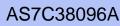


1M X 8 BIT HIGH SPEED CMOS SRAM

FEATURES

- Fast access time : 10ns
- Very low power consumption:
 Operating current: 80mA(TYP. 10ns)
 - Standby current (Normal version): 3mA(TYP.)
- Single 3.3V power supply
- All inputs and outputs TTL compatible
- Fully static operation
- Tri-state output
- Data retention voltage : 1.5V (MIN.)
- Green package available
- Package: 44-pin 400 mil TSOP-II

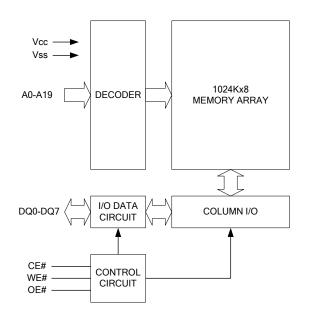
48-ball 6mmx8mm TFBGA


PRODUCT FAMILY

GENERAL DESCRIPTION

The AS7C38096A is a 8M-bit high speed CMOS static random access memory organized as 1,024K words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS7C38096A operates from a single power supply of 3.3V and all inputs and outputs are fully TTL compatible

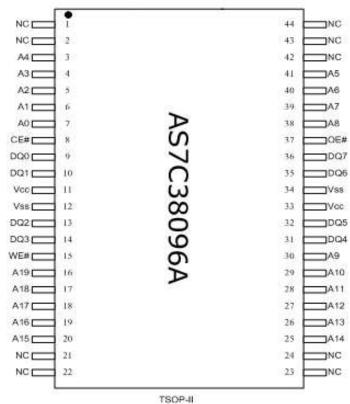

Product	Operating	Vcc Range	Speed	Power D	Dissipation	
Family	Temperature	VCC Kange	Speed	Standby(IsB1,TYP.)	Operating(Icc1,TYP.)	
AS7C38096A	-40 ~ 85°C	2.7 ~ 3.6V	10ns	3mA	80/70mA	

1M X 8 BIT HIGH SPEED CMOS SRAM

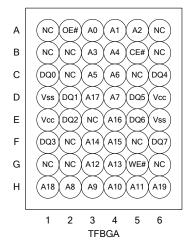
FUNCTIONAL BLOCK DIAGRAM

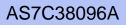
PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A19	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground
NC	No Connection



AS7C38096A


1M X 8 BIT HIGH SPEED CMOS SRAM


PIN CONFIGURATION

44-pin TSOP(Type II)

48-ball 6mmx8mm TFBGA

1M X 8 BIT HIGH SPEED CMOS SRAM

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	Vt1	-0.5 to 4.6	V
Voltage on any other pin relative to Vss	Vt2	-0.5 to Vcc+0.5	V
Operating Temperature	TA	-40 to 85	°C
Storage Temperature	Тѕтс	-65 to 150	°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	High-Z	ISB1
Output Disable	L	Н	Н	High-Z	lcc
Read	L	L	Н	Dout	lcc
Write	L	Х	L	Din	lcc

Note: H = VIH, L = VIL, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIO	N	MIN.	TYP. ⁴	MAX.	UNIT
Supply Voltage	Vcc		-10	2.7	3.3	3.6	V
Input High Voltage	VIH ^{*1}			2.2	-	Vcc+0.3	V
Input Low Voltage	VIL ²			- 0.3	-	0.8	V
Input Leakage Current	ΙLI	Vcc ≧ Vin ≧ Vss		- 1	-	1	μA
Output Leakage Current	Ilo	$V_{CC} \ge V_{OUT} \ge V_{SS},$ Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	Iон = -8mA		2.4	-	-	V
Output Low Voltage	Vol	lo∟ =4mA		-	-	0.4	V
Average Operating	lcc	CE# = Vı∟ , I⊮o = 0mA ;f=max	-10	-	100	130	mA
Power supply Current	Icc1	CE# $≧$ V _{CC} - 0.2V, Other pin is at 0.2V or Vcc-0. I _{VO} = 0mA;f=max			80	110	mA
Standby Power Supply Current	lsb	CE# ≧Vih Other pin is at Vil or Vih	•			40	mA
Standby Power Supply Current	ISB1	CE# $≧$ V _{CC} - 0.2V; Other pin is at 0.2V or V	cc-0.2V		3	25	mA

Notes:

1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 10ns.

2. $V_{IL}(min) = V_{SS} - 3.0V$ for pulse width less than 10ns.

3. Over/Undershoot specifications are characterized, not 100% tested.

1M X 8 BIT HIGH SPEED CMOS SRAM

4. Typical values are included for reference only and are not guaranteed or tested.

Typical valued are measured at Vcc = Vcc(TYP.) and TA = 25° C

CAPACITANCE (T_A = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	CIN	-	8	pF
Input/Output Capacitance	Cı/o	-	10	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

speed	10ns
Input Pulse Levels	0.2V to Vcc-0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	CL = 30pF + 1TTL,
	Iон/IoL = -4mA/8mA

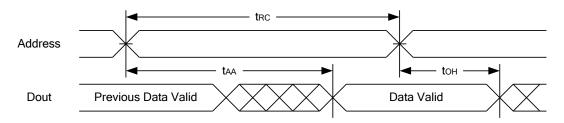
AC ELECTRICAL CHARACTERISTICS

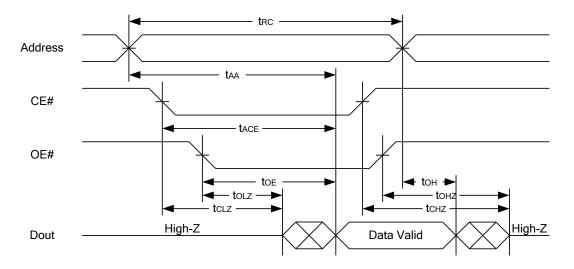
(1) READ CYCLE

PARAMETER	SYM.	AS7C380	UNIT	
PARAMETER	5 T IVI.	MIN.	MAX.	UNIT
Read Cycle Time	trc	10	-	ns
Address Access Time	taa	-	10	ns
Chip Enable Access Time	t ACE	-	10	ns
Output Enable Access Time	toe	-	4.5	ns
Chip Enable to Output in Low-Z	tc∟z*	2	-	ns
Output Enable to Output in Low-Z	tolz*	0	-	ns
Chip Disable to Output in High-Z	tснz*	-	4	ns
Output Disable to Output in High-Z	tонz*	-	4	ns
Output Hold from Address Change	tон	2	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	AS7C38	AS7C38096A-10		
FARAIVIETER	5111.	MIN.	MAX.	UNIT	
Write Cycle Time	twc	10	-	ns	
Address Valid to End of Write	taw	8	-	ns	
Chip Enable to End of Write	tcw	8	-	ns	
Address Set-up Time	tas	0	-	ns	
Write Pulse Width	twp	8	-	ns	
Write Recovery Time	twr	0	-	ns	
Data to Write Time Overlap	tow	6	-	ns	
Data Hold from End of Write Time	tDH	0	-	ns	
Output Active from End of Write	tow*	2	-	ns	
Write to Output in High-Z	twnz*	-	4	ns	


*These parameters are guaranteed by device characterization, but not production tested.


1M X 8 BIT HIGH SPEED CMOS SRAM

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

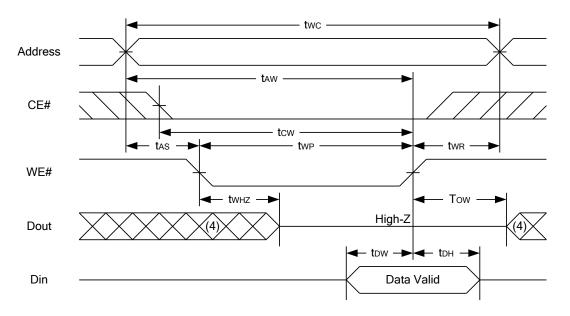
Notes :

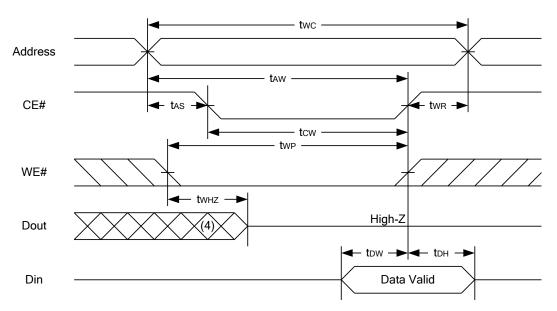
1.WE# is high for read cycle.

2.Device is continuously selected OE# = low, CE# = low.

3.Address must be valid prior to or coincident with CE# = low,; otherwise tAA is the limiting parameter.

 $4.t_{CLZ}$, t_{OLZ} , t_{CHZ} and t_{OHZ} are specified with $C_L = 5pF$. Transition is measured $\pm 500mV$ from steady state.


5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .


AS7C38096A

1M X 8 BIT HIGH SPEED CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

Notes :

1.WE#, CE# must be high during all address transitions.

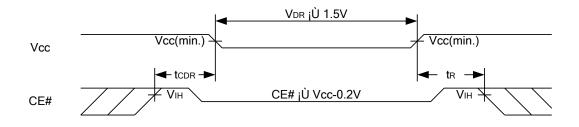
2.A write occurs during the overlap of a low CE#, low WE#.

3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.

4. During this period, I/O pins are in the output state, and input signals must not be applied.

5.If the CE# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.

6.tow and twHz are specified with CL = 5pF. Transition is measured $\pm 500mV$ from steady state.

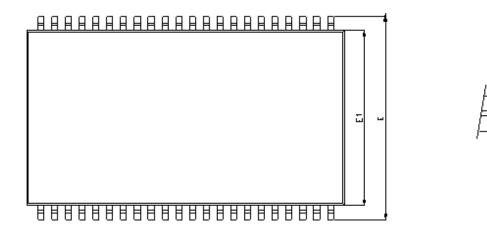

1M X 8 BIT HIGH SPEED CMOS SRAM

DATA RETENTION CHARACTERISTICS

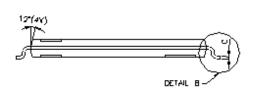
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	Vdr	$CE# \ge V_{CC} - 0.2V$	1.5	-	3.6	V
Data Retention Current	Idr	Vcc =1.5V CE# $≧$ Vcc - 0.2V; Other pin is at 0.2V or Vcc-0.2V	-	3	25	mA
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	tR		t _{RC∗}	-	-	ns

tRC* = Read Cycle Time

DATA RETENTION WAVEFORM


AS7C38096A

1M X 8 BIT HIGH SPEED CMOS SRAM


PACKAGE OUTLINE DIMENSION

44-pin 400mil TSOP- II Package Outline Dimension

D

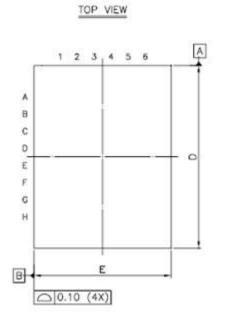
ь

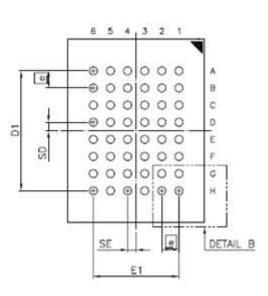
17(41)

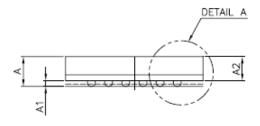
DETAIL B

SYMBOLS	DIMENS	ONS IN MILL	METERS	DIM	ENSIONS IN I	MILS
STNIBOLS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	-	-	1.20	-	-	47.2
A1	0.05	0.10	0.15	2.0	3.9	5.9
A2	0.95	1.00	1.05	37.4	39.4	41.3
b	0.30	-	0.45	11.8	-	17.7
С	0.12	-	0.21	4.7	-	8.3
D	18.212	18.415	18.618	717	725	733
E	11.506	11.760	12.014	453	463	473
E1	9.957	10.160	10.363	392	400	408
е	-	0.800	-	-	31.5	-
L	0.40	0.50	0.60	15.7	19.7	23.6
ZD	-	0.805	-	-	31.7	-
У	-	-	0.076	-	-	3
θ	0°	3°	6°	0°	3°	6°

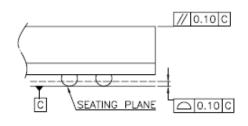
থ ⊲


뒧

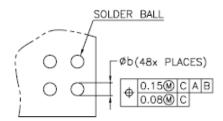

 $\Delta \gamma$


1M X 8 BIT HIGH SPEED CMOS SRAM

48-ball 6mm × 8mm TFBGA Package Outline Dimension



BOTTOM VIEW

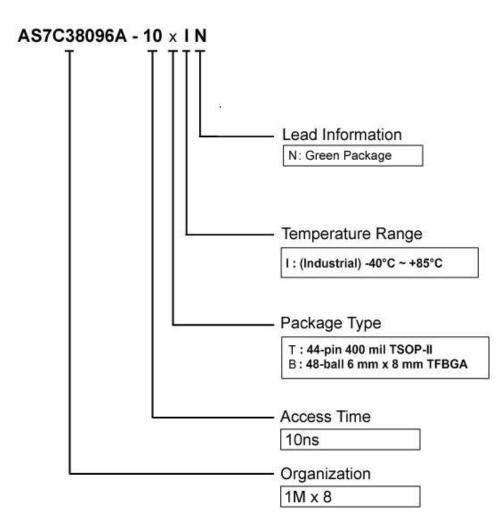


SIDE VIEW

DETAIL A

	D	IMENSIO (mm)	N	DIMENSION (inch)			
SYM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А		—	1.40	_		0.055	
A1	0.20	0.25	0.30	0.008	0.010	0.012	
A2		—	1.05		—	0.041	
b	0.30	0.35	0.40	0.012	0.014	0.016	
D	7.95	8.00	8.05	0.313	0.315	0.317	
D1	5	.25 BSC	>	0.207 BSC			
E	5.95	6.00	6.05	0.234	0.236	0.238	
E1	3	.75 BSC	2	0	.148 BS	SC	
SE	0	.375 TY	Ρ	0.015 TYP			
SD	0	.375 TY	Έ	0.015 TYP			
e	0	.75 BSC	2	0.030 BSC			

DETAIL B


1. CONTROLLING DIMENSION : MILLIMETER.

2. REFERENCE DOCUMENT : JEDEC MO-207.

1M X 8 BIT HIGH SPEED CMOS SRAM

ORDERING INFORMATION

BGA : 48-ball 6 mm x 8 mm TFBGA	Industrial -40°C ~ +85°C	AS7C38096A-10BIN
TSOP II : 44-pin 400 mil TSOP II	Industrial -40°C ~ +85°C	AS7C38096A-10TIN

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Alliance Memory:

<u>AS7C38096A-10BIN</u> <u>AS7C38096A-10BINTR</u> <u>AS7C38096A-10TIN</u> <u>AS7C38096A-10TINTR</u> <u>AS7C38096A-10ZINTR</u> AS7C38096A-10ZIN