Power MOSFET

40 V, 23 A, Single N-Channel, DPAK/IPAK

Features

- Low R_{DS(on)}
- High Current Capability
- Avalanche Energy Specified
- AEC-Q101 Qualified and PPAP Capable NVD5807N
- These Devices are Pb–Free and are RoHS Compliant

Applications

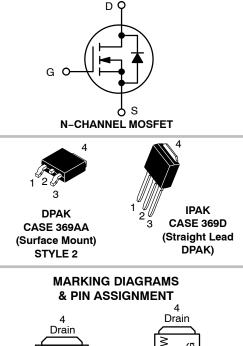
- CCFL Backlight
- DC Motor Control
- Class D Amplifier
- Power Supply Secondary Side Synchronous Rectification

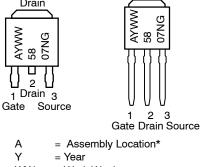
MAXIMUM RATINGS	6 (T _J = 25°	C unless other	rwise noted)		
Parameter			Symbol	Value	Unit
Drain-to-Source Voltag	ge		V _{DSS}	40	V
Gate-to-Source Voltag	je – Contir	nuous	V _{GS}	±20	V
Gate-to-Source Voltag - Non-Repetitive (t _p <			V _{GS}	± 30	V
Continuous Drain		$T_{C} = 25^{\circ}C$	۱ _D	23	А
Current (R _{θJC}) (Note 1)	Steady State	$T_{C} = 100^{\circ}C$		16	
Power Dissipation ($R_{\theta JC}$) (Note 1)	Sidle	$T_C = 25^{\circ}C$	PD	33	W
Pulsed Drain Current	t _p = 10 μs		I _{DM}	45	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 175	°C
Source Current (Body Diode)			I _S	23	А
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 50 V, V _{GS} = 10 V, R _G = 25 Ω , I _{L(pk}) = 14 A, L = 0.3 mH, V _{DS} = 40 V)		E _{AS}	29.4	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.5	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	107	


1. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

www.onsemi.com

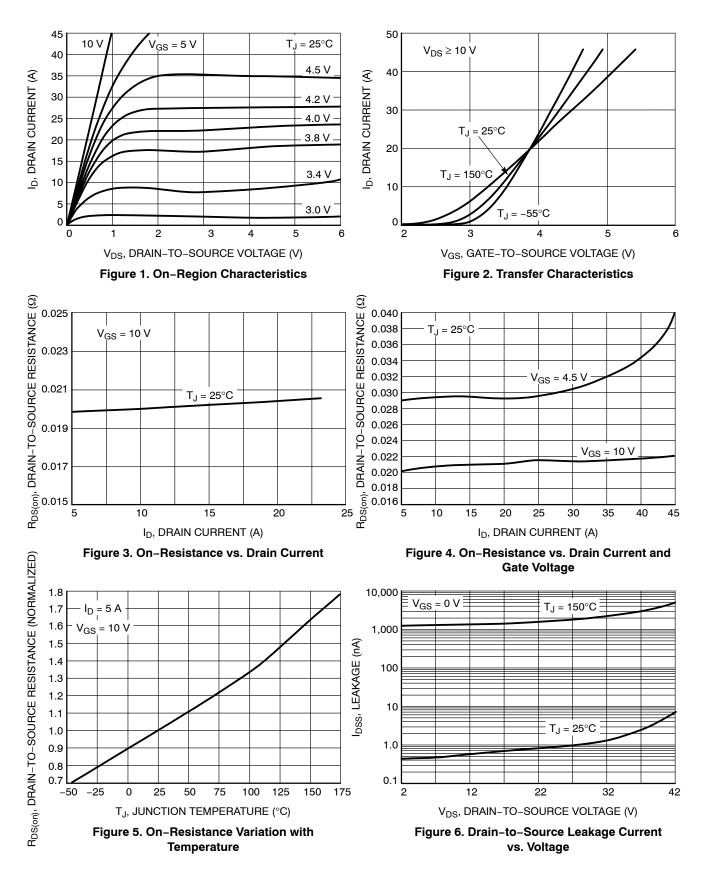
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
40 V	37 mΩ @ 4.5 V	16 A
	31 mΩ @ 10 V	23 A

WW = Work Week 5807N = Device Code

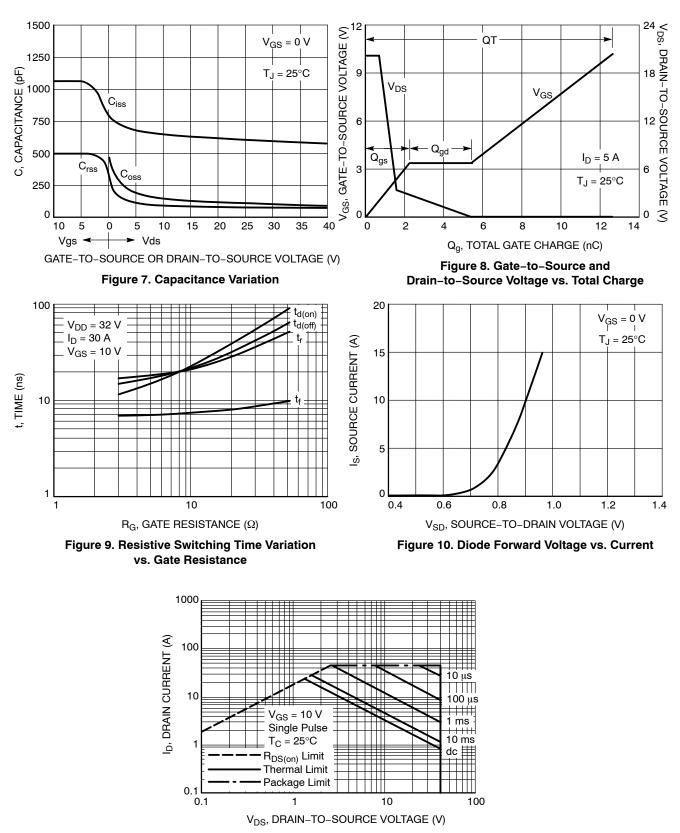
G = Pb-Free Package

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

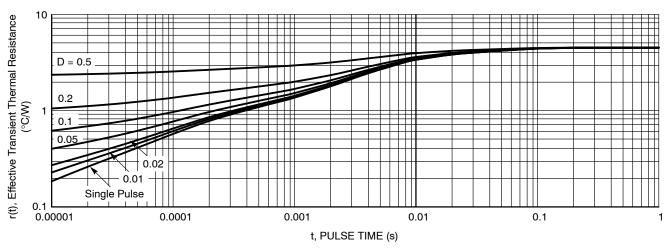

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				38		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 40 V$	T _J = 150°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	s = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.4		2.5	V
Negative Threshold Temperature Co- efficient	V _{GS(TH)} /T _J				-5.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _C	= 5.0 A		20	31	mΩ
		V _{GS} = 4.5 V, I _[₀ = 4.0 A		29	37	1
Forward Transconductance	gFS	V_{DS} = 10 V, I _E) = 15 A		8.1		S
CHARGES, CAPACITANCES AND GA	TE RESISTANCE	S					
Input Capacitance	C _{iss}				603		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = V _{DS} = 25	1.0 MHz, 5 V		96		
Reverse Transfer Capacitance	C _{rss}	05 - 20			73		
Total Gate Charge	Q _{G(TOT)}				12.6	20	nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 10 V, V_{DS} = 20 V, I _D = 5.0 A			0.76		
Gate-to-Source Charge	Q _{GS}				2.2		
Gate-to-Drain Charge	Q _{GD}				3.1		
SWITCHING CHARACTERISTICS (Not	e 3)						-
Turn-On Delay Time	t _{d(on)}	V _{GS} = 4.5 V, V _{DD} = 20 V,			11.2		ns
Rise Time	t _r				111		1
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 30 \rm A, R_{\rm G}$	= 2.5 Ω		11.2		1
Fall Time	t _f				3.2		1
Turn-On Delay Time	t _{d(on)}				6.7		ns
Rise Time	t _r	V _{GS} = 10 V, V _D	_D = 20 V,		20.4		1
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 30 \rm A, R_{\rm G}$	= 2.5 Ω		15.6		1
Fall Time	t _f				2.0		
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.91	1.2	V
		$I_{\rm S} = 10 \text{ A}$ $T_{\rm J} = 150^{\circ}\text{C}$			0.76		1
Reverse Recovery Time	t _{RR}	I			15.7		ns
Charge Time	ta	V _{GS} = 0 V, dls/dt	= 100 A/us.		10.75		1
Discharge Time	tb	$I_{\rm S} = 30$			5.0		1
Reverse Recovery Charge	Q _{RR}				6.1		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

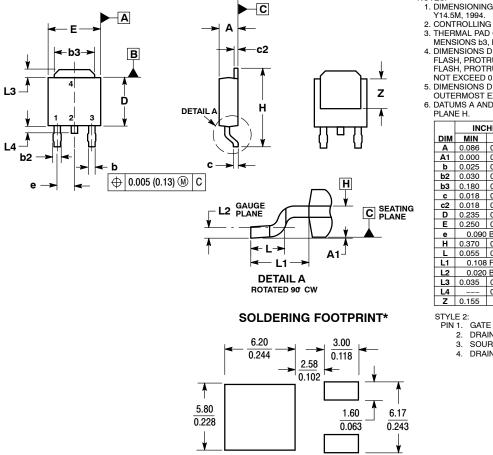
TYPICAL PERFORMANCE CHARACTERISTICS



TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

ORDERING INFORMATION


Order Number	Package	Shipping [†]
NTD5807NG	IPAK (Straight Lead DPAK) (Pb-Free)	75 Units / Rail
NTD5807NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD5807NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD5807NT4G-VF01	DPAK (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE) CASE 369AA-01

ISSUE B

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- THEHMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DATUMS A AND B ARE DETERMINED AT DATUM DI ANUE H PLANE H

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
e	0.090	BSC	2.29 BSC		
Η	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Ζ	0.155		3.93		

DRAIN
 SOURCE

4. DRAIN

mm

(inches)

SCALE 3:1

PACKAGE DIMENSIONS

IPAK

z

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
в	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090 BSC		2.29 BSC		
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
к	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

PIN 1. GATE

DRAIN
 SOURCE

4. DRAIN

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardles against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NVD5807NT4G