

## QUICKSWITCH® PRODUCTS **HIGH-SPEED CMOS QUICKSWITCH 32-BIT** MULTIWIDTH™ BUS SWITCHES

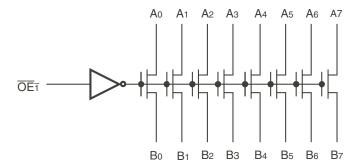
IDTQS34X245

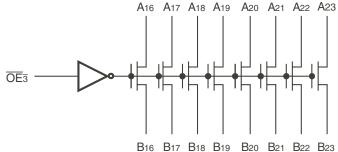
## **FEATURES:**

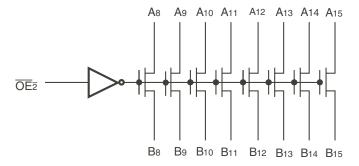
- . Enhanced N channel FET with no inherent diode to Vcc
- Bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- QS34X245 is 32-bit version of QS3245
- Flow-through pinout for easy layout
- · Undershoot clamp diodes on all switch and control inputs
- TTL-compatible control inputs
- Available in 80-pin MilliPaQ™ package

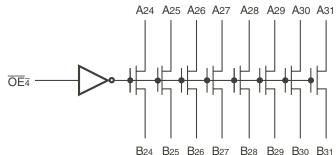
## **APPLICATIONS:**

- · Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Bus switching and isolation
- · Power conservation
- · Logic replacement (data processing)
- · Capacitance isolation
- Clock gating


## **DESCRIPTION:**


The QS34X245 is a member of the MultiWidth™ family of QuickSwitch devices and provides a set of 32 high-speed CMOS compatible bus switches in a flow-through pinout. This device is available in the MilliPaQ package, the world's first small outline 32-bit solution. The low ON-resistance of the QS34X245 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. When Output Enable (OEn) is low, the switches are turned on, connecting bus A to bus B. When OEn is high, the switches are turned off. This device is ideally suited for 32/64 bit applications where board space is at a premium.


QuickSwitch devices provide speeds an order of magnitude faster than conventional logic devices.

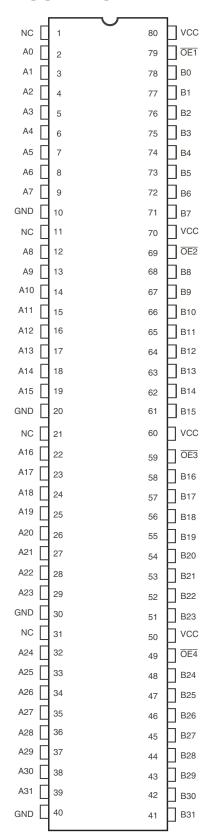

The QS34X245 is characterized for operation at -40°C to +85°C.

## **FUNCTIONAL BLOCK DIAGRAM**










The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

**AUGUST 2012** 

## **PIN CONFIGURATION**



MILLIPAQ TOP VIEW

## **ABSOLUTE MAXIMUM RATINGS**(1)

| Symbol               | Description                           | Max         | Unit |
|----------------------|---------------------------------------|-------------|------|
| VTERM <sup>(2)</sup> | Supply Voltage to Ground              | -0.5 to +7  | ٧    |
| VTERM <sup>(3)</sup> | DC Switch Voltage Vs                  | -0.5 to +7  | V    |
| VTERM <sup>(3)</sup> | DC Input Voltage VIN                  | -0.5 to +7  | V    |
| VAC                  | AC Input Voltage (pulse width ≤ 20ns) | <b>–</b> 3  | V    |
| lout                 | DC Output Current                     | 120         | mA   |
| Рмах                 | Maximum Power Dissipation (TA =70°C)  | 1.4         | W    |
| Tstg                 | Storage Temperature                   | -65 to +150 | °C   |

#### NOTE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

## **CAPACITANCE**

 $(TA = +25^{\circ}C, f = 1.0MHz, Vin = 0V, Vout = 0V)$ 

| Pins                              | Тур. | Max. <sup>(1)</sup> | Unit |
|-----------------------------------|------|---------------------|------|
| Control Pins                      | 3    | 4                   | pF   |
| Quickswitch Channels (Switch OFF) | 7    | 8                   | pF   |

#### NOTE:

1. This parameter is measured at characterization but not tested.

## **PIN DESCRIPTION**

| Pin Names  | Description   |  |
|------------|---------------|--|
| <u>OEn</u> | Output Enable |  |
| An         | Data I/Os     |  |
| Bn         | Data I/Os     |  |

## **FUNCTION TABLE(1)**

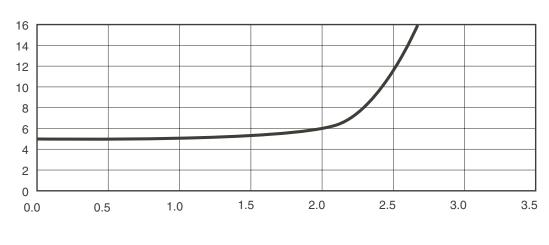
| <u>ŌEn</u> | Function     |  |  |
|------------|--------------|--|--|
| Н          | Disconnected |  |  |
| L          | An = Bn      |  |  |

#### NOTE:

1. H = HIGH Voltage Level L = LOW Voltage Level

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial:  $TA = -40^{\circ}C$  to  $+85^{\circ}C$ ,  $VCC = 5.0V \pm 5\%$ 


| Symbol | Parameter                             | Test Conditions                              | Min. | Typ. <sup>(1)</sup> | Max. | Unit |
|--------|---------------------------------------|----------------------------------------------|------|---------------------|------|------|
| VIH    | Input HIGH Level                      | Guaranteed Logic HIGH for Control Pins       | 2    | _                   | _    | V    |
| VIL    | Input LOW Level                       | Guaranteed Logic LOW for Control Pins        | _    | _                   | 0.8  | V    |
| lin    | Input LeakageCurrent (Control Inputs) | $0V \le VIN \le VCC$                         | _    | _                   | ±1   | μA   |
| loz    | Off-State Current (Hi-Z)              | 0V ≤ Vouт ≤ Vcc, Switches OFF                | _    | _                   | ±1   | μA   |
| Ron    | Switch ON Resistance                  | Vcc = Min., Vin = 0V, Ion = 30mA             | _    | 5                   | 7    | Ω    |
|        |                                       | Vcc = Min., Vin = 2.4V, Ion =15mA            | _    | 10                  | 15   |      |
| VP     | Pass Voltage <sup>(2)</sup>           | $V_{IN} = V_{CC} = 5V$ , $I_{OUT} = -5\mu A$ | 3.7  | 4                   | 4.2  | V    |

#### NOTES:

- 1. Typical values are at Vcc = 5.0V, TA = 25°C.
- 2. Pass Voltage is guaranteed but not production tested.

## TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

RON (ohms)



VIN (Volts)

## POWER SUPPLY CHARACTERISTICS

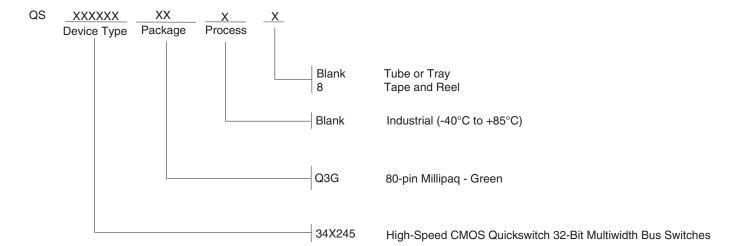
| Symbol | Parameter                                           | Test Conditions <sup>(1)</sup> Max.       |      | Unit   |
|--------|-----------------------------------------------------|-------------------------------------------|------|--------|
| Iccq   | Quiescent Power Supply Current                      | Vcc = Max., Vin = GND or Vcc, f = 0       | 12   | μΑ     |
| Δlcc   | Power Supply Current per Control Input HIGH (2)     | Vcc = Max., Vin = 3.4V, f = 0             | 1.5  | mA     |
| ICCD   | Dynamic Power Supply Current per MHz <sup>(3)</sup> | Vcc = Max., A and B pins open             | 0.25 | mA/MHz |
|        |                                                     | Control Inputs Toggling at 50% Duty Cycle |      |        |

#### NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per TLL driven input ( $V_{IN} = 3.4V$ , control inputs only). A and B pins do not contribute to  $\Delta lcc$ .
- 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $T_A = -40$ °C to +85°C,  $V_{CC} = 5.0V \pm 5\%$ ;


CLOAD = 50pF, RLOAD =  $500\Omega$  unless otherwise noted.

| Symbol       | Parameter                    | Min. <sup>(1)</sup> | Тур. | Max. | Unit |
|--------------|------------------------------|---------------------|------|------|------|
| <b>t</b> PLH | Data Propagation Delay (1,2) | _                   | _    | 0.25 | ns   |
| tphL         | An to/from Bn                |                     |      |      |      |
| tpzl         | Switch Turn-on Delay         | 0.5                 | _    | 5.6  | ns   |
| tpzh         | OE to An/Bn                  |                     |      |      |      |
| tPLZ         | Switch Turn-off Delay (1)    | 0.5                 | _    | 5.2  | ns   |
| tPHZ         | OE to An/Bn                  |                     |      |      |      |

#### NOTES:

- 1. Minimums are guaranteed but not production tested.
- 2. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for C<sub>L</sub> = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

## ORDERING INFORMATION



# **Datasheet Document History**

10/14/08 Pg. 5 Updated the ordering information by removing the "IDT" notation.

08/15/12 Pg. 5 Updated the ordering information by removing non RoHS part and by adding Tape and Reel information.



CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): QS34X245Q3G8 QS34X245Q3G