CS)

0xCxx0–0xCxx7 LCD control

0xCxx8 LED enable

0xCxx9 Not used

0xCxxA 7-key keypad

0xCxxB (bits 0–6) 7-LED driver

0xCxxB (bit 7) LCD backlight on/off

0xCxxC–ExxF Not used

�
�
��

�
�
��

�
�
��

�
�
�

�
��

�
��

�
�
�

��
�
�

��
�
�

��
�
�

��
�
�

!	
�
�

�
�
�

�
�
��

�
�
��

�
�
��

�
�
��
�
�

�
��

�
�
�

�
�
�

��
�
�

��
�
�

��
�
�

!�
�

��
�
�
��

��

�
�
�

�
�
�

��
�
�

��
�
�

��
�
�

�
�
�

��
�
�
��

�
�
�

��
�
�

��
�
�

��
�
�

��
�
�

!	
�
�

�
�
�

��

�
�
�

�
�
��

�
�
��

�
�
��

�
�
��
�
�
�
��

�
�
�

�
�
��

�
�
��

�
�
��

�
�
�

�
��

�
��

��

88 RabbitCore RCM3200

C.5 Mounting LCD/Keypad Module on the Prototyping Board
Install the LCD/keypad module on header sockets J7, J8, and J10 of the Prototyping Board
as shown in Figure C-7. Be careful to align the pins over the headers, and do not bend
them as you press down to mate the LCD/keypad module with the Prototyping Board.

Figure C-7. Install LCD/Keypad Module on Prototyping Board

�����

���

�����

���

��� ��� ���

���

��
�

��
�

����������

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

�����

���

�����
����	

�����

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

��� ���

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	�� # �

�
�

��

�%

��

��

����

	���
�

	��

������

�����

������

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

������

��� ���

#�

��

% # �

	��
	���

	��

	���

	��%

	���
	���

��

���

#�

#�
���

�

	��

�

	�� 	��

��
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��
�

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

��
�

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
�

	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

#�

#�

	
�%

	
�%

	��

��

���
�

�
%

�
�� �
��

�
��

�
�

�
�%

�
��

�
��

�
��

	��

	��

	��

	�

	
��

&�

��� 	��

	
��

	
��

	��

���

	
��

	
�
� ���

&�

�
%�

�%����

	��

	
��

	��
���

���

	���	��

����
��

��%

���
���

��

#%

	
��

	
�%

���

	
��

�
�� 	
��	
�����

�
��

���

��

	��

	
��

	��

�
��

�
��

	�%

���

���

�
�%

�
��

�
��

�
��

�
�

���

�
�

�
�

�
�%

�
��

�
��

�
��

�
��

	
��

	��

�
��

	��

�
��

	��
�

	��

�
��

�
��

	��
	�%

	�
	�

	�
	%�

�

	�
	��

�
�

�
�
�
���

�
��
�
�

�

#�

#�

��

.�

�
��

	��

�0

��; �?

User’s Manual 89

C.6 Bezel-Mount Installation
This section describes and illustrates how to bezel-mount the LCD/keypad module. Fol-
low these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-8, then use the bezel faceplate to mount the LCD/keypad module onto
the panel.

Figure C-8. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

��
�

/%
��
�:

���
/�%�%:

��%�
/����:

���
/��%:

������?��(
/�:

��'1�'

�
��

/�
��
:

90 RabbitCore RCM3200

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

Figure C-9. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��=��6�	4��

�"����&����	�

#� #�
��

�� ��

��
#�

	
��

�

.�

��

	�

	� 	� 	�

	
�

	
�

	
��

.� .� .�

	
��

	� 	�

.� .�

	
��

	�

	
��

	%
	
��

	
�%

.� .% ��

	
��

��
�
#�

	��

�

�
%

�
�

���

�	���

User’s Manual 91

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the RCM30/31/
32XX Prototyping Board, and is connected via a ribbon cable as shown in Figure C-10.

Figure C-10. Connecting LCD/Keypad Module to RCM30/31/32XX Prototyping Board

Note the locations and connections relative to pin 1 on both the Prototyping Board and the
LCD/keypad module.

Rabbit offers 2 ft. (60 cm) extension cables. Contact your authorized Rabbit distributor or
a sales representative for more information.

�����

���

�����

���

���������

���

���
���

����� �����

�
�
�

	
�
����
���

	��

�

	�

��

�������
	������	���

���
�

��
��
�

��
�

�����
����	

�� ���

���

��

���

���

����	

�
�
�

��
�

�
�
�

�

�������
���

������

�
�
�

�
�
�

	��

	
�
�

	
�
�

��

	��

���
��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

���

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

����
� �
!	��
"�

��

�����

���	

���

�
��

���

���

��

���

���

���

���

���

���

���

���

���

	
�
�
�

	���
�

��

�
�

	�

	�

	�

�

�

	������$�	������	�����#��

�����

	�����
	���

	
�
�%

��

	
�
�

	��# �

�
�

��

�%

��

��

�� ��

	���
�

	��

��� ���

�����

��� ���

�����

	
��

	
��

�
�
�

���

���

�
�

�
��

#�

��

��� ���

������

#�

��

%# �

	��
	���

	��

	���

	��%

	���
	���

��

���

#�

#�
���

�

	��

�

	��	��

���

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

���

�
�
�
�

�
��

�
��

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
���

���������
���

	���!��!�� ���	"��
�	����&�"������	�

�"����&����	�

�
�

�"����&����	�

#�

�

	�'���

	����
	���
�

	(����(�

�(���	(���������������

	�

��
	�

	���

	���

	��

�

	���

	���

	���

�

�

��

���

���

���

���

��

���

���

���

��

���

���

���

���

���

���

���

��

�����

�	��

���

!"�	�

���

���

��

���

���

���

���

���

���

���

���

!	��

���

���

��

�
��

���

���

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

���

���

���

���

��

���

��

���

���

���

����#�

����
� �
!	��
"�

	��
	���

	��

	���

	���

	���

	���

	
�

	
��

	
� 	
%

	
�

	
�

	
��

	
��

	���

	���

�)**+,-

#�

��
	���
�

�
�

	�

	
�

�
�

�� �� ��

�
�

#�

�� 	�
#�

��

�
�

�	�

	
�

���
���

	
�

	%

	��

	��

	�� 	�� 	�� 	� 	� 	�� 	��

	
�%

.%
	
��

.�
	
��.�

#�

�

�"����&
���	�

�

���

	
�� .�

	
�� .�

	
�� .�

	
�

.
� 	
��

#� ���

	
��

�
��

�
��

#�

#�

����
#�

���� ���

	�
	�

��

�

.�

�

��� 	��

�

����
��%��

��$�	
�����

�

�

�

�

9�>��C����

#�

#�

	
�%

	
�%

	��

��

�� �
�

�
%

�
��

�
��

�
��

�
�

�
�%

�
��

�
��

�
��

	��
	��
	��
	�

	
��

&�

���	��

	
��

	
��

	��

���

	
��

	
�

����
&�

�
%�

�%� ���

	��

	
��

	��
���

���

	���	��

��� ���

��%

���
���

��

#%

	
��

	
�%

���

	
��

�
��	
��

	
�� ���

�
��

���

��

	��

	
��

	��

�
��

�
��

	�%

���

���

�
�%

�
��

�
��

�
��

�
�

���
�
�

�
�

�
�%

�
��

�
��

�
��

�
��

	
��

	��

�
��

	��

�
��

	� �
�

	��

�
��

�
��

	��
	�%

	�
	�

	�
	% �

�

	�
	��

�
�

�
�
�
��
�
�
��
�
�

�

#�

#�

��

.�

�
��

	��

�0

�49��

�49��

92 RabbitCore RCM3200

C.7 LCD/Keypad Module Function Calls
When mounted on the Prototyping Board, the LCD/keypad module uses the external I/O
bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the external I/O bus.

C.7.1 LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7.LIB library.

Initializes the LCD/keypad module. The keypad is set up using keypadDef() or keyConfig() after
this function call.

RETURN VALUE
None.

C.7.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the LIB\DISPLAYS\
LCD122KEY7.LIB library.

LED on/off control. This function will only work when the LCD/keypad module is installed on the
Prototyping Board.

PARAMETERS
led is the LED to control.

0 = LED DS1
1 = LED DS2
2 = LED DS3
3 = LED DS4
4 = LED DS5
5 = LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off
1 = on

RETURN VALUE
None.

void dispInit();

void ledOut(int led, int value);

User’s Manual 93

C.7.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C DISPLAYS\GRAPHIC library directory.

Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Turns the display backlight on or off.

PARAMETER
onOff turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER
onOff turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);

94 RabbitCore RCM3200

Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits
are not available on the LCD/keypad module.

Fills the LCD display screen with a pattern.

PARAMETER
The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes
for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the
block that is outside the LCD display area will be clipped.

PARAMETERS
x is the x coordinate of the top left corner of the block.

y is the y coordinate of the top left corner of the block.

bmWidth is the width of the block.

bmWidth is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

void glSetContrast(unsigned level);

void glFillScreen(char pattern);

void glBlankScreen(void);

void glBlock(int x, int y, int bmWidth,
int bmHeight);

User’s Manual 95

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE
None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

void glPlotVPolygon(int n, int *pFirstCoord);

void glPlotPolygon(int n, int y1, int x2, int y2,
...);

96 RabbitCore RCM3200

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified,
the function will return without doing anything.

PARAMETERS
n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the
function will return without doing anything.

PARAMETERS
n is the number of vertices.

x1 is the x coordinate of the first vertex.

y1 is the y coordinate of the first vertex.

x2 is the x coordinate of the second vertex.

y2 is the y coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

void glFillVPolygon(int n, int *pFirstCoord);

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

User’s Manual 97

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

Initializes the font descriptor structure, where the font is stored in xmem.

PARAMETERS
*pInfo is a pointer to the font descriptor to be initialized.

pixWidth is the width (in pixels) of each font item.

pixHeight is the height (in pixels) of each font item.

startChar is the value of the first printable character in the font character set.

endChar is the value of the last printable character in the font character set.

xmemBuffer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE
None.

SEE ALSO
glPrinf

Returns the xmem address of the character from the specified font set.

PARAMETERS
*pInfo is the xmem address of the bitmap font set.

letter is an ASCII character.

RETURN VALUE
xmem address of bitmap character font, column major, and byte-aligned.

SEE ALSO
glPutFont, glPrintf

void glFillCircle(int xc, int yc, int rad);

void glXFontInit(fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar,
unsigned endChar, unsigned long xmemBuffer);

unsigned long glFontCharAddr(fontInfo *pInfo,
char letter);

98 RabbitCore RCM3200

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font
character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside
the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

*pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values.
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS
stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE
None.

SEE ALSO
Use glGetPfStep() to examine the current x and y printing step direction.

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
Use glGetPfStep() to control the x and y printing step direction.

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glSetPfStep(int stepX, int stepY);

int glGetPfStep(void);

User’s Manual 99

Provides an interface between the STDIO string-handling functions and the graphic library. The
STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will
be clipped.

PARAMETERS
ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

*pInst is a font descriptor pointer.

RETURN VALUE
None.

SEE ALSO
glPrintf, glPutFont, doprnt

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab,
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area
will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

*pInfo is a font descriptor pointer.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
glXFontInit

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);

100 RabbitCore RCM3200

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are
not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glSwap

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD
if the counter goes to zero.

RETURN VALUE
None.

SEE ALSO
glBuffLock, glSwap

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the
counter is zero.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD
that you are using)

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER
type value can be one of the following macros.

PIXBLACK draws black pixels.
PIXWHITE draws white pixels.
PIXXOR draws old pixel XOR'ed with the new pixel.

RETURN VALUE
None.

SEE ALSO
glGetBrushType

void glBuffLock(void);

void glBuffUnlock(void);

void glSwap(void);

void glSetBrushType(int type);

User’s Manual 101

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are
outside the LCD display area, the dot will not be plotted.

PARAMETERS
x is the x coordinate of the dot.

y is the y coordinate of the dot.

RETURN VALUE
None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is
beyond the LCD display area will be clipped.

PARAMETERS
x0 is the x coordinate of one endpoint of the line.

y0 is the y coordinate of one endpoint of the line.

x1 is the x coordinate of the other endpoint of the line.

y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE
None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

int glGetBrushType(void);

void glPlotDot(int x, int y);

void glPlotLine(int x0, int y0, int x1, int y1);

102 RabbitCore RCM3200

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRight1

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeft1

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glDown1

void glLeft1(int left, int top, int cols, int rows);

void glRight1(int left, int top, int cols, int rows);

void glUp1(int left, int top, int cols, int rows);

User’s Manual 103

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glUp1

Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
to the left).

RETURN VALUE
None.

SEE ALSO
glVScroll

void glDown1(int left, int top, int cols, int rows);

void glHScroll(int left, int top, int cols,
int rows, int nPix);

104 RabbitCore RCM3200

Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
up).

RETURN VALUE
None.

SEE ALSO
glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls
glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each
evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap.

top is the top left corner of the bitmap.

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols,
int rows, int nPix);

void glXPutBitmap(int left, int top, int width,
int height, unsigned long bitmap);

User’s Manual 105

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text
window using only character row and column coordinates. The text window feature provides end-of-line
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS
*window is a window frame descriptor pointer.

*pFont is a font descriptor pointer.

x is the x coordinate of where the text window frame is to start.

y is the y coordinate of where the text window frame is to start.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE
 0—window frame was successfully created.
 -1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)

106 RabbitCore RCM3200

Sets the cursor location on the display of where to display the next character. The display location is
based on the height and width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

col is a character column location.

row is a character row location.

RETURN VALUE
None.

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame

Gets the current cursor location that was set by a Graphic Text... function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

*col is a pointer to cursor column variable.

*row is a pointer to cursor row variable.

RETURN VALUE
Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Displays a character on the display where the cursor is currently pointing. If any portion of a bitmap
character is outside the LCD display area, the character will not be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextGotoXY(windowFrame *window, int col,
int row);

void TextCursorLocation(windowFrame *window,
int *col, int *row);

void TextPutChar(struct windowFrame *window, char ch);

User’s Manual 107

Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font
set are printed, also escape sequences, '\r' and '\n' are recognized. All other escape sequences will be
skipped over; for example, '\b' and 't' will print if they exist in the font set, but will not have any effect as
control characters.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
TextPrintf(&TextWindow, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextPrintf(struct windowFrame *window,
char *fmt, ...);

108 RabbitCore RCM3200

C.7.4 Keypad

The functions used to control the keypad are contained in the Dynamic C LIB\KEYPADS\
KEYPAD7.LIB library.

Initializes keypad process

RETURN VALUE
None.

SEE ALSO
brdInit

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and
debouncing.

PARAMETERS
cRaw is a raw key code index.

1x7 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick.

How long to hold before going to high-speed repeat.
0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLo,
char cCntLo, char cSpdHi);

[0] [1] [2] [3]

[4] [5] [6]

User’s Manual 109

cSpdHi is a high-speed repeat tick.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 × 8 matrix keypad.

RETURN VALUE
None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress

RETURN VALUE
The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

Push keypress on top of input queue

PARAMETER
cKey

RETURN VALUE
None.

SEE ALSO
keyGet

void keyProcess(void);

char keyGet(void);

int keyUnget(char cKey);

110 RabbitCore RCM3200

Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 1 × 7

where
'E' represents the ENTER key
'D' represents Down Scroll
'U' represents Up Scroll
'R' represents Right Scroll
'L' represents Left Scroll

Example: Do the followingfor the above physical vs. ASCII return key codes.

keyConfig (3,'R',0, 0, 0, 0, 0);
keyConfig (6,'E',0, 0, 0, 0, 0);
keyConfig (2,'D',0, 0, 0, 0, 0);
keyConfig (4,'-',0, 0, 0, 0, 0);
keyConfig (1,'U',0, 0, 0, 0, 0);
keyConfig (5,'+',0, 0, 0, 0, 0);
keyConfig (0,'L',0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER

*pcKeys is the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3

['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);

User’s Manual 111

C.8 Sample Programs
Sample programs illustrating the use of the LCD/keypad module with the Prototyping
Board are provided in the SAMPLES\RCM3200 directory.

These sample programs use the external I/O bus on the Rabbit 3000 chip, and so the
#define PORTA_AUX_IO line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample
program, open it with the File menu (if it is not still open), compile it using the Compile
menu, and then run it by selecting Run in the Run menu. The RCM3200 must be in
Program mode (see Section 4.3, “Serial Programming Cable”), and must be connected to
a PC using the programming cable as described in the RCM3200 Getting Started Manual.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

The following sample programs are found in the SAMPLES\RCM3200\LCD_KEYPAD folder.

• KEYPADTOLED.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a key press is detected. The DS1 and DS2 LEDs on the Prototyping
Board will also light up.

• LCDKEYFUN.C—This program demonstrates how to draw primitive features from the
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key
release option.

• SWITCHTOLED.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a switch press is detected. The DS1 and DS2 LEDs on the Prototyp-
ing Board will also light up.

112 RabbitCore RCM3200

User’s Manual 113

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3200, and includes some background on the chip
select circuit used in power management.

D.1 Power Supplies
The RCM3200 requires a regulated 3.3 V ± 0.15 V DC power source. The RabbitCore
design presumes that the voltage regulator is on the user board, and that the power is made
available to the RCM3200 board through header J2.

An RCM3200 with no loading at the outputs operating at 29.4 MHz typically draws 145 mA.
The RCM3200 will consume an additional 10 mA when the programming cable is used to
connect the programming header, J3, to a PC.

D.1.1 Battery Backup

The RCM3200 does not have a battery, but there is provision for a customer-supplied bat-
tery to back up the data SRAM and keep the internal Rabbit 3000 real-time clock running.

Header J2, shown in Figure D-1, allows access to the external battery. This header makes
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 3000 real-time clock to retain data with the RCM3200 powered down.

Figure D-1. External Battery Connections
at Header J2

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

�	��

�����

�

��

��

��

����B� �

���

�(*+,9)0
�)**+,-��

114 RabbitCore RCM3200

The drain on the battery by the RCM3200 is typically 12 µA when no other power is sup-
plied. If a 165 mA·h battery is used, the battery can last almost 2 years:

The actual life in your application will depend on the current drawn by components, not
on the RCM3200 and the storage capacity of the battery. The RCM3200 does not drain the
battery while it is powered up normally.

Cycle the main power off/on on the RCM3200 after you install a backup battery for the
first time, and whenever you replace the battery. This step will minimize the current drawn
by the real-time clock oscillator circuit from the backup battery should the RCM3200
experience a loss of main power.

NOTE: Remember to cycle the main power off/on any time the RCM3200 is removed
from the Protoyping Board or motherboard since that is where the backup battery
would be located.

Rabbit’s Technical Note TN235, External 32.768 kHz Oscillator Circuits, provides addi-
tional information about the current draw by the the real-time clock oscillator circuit.

D.1.2 Battery-Backup Circuit

Figure D-2 shows the battery-backup circuit.

Figure D-2. RCM3200 Backup Battery Circuit

The battery-backup circuit serves three purposes:

• It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting
the current consumed by the real-time clock and lengthening the battery life.

• It ensures that current can flow only out of the battery to prevent charging the battery.

• A voltage, VOSC, is supplied to U5, which keeps the 32.768 kHz oscillator working
when the voltage begins to drop.

165 mA·h
12 µA

------------------------ 1.6 years.=

�	��

���2�

	��
����'� �

"1���	���	���-
	��

���2�

����

�� 	��

���

��%
��9�

���
����9�

User’s Manual 115

D.1.3 Reset Generator

The RCM3200 uses a reset generator to reset the Rabbit 3000 microprocessor when the
voltage drops below the voltage necessary for reliable operation. The reset occurs between
2.85 V and 3.00 V, typically 2.93 V. The RCM3200 has a reset output, pin 1 on header J2.

D.2 Optional +5 V Output
The RCM3200 boards have an onboard charge pump that provides the +5 V needed by the
RealTek Ethernet chip.

116 RabbitCore RCM3200

User’s Manual 117

APPENDIX E. MOTOR CONTROL OPTION

The Prototyping Board has a header at J6 for a motor control option.
While Rabbit does not support this option at this time, this appendix
provides additional information about Parallel Port F on the Rabbit
3000 microprocessor to enable you to use this feature on the Prototyp-
ing Board for your needs.

E.1 Overview
The Parallel Port F connector on the Prototyping Board, J6, gives access to all 8 pins of
Parallel Port F, along with +5 V. This appendix describes the function of each pin, and the
ways they may be used for motion-control applications. It should be read in conjunction
with the Rabbit 3000 Microprocessor User’s Manual and the RCM3200 and the Proto-
typing Board schematics.

118 RabbitCore RCM3200

E.2 Header J6
The connector is a 2 × 5, 0.1" pitch header suitable for connecting to an IDC header
socket, with the following pin allocations.

All Parallel Port F lines (pins 1 to 8) are pulled up internally to +3.3 V via 100 kΩ resis-
tors. When used as outputs, the port pins will sink up to 6 mA at a VOL of 0.4 V max.
(0.2 V typ), and source up to 6 mA at a VOH of 2.2 V typ. When used as inputs, all pins
are 5 V tolerant.

As the outputs from Parallel Port F are compatible with 3.3 V logic, buffers may be
needed when the external circuit drive requirements exceed the 2.2 V typ logic high and/or
the 6 mA maximum from the Rabbit 3000. The +5 V supply output is provided for supply-
ing interface logic. When used as inputs, the pins on header J6 do not require buffers
unless the input voltage will exceed the 5 V tolerance of the processor pins. Usually, a
simple resistive divider with catching diodes will suffice if higher voltage inputs are
required. If the outputs are configured for open-drain operation, they may be pulled up to
+5 V (while observing the maximum current, of course).

Table E-1. Prototyping Board Header J6 Pinout

Pin Rabbit 3000 Primary Function Alternate Function 1 Alternate Function 2

1 Parallel Port F, bit 0 General-purpose I/O port Quadrature decoder 1 Q
input SCLK_D

2 Parallel Port F, bit 1 General-purpose I/O port Quadrature decoder 1 I
input SCLK_C

3 Parallel Port F, bit 2 General-purpose I/O port Quadrature decoder 2 Q
input -

4 Parallel Port F, bit 3 General-purpose I/O port Quadrature decoder 2 I
input -

5 Parallel Port F, bit 4 General-purpose I/O port PWM[0] output Quadrature decoder 1 Q
input

6 Parallel Port F, bit 5 General-purpose I/O port PWM[1] output Quadrature decoder 1 I
input

7 Parallel Port F, bit 6 General-purpose I/O port PWM[2] output Quadrature decoder 2 Q
input

8 Parallel Port F, bit 7 General-purpose I/O port PWM[3] output Quadrature decoder 2 I
input

9 +5 V External buffer logic supply

10 0 V Common

User’s Manual 119

E.3 Using Parallel Port F
Parallel Port F is a byte-wide port with each bit programmable for data direction and drive.
These are simple inputs and outputs controlled and reported in the Port F Data Register.
As outputs, the bits of the port are buffered, with the data written to the Port F Data Regis-
ter transferred to the output pins on a selected timing edge. The outputs of Timer A1,
Timer B1, or Timer B2 can be used for this function, with each nibble of the port having a
separate select field to control this timing. These inputs and outputs are also used for
access to other peripherals on the chip.

As outputs, Parallel Port F can carry the four Pulse Width Modulator outputs on PF4–PF 7
(J6, pins 5–8). As inputs, Parallel Port F can carry the inputs to the Quadrature Decoders
on PF0–PF3 (J6, pins 1–4). When Serial Port C or Serial Port D is used in clocked serial
mode, two pins of Port F (PF0 / J6:1 and PF1 / J6:2) are used to carry the serial clock sig-
nals. When the internal clock is selected in these serial ports, the corresponding bit of Par-
allel Port F is set as an output.

E.3.1 Parallel Port F Registers

Data Direction Register—PFDDR, address 00111111 (0x3F), write-only, default value on
reset 00000000. For each bit position, write a 1 to make the corresponding port line an
output, or 0 to produce an input.

Drive Control Register—PFDCR, address 00111110 (0x3E), Write-only, no default on
reset (port defaults to all inputs). Effective only if the corresponding port bits are set as
outputs, each bit set to 1 configures the corresponding port bit as open drain. Setting the
bit to 0 configures that output as active high or low.

Function Register—PFFR, address 00111101 (0x3D), Write-only, no default on reset.
This register sets the alternate output function assigned to each of the pins of the port.
When set to 0, the corresponding port pin functions normally as an output (if configured to
be an output in PFDDR). When set to 1, each bit sets the corresponding pin to have the
alternate output function as shown in the summary table at the end of this section.

Control Register—PFCR, address 00111100 (0x3C), Write-only, default on reset
xx00xx00. This register sets the transfer clock, which controls the timing of the outputs on
each nibble of the output ports to allow close synchronization with other events. The sum-
mary table at the end of this section shows the settings for this register. The default values
on reset transfer the output values on CLK/2.

Data Register—PFDR, address 00111000 (0x38), Read or Write, no default value on
reset. On read, the current state of the pins is reported. On write, the output buffer is writ-
ten with the value for transfer to the output port register on the next rising edge of the
transfer clock, set in the PFCR.

120 RabbitCore RCM3200

Table E-2. Parallel Port F Registers

Register Name Mnemonic I/O Address R/W Reset Value

Port F Data Register PFDR 00111000 (0x38) R/W xxxxxxxx

Bits Value Description

0:7 Read Current state of pins

Write Port buffer. Value transferred to O/P register on next
rising edge of transfer clock.

Port F Control Register PFCR 00111100 (0x3C) W only xx00xx00

Bits Value Description

0:1 00 Lower nibble transfer clock is CLK/2

01 Lower nibble transfer clock is Timer A1

10 Lower nibble transfer clock is Timer B1

11 Lower nibble transfer clock is Timer B2

2:3 xx These bits are ignored

4:5 00 Upper nibble transfer clock is CLK/2

01 Upper nibble transfer clock is Timer A1

10 Upper nibble transfer clock is Timer B1

11 Upper nibble transfer clock is Timer B2

6:7 xx These bits are ignored

Port F Function Register PFFR 00111101 (0x3D) W xxxxxxxx

Bits Value Description

0:7 0 Corresponding port bits function normally

0 1 Bit 0 carries SCLK_D

1 1 Bit 1 carries SCLK_C

2:3 x No effect

4 1 Bit 4 carries PWM[0] output

5 1 Bit 5 carries PWM[1] output

6 1 Bit 6 carries PWM[2] output

7 1 Bit 7 carries PWM[3] output

Port F Drive Control Register PFDCR 00111110 (0x3E) W xxxxxxxx

Bits Value Description

0:7 0 Corresponding port bit is active high or low

1 Corresponding port bit is open drain

User’s Manual 121

Port F Data Direction Register PFDDR 00111111 (0x3F) W 00000000

Bits Value Description

0:7 0 Corresponding port bit is an input

1 Corresponding port bit is an output

Table E-2. Parallel Port F Registers (continued)

Register Name Mnemonic I/O Address R/W Reset Value

122 RabbitCore RCM3200

E.4 PWM Outputs
The Pulse-Width Modulator consists of a 10-bit free-running counter and four width regis-
ters. Each PWM output is high for n + 1 counts out of the 1024-clock count cycle, where n
is the value held in the width register. The PWM output high time can optionally be spread
throughout the cycle to reduce ripple on the externally filtered PWM output. The PWM is
clocked by the output of Timer A9. The spreading function is implemented by dividing
each 1024-clock cycle into four quadrants of 256 clocks each. Within each quadrant, the
Pulse-Width Modulator uses the eight MSBs of each pulse-width register to select the base
width in each of the quadrants. This is the equivalent to dividing the contents of the pulse-
width register by four and using this value in each quadrant. To get the exact high time, the
Pulse-Width Modulator uses the two LSBs of the pulse-width register to modify the high
time in each quadrant according to Table E-3 below. The “n/4” term is the base count, and
is formed from the eight MSBs of the pulse-width register.

The diagram below shows a PWM output for several different width values for both
modes of operation. Operation in the spread mode reduces the filtering requirements on
the PWM output in most cases.

Figure E-1. PWM Outputs for Various Normal and Spread Modes

Table E-3. PWM Outputs

Pulse Width LSBs 1st 2nd 3rd 4th

00 n/4 + 1 n/4 n/4 n/4

01 n/4 + 1 n/4 n/4 + 1 n/4

10 n/4 + 1 n/4 + 1 n/4 + 1 n/4

11 n/4 + 1 n/4 + 1 n/4 + 1 n/4 + 1

n=255, normal

n=256, spread

n=255, spread

(256 counts)

(64 counts) (64 counts) (64 counts) (64 counts)

(65 counts) (64 counts) (64 counts) (64 counts)

n=257, spread (65 counts) (64 counts) (65 counts) (64 counts)

n=258, spread (65 counts) (65 counts) (65 counts) (64 counts)

n=259, spread (65 counts) (65 counts) (65 counts) (65 counts)

n=259, normal (260 counts)

User’s Manual 123

E.5 PWM Registers
There are no default values on reset for any of the PWM registers.

Table E-4. PWM Registers

PWM LSBs Register Address

PWL0R 10001000 (0x88)

PWL1R 10001010 (0x8A)

PWL2R 10001100 (0x8C)

PWL3R 10001110 (0x8E)

Bit(s) Value Description

7:6 Write The least significant two bits for the Pulse Width Modulator count are
stored

5:1 These bits are ignored.

0 0 PWM output High for single block.

1 Spread PWM output throughout the cycle

PWM MSB x Register Address

PWM0R Address = 10001001 (0x89)

PWM1R Address = 10001011 (0x8B)

PWM2R Address = 10001101 (0x8D)

PWM3R Address = 10001111 (0x8F)

Bit(s) Value Description

7:0 write

The most significant eight bits for the Pulse-Width Modulator count
are stored
With a count of n, the PWM output will be high for n +1 clocks out of
the 1024 clocks of the PWM counter.

124 RabbitCore RCM3200

E.6 Quadrature Decoder
The two-channel Quadrature Decoder accepts inputs via Parallel Port F from two external
optical incremental encoder modules. Each channel of the Quadrature Decoder accepts an
in-phase (I) and a quadrature-phase (Q) signal, and provides 8-bit counters to track shaft
rotation and provide interrupts when the count goes through the zero count in either direc-
tion. The Quadrature Decoder contains digital filters on the inputs to prevent false counts
and is clocked by the output of Timer A10. Each Quadrature Decoder channel accepts
inputs from either the upper nibble or lower nibble of Parallel Port F. The I signal is input
on an odd-numbered port bit, while the Q signal is input on an even-numbered port bit.
There is also a disable selection, which is guaranteed not to generate a count increment or
decrement on either entering or exiting the disable state. The operation of the counter as a
function of the I and Q inputs is shown below.

Figure E-2. Operation of Quadrature Decoder Counter

The Quadrature Decoders are clocked by the output of Timer A10, giving a maximum
clock rate of one-half of the peripheral clock rate. The time constant of Timer A10 must be
fast enough to sample the inputs properly. Both the I and Q inputs go through a digital fil-
ter that rejects pulses shorter than two clock periods wide. In addition, the clock rate must
be high enough that transitions on the I and Q inputs are sampled in different clock cycles.
The Input Capture (see the Rabbit 3000 Microprocessor Users Manual) may be used to
measure the pulse width on the I inputs because they come from the odd-numbered port
bits. The operation of the digital filter is shown below.

 � � � � � � � % � � � � � � � ��

"�49;@*

.�49;@*

�1@9*+,

2�������

Rejected

Accepted

Peri Clock

Timer A10

User’s Manual 125

The Quadrature Decoder generates an interrupt when the counter increments from 0x00 to
0x01 or when the counter decrements from 0x00 to 0xFF. Note that the status bits in the
QDCSR are set coincident with the interrupt, and the interrupt (and status bits) are cleared
by reading the QDCSR.

Table E-5. Quadrature Decoder Registers

Register Name Mnemonic Address

Quad Decode Control/Status
Register QDCSR 10010000 (0x90)

Bit Value Description

7
(rd-only)

0 Quadrature Decoder 2 did not increment from 0xFF.

1 Quadrature Decoder 2 incremented from 0xFF to
0x00. This bit is cleared by a read of this register.

6
(rd-only)

0 Quadrature Decoder 2 did not decrement from 0x00.

1 Quadrature Decoder 2 decremented from 0x00 to
0xFF. This bit is cleared by a read of this register

5 0 This bit always reads as zero.

4
(wr-only)

0 No effect on the Quadrature Decoder 2.

1 Reset Quadrature Decoder 2 to 0x00, without
causing an interrupt.

3
(rd-only)

0 Quadrature Decoder 1 did not increment from 0xFF.

1 Quadrature Decoder 1 incremented from 0xFF to
0x00. This bit is cleared by a read of this register.

2
(rd-only)

0 Quadrature Decoder 1 did not decrement from 0x00.

1 Quadrature Decoder 1 decremented from 0x00 to
0xFF. This bit is cleared by a read of this register.

1 0 This bit always reads as zero.

Bit Value Description

0
(wr-only)

0 No effect on the Quadrature Decoder 1.

1 Reset Quadrature Decoder 1 to 0x00, without
causing an interrupt.

126 RabbitCore RCM3200

Quad Decode Control
Register QDCR Address = 10010001 (0x91)

Bit Value Description

7:6 0x
Disable Quadrature Decoder 2 inputs. Writing a new
value to these bits will not cause Quadrature
Decoder 2 to increment or decrement.

10 Quadrature Decoder 2 inputs from Port F bits 3 and
2.

11 Quadrature Decoder 2 inputs from Port F bits 7 and
6.

5:4 xx These bits are ignored.

3:2 0x
Disable Quadrature Decoder 1 inputs. Writing a new
value to these bits will not cause Quadrature
Decoder 1 to increment or decrement.

10 Quadrature Decoder 1 inputs from Port F bits 1 and
0.

11 Quadrature Decoder 1 inputs from Port F bits 5 and
4.

1:0 0 Quadrature Decoder interrupts are disabled.

1 Quadrature Decoder interrupt use Interrupt Priority
1.

10 Quadrature Decoder interrupt use Interrupt Priority
2.

11 Quadrature Decoder interrupt use Interrupt Priority
3.

Quad Decode Count Register QDC1R Address = 10010100 (0x94)

(QDC2R) Address = 10010110 (0x96)

Bit(s) Value Description

7:0 read The current value of the Quadrature Decoder
counter is reported.

Table E-5. Quadrature Decoder Registers (continued)

Register Name Mnemonic Address

User’s Manual 127

INDEX

A
additional information

online documentation 7

B
battery backup

battery life 114
circuit 114
external battery connec-

tions 113
real-time clock 114
reset generator 115
use of battery-backed SRAM

....................................... 39
board initialization

function calls 41
brdInit 41

bus loading 63

C
clock doubler 35
conformal coating 68
connectivity interface kits

Connector Adapter Board ... 7
Connector Adapter Board 7

D
Development Kit 9

AC adapter 6
DC power supply 6
programming cable 6
RCM3200 6

Getting Started instruc-
tions 6

digital I/O 24
I/O buffer sourcing and

sinking limits 67
memory interface 29
SMODE0 29, 32
SMODE1 29, 32

dimensions
LCD/keypad module 83
LCD/keypad template 86
Prototyping Board 75
RCM3200 58

Dynamic C 7, 9, 16, 37
add-on modules 9, 42

installation 9
battery-backed SRAM 39
protected variables 39
Rabbit Embedded Security

Pack 7, 9, 42
sample programs 20
standard features

debugging 38
telephone-based technical

support 7, 42
upgrades and patches 42
USB port settings 16

E
Ethernet cables 43
Ethernet connections 43, 45

10/100Base-T 45
10/100Base-T Ethernet card

....................................... 43
additional resources 55
direct connection 45
Ethernet cables 45
Ethernet hub 43
IP addresses 45, 47
MAC addresses 48
steps 43, 44

Ethernet port 31
pinout 31

exclusion zone 59
external I/O bus 29

software 39, 92

F
features

comparison with
RCM3209/RCM3229 4

Prototyping Board 72, 73

H
hardware connections 10

install RCM3200 on
Prototyping Board 11

power supply 14
programming cable 12

hardware reset 14

I
I/O address assignments

LCD/keypad module 87
I/O buffer sourcing and sinking

limits 67
IP addresses 47

how to set in sample programs
....................................... 52

how to set PC IP address .. 53

J
jumper configurations

RCM3200 69
JP2 (program execution

SRAM size) 69
JP3 (flash memory size) 69
JP4 (flash memory bank

select) 36, 69
JP5 (data SRAM size) ... 69
jumper locations 69

K
keypad template 86

removing and inserting label
....................................... 86

128 RabbitCore RCM3200

L
LCD/keypad module

bezel-mount installation89
dimensions83
function calls

dispInit92
header pinout87
I/O address assignments87
keypad

function calls
keyConfig108
keyGet109
keyInit108
keypadDef110
keyProcess109
keyScan110
keyUnget109

keypad template86
LCD display

function calls
glBackLight93
glBlankScreen94
glBlock94
glBuffLock100
glBuffUnlock100
glDispOnOff93
glDown1103
glFillCircle97
glFillPolygon96
glFillScreen94
glFillVPolygon96
glFontCharAddr97
glGetBrushType101
glGetPfStep98
glHScroll103
glInit93
glLeft1102
glPlotCircle96
glPlotDot101
glPlotLine101
glPlotPolygon95
glPlotVPolygon95
glPrintf99
glPutChar99
glPutFont98
glRight1102
glSetBrushType100
glSetContrast94
glSetPfStep98
glSwap100
glUp1102
glVScroll104
glXFontInit97
glXPutBitmap104

glXPutFastmap105
TextCursorLocation ..106
TextGotoXY106
TextPrintf107
TextPutChar106
TextWindowFrame ...105

LEDs
function calls92

ledOut92
mounting instructions88
remote cable connection91
removing and inserting keypad

label86
sample programs111
voltage settings85

M
MAC addresses48
motor control applications79
motor control option

quadrature decoder124
mounting instructions

LCD/keypad module88

P
physical mounting62
pinout

Ethernet port31
LCD/keypad module87
Prototyping Board77
RCM3200

alternate configurations .26
RCM3200 headers24

power supplies
+3.3 V113
battery backup113
optional +5 V output115

power supply
connections14

Program Mode33
switching modes33

programming cable117
PROG connector33
RCM3200 connections12

programming port32
Prototyping Board72

adding RS-232 transceiver 78
dimensions75
expansion area73
features72, 73
J6

pinout118
motor encoder connector pi-

nout79

mounting RCM320011
pinout77
power supply76
prototyping area77
specifications76
use of parallel ports80

PWM outputs122
PWM registers123

Q
quadrature decoder124
quadrature decoder registers 125

R
Rabbit 3000

data and clock delays65
Parallel Port F Registers ..119
Parallel Port F registers ...120
PWM outputs122
PWM registers123
quadrature decoder regis-

ters125
spectrum spreader time delays

.......................................65
Rabbit subsystems25
RCM3200

comparison with
RCM3209/RCM32294

mounting on Prototyping
Board11

real-time clock
battery backup114

reset14
Run Mode33

switching modes33

S
sample programs20

getting to know the RCM3200
CONTROLLED.C20
FLASHLED1.C20
FLASHLED2.C20
IR_DEMO.C20
TOGGLESWITCH.C20

how to run TCP/IP sample
programs51, 52

how to set IP address52
LCD/keypad

KEYPADTOLED.C111
LCDKEYFUN.C111
SWITCHTOLED.C111

LCD/keypad module111
PONG.C16

User’s Manual 129

serial communication
FLOWCONTROL.C 21
PARITY.C 21
SIMPLE3WIRE.C 21
SIMPLE485MASTER.C 22
SIMPLE485SLAVE.C .. 22
SIMPLE5WIRE.C 21
SWITCHCHAR.C 22

TCP/IP
BROWSELED.C 54
DISPLAY_MAC.C 48
ECHOCLIENT.C 54
ECHOSERVER.C 54
ENET_AD.C 54
ENET_MENU.C 55
MBOXDEMO.C 55
PINGLED.C 55
PINGME.C 54
SMTP.C 55

serial communication 30
drivers 40
libraries

PACKET.LIB 40
RS232.LIB 40

serial ports 30
Ethernet port 31
programming port 32

software 7
digital I/O

I/O drivers 39
external I/O bus 29
libraries

KEYPAD7.LIB 108
LCD122KEY7.LIB 92
RCM32xx.LIB 40

specifications 57
bus loading 63
digital I/O buffer sourcing and

sinking limits 67
dimensions 58
electrical, mechanical, and en-

vironmental 60
exclusion zone 59
header footprint 62
headers 61
LCD/keypad module

dimensions 83
electrical 84
header footprint 84
mechanical 84
relative pin 1 locations .. 84
temperature 84

physical mounting 62
Prototyping Board 76
Rabbit 3000 DC characteris-

tics 66
Rabbit 3000 timing diagram .

64
relative pin 1 locations 62

spectrum spreader 65
subsystems

digital inputs and outputs .. 24
switching modes 33

T
TCP/IP

software
libraries 40

TCP/IP drivers 40
TCP/IP primer 45
technical support 17
troubleshooting

changing COM port 16
connections 16

U
USB/serial port converter

Dynamic C settings 16
user block

flash memory addresses 36
function calls

readUserBlock 36
writeUserBlock 36

130 RabbitCore RCM3200

User’s Manual 131

SCHEMATICS

090-0152 RCM3200 Schematic
www.rabbit.com/documentation/schemat/090-0152.pdf

090-0137 Prototyping Board Schematic
www.rabbit.com/documentation/schemat/090-0137.pdf

090-0156 LCD/Keypad Module Schematic
www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.

http://www.rabbit.com/documentation/schemat/090-0152.pdf
http://www.rabbit.com/documentation/schemat/090-0137.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Rabbit Semiconductor:

 20-101-0542

http://www.mouser.com/Rabbit-Semiconductor
http://www.mouser.com/access/?pn=20-101-0542

	RabbitCore RCM3200 User's Manual
	Table of Contents
	1. Introduction
	1.1 RCM3200 Features
	1.2 Comparing the RCM3209/RCM3229 and RCM3200/RCM3220
	1.3 Advantages of the RCM3200
	1.4 Development and Evaluation Tools
	1.4.1 RCM3200 Development Kit
	1.4.2 Software
	1.4.3 Connectivity Interface Kits
	1.4.4 Online Documentation

	2. Hardware Setup
	2.1 Install Dynamic C
	2.2 Hardware Connections
	2.2.1 Step 1 — Attach Module to Prototyping�Board
	2.2.2 Step 2 — Connect Programming Cable
	2.2.3 Step 3 — Connect Power

	2.3 Starting Dynamic C
	2.4 Run a Sample Program
	2.4.1 Troubleshooting

	2.5 Where Do I Go From Here?
	2.5.1 Technical Support

	3. Running Sample Programs
	3.1 Introduction
	3.2 Sample Programs
	3.2.1 Serial Communication
	3.2.2 Other Sample Programs

	4. Hardware Reference
	4.1 RCM3200 Digital Inputs and Outputs
	4.1.1 Memory I/O Interface
	4.1.2 Other Inputs and Outputs
	4.1.3 5 V Tolerant Inputs

	4.2 Serial Communication
	4.2.1 Serial Ports
	4.2.2 Ethernet Port (RCM3200 only)
	4.2.3 Serial Programming Port

	4.3 Serial Programming Cable
	4.3.1 Changing Between Program Mode and Run Mode
	4.3.2 Standalone Operation of the RCM3200

	4.4 Other Hardware
	4.4.1 Clock Doubler
	4.4.2 Spectrum Spreader

	4.5 Memory
	4.5.1 SRAM
	4.5.2 Flash EPROM
	4.5.3 Dynamic C BIOS Source Files

	5. Software Reference
	5.1 More About Dynamic C
	5.2 Dynamic C Function Calls
	5.2.1 Digital I/O
	5.2.2 SRAM Use
	5.2.3 Serial Communication Drivers
	5.2.4 TCP/IP Drivers
	5.2.5 Prototyping Board Function Calls

	5.3 Upgrading Dynamic C
	5.3.1 Extras

	6. Using the TCP/IP Features
	6.1 TCP/IP Connections
	6.2 TCP/IP Primer on IP Addresses
	6.2.1 IP Addresses Explained
	6.2.2 How IP Addresses are Used
	6.2.3 Dynamically Assigned Internet Addresses

	6.3 Placing Your Device on the Network
	6.4 Running TCP/IP Sample Programs
	6.4.1 How to Set IP Addresses in the Sample Programs
	6.4.2 How to Set Up your Computer’s IP Address for Direct Connect
	6.4.3 Dynamic C Compiler Settings

	6.5 Run the PINGME.C Sample Program
	6.6 Running More Sample Programs With Direct Connect
	6.7 Where Do I Go From Here?

	Appendix A. RCM3200 Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers
	A.1.2 Physical Mounting

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Conformal Coating
	A.6 Jumper Configurations

	Appendix B. Prototyping Board
	B.1 Introduction
	B.1.1 Prototyping Board Features

	B.2 Mechanical Dimensions and Layout
	B.3 Power Supply
	B.4 Using the Prototyping Board
	B.4.1 Adding Other Components
	B.4.2 Measuring Current Draw
	B.4.3 Other Prototyping Board Modules and Options

	B.5 Use of Rabbit 3000 Parallel Ports

	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Contrast Adjustments for All Boards
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Mounting LCD/Keypad Module on the Prototyping Board
	C.6 Bezel-Mount Installation
	C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.7 LCD/Keypad Module Function Calls
	C.7.1 LCD/Keypad Module Initialization
	C.7.2 LEDs
	C.7.3 LCD Display
	C.7.4 Keypad

	C.8 Sample Programs

	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Battery Backup
	D.1.2 Battery-Backup Circuit
	D.1.3 Reset Generator

	D.2 Optional +5 V Output

	Appendix E. Motor Control Option
	E.1 Overview
	E.2 Header J6
	E.3 Using Parallel Port F
	E.3.1 Parallel Port F Registers

	E.4 PWM Outputs
	E.5 PWM Registers
	E.6 Quadrature Decoder

	Index
	Schematics

