

Is Now Part of

ON Semiconductor®

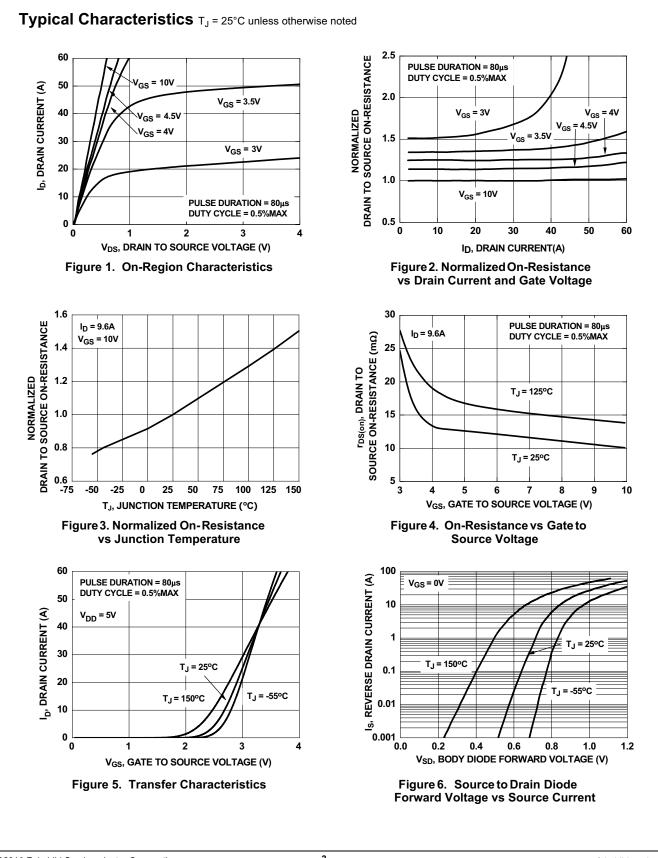
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

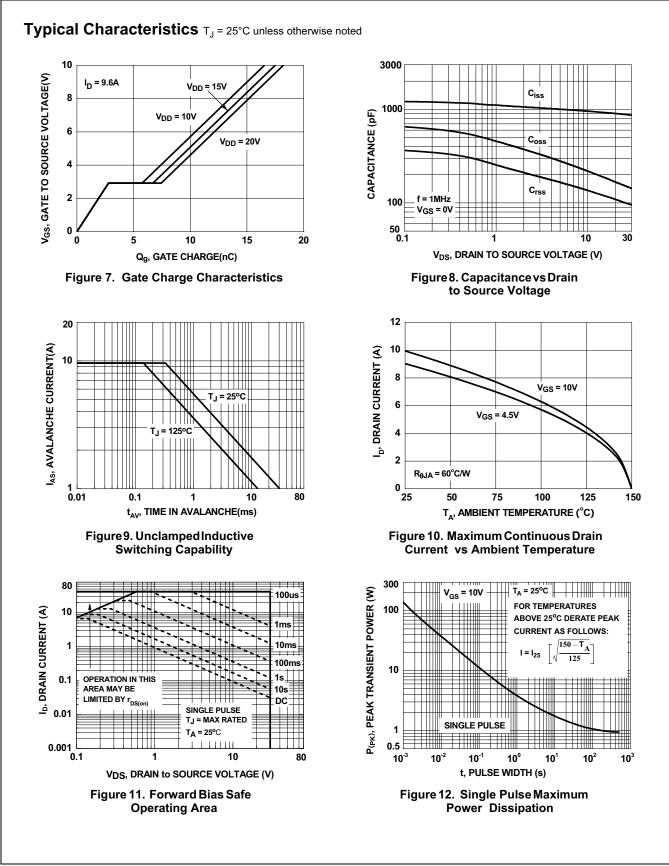
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

	28878 Annel Power Trenc	h [®] MC	DSFET		Nover	nber 20
30V, 16. Feature	5Α, 14m Ω s		General	Descrintio	n	
• Max $r_{DS(on)} = 14m\Omega$ at $V_{GS} = 10V$, $I_D = 9.6A$ • Max $r_{DS(on)} = 17m\Omega$ at $V_{GS} = 4.5V$, $I_D = 8.7A$ • Low Profile - 0.8 mm max in MLP 3.3X3.3		General Description This N-Channel MOSFET is a rugged gate version Fairchild Semiconductor's advanced Power Trend process. It has been optimized for power manageme applications.				
■ RoHS Compliant			Application ■ DC - DC Conversion			
	Тор В	ottom				
	8 7 6 5 D	ррр				
				D 6		3 S
1		S S Pin 1	1	D 6 D 7 D 8		3 S 2 S 1 S
1	2 3 4 G S S MLP 3.3x3.3	S S _{Pin 1}	1	D 7		2 S
10SFE	MLP 3.3x3.3 T Maximum Ratings Τ _Α = 25°C	C unless othe		D 7	Patings	2 S 1 S
IOSFE ⁻ Symbol	MLP 3.3x3.3 T Maximum Ratings т _А = 25°С Раг			D 7	Ratings 30	2 S 1 S
NOSFE Symbol	MLP 3.3x3.3 T Maximum Ratings Τ _Α = 25°C	C unless othe		D 7	•	2 S 1 S
NOSFE Symbol	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package	C unless othe rameter	erwise noted T _C = 25°C	D 7	30	2 S 1 S
AOSFE Symbol /DS /GS	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li	C unless othe rameter	erwise noted $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$	D 7 D 8	30 ±20 16.5 38	2 S 1 S Unit
AOSFE Symbol /DS /GS	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li -Continuous	C unless othe rameter	erwise noted T _C = 25°C	D 7	30 ±20 16.5 38 9.6	2 S 1 S
AOSFE Symbol /DS /GS	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li -Continuous -Pulsed	C unless othe rameter	T _C = 25°C T _C = 25°C T _C = 25°C T _A = 25°C	D 7	30 ±20 16.5 38 9.6 60	2 S 1 S Unit: V
MOSFE Symbol / _{DS} / _{GS}	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li -Continuous -Pulsed Power Dissipation	C unless othe rameter	T _C = 25°C T _C = 25°C T _A = 25°C T _C = 25°C T _C = 25°C	D 7 D 8 (Note 1a)	30 ±20 16.5 38 9.6 60 31	2 S 1 S Unit: V
MOSFE Symbol /DS /GS D	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li -Continuous Pulsed Power Dissipation Power Dissipation	c unless othe rameter e limited) mited)	erwise noted $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	D 7	30 ±20 16.5 38 9.6 60 31 2.1	2 S 1 S 1 S
AOSFE Symbol /os /os D Po	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li -Continuous -Pulsed Power Dissipation Power Dissipation Power Dissipation Operating and Storage Junction Tem	c unless othe rameter e limited) mited)	erwise noted $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	D 7 D 8 (Note 1a)	30 ±20 16.5 38 9.6 60 31	2 S 1 S 1 S
MOSFE Symbol V _{DS} V _{GS} ID P _D TJ, T _{STG}	MLP 3.3x3.3 T Maximum Ratings T _A = 25°C Par Drain to Source Voltage Gate to Source Voltage Drain Current -Continuous (Package -Continuous (Silicon li -Continuous Pulsed Power Dissipation Power Dissipation	C unless othe rameter e limited) mited) perature Rar	erwise noted $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	D 7 D 8 (Note 1a)	30 ±20 16.5 38 9.6 60 31 2.1	2 S 1 S V V A W

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8878	FDMC8878	MLP 3.3X3.3	13 "	12 mm	3000 units

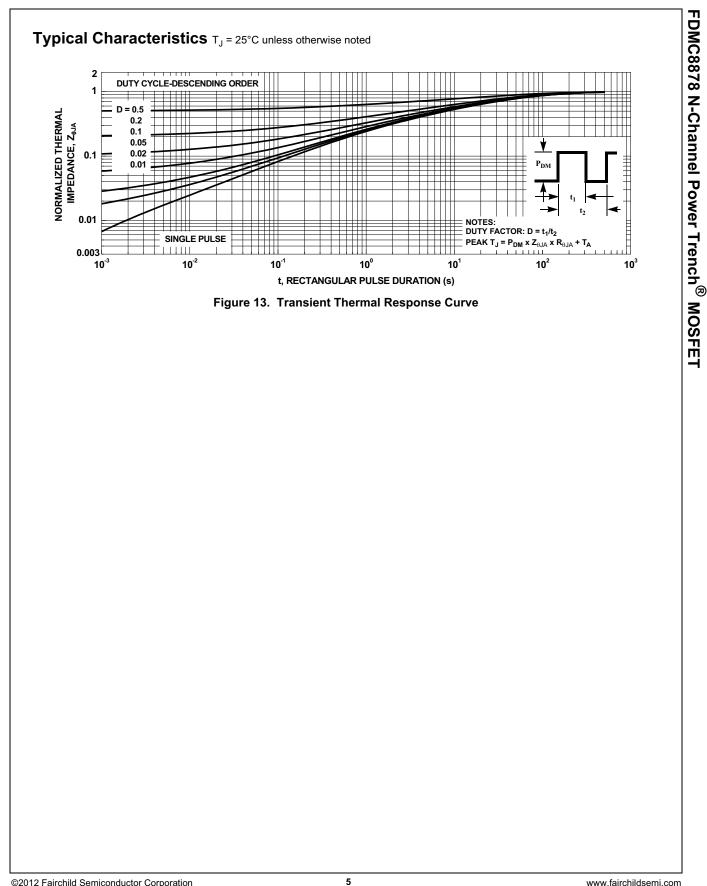

1

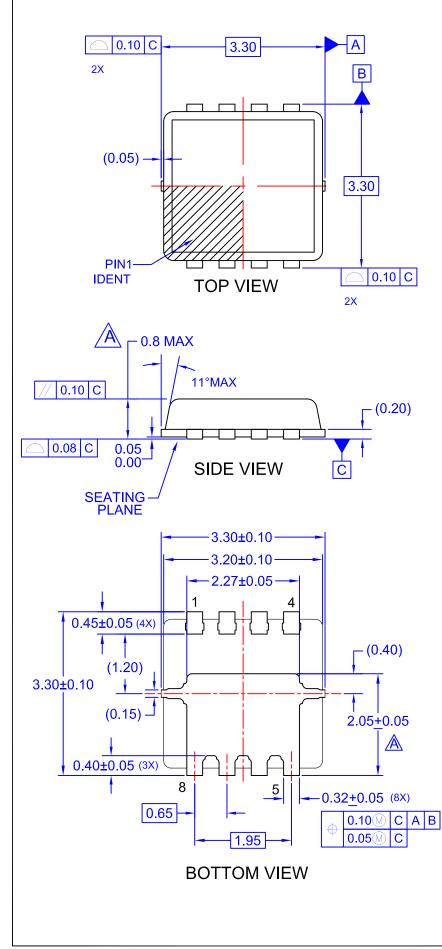
FDMC8878
N-Channel
Power
Trench®
MOSFET

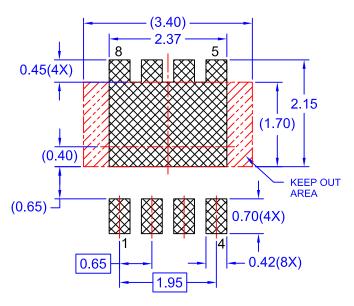

ics p Source Breakdown Voltage own Voltage Temperature ient ate Voltage Drain Current p Source Leakage Current ics p Source Threshold Voltage p Source Threshold Voltage rature Coefficient	$I_{D} = 250\mu A, V_{GS} = 0V$ $I_{D} = 250\mu A, referenced to 25°C$ $V_{DS} = 24V,$ $V_{GS} = 0V$ $T_{J} = 125°C$ $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{GS} = V_{DS}, I_{D} = 250\mu A$ $I_{D} = 250\mu A, referenced to 25°C$	30	20 20 1.7	1 100 ±100	V mV/°C μA nA
own Voltage Temperature ient ate Voltage Drain Current o Source Leakage Current ics o Source Threshold Voltage o Source Threshold Voltage	$I_{D} = 250\mu\text{A}, \text{ referenced to } 25^{\circ}\text{C}$ $V_{DS} = 24\text{V},$ $V_{GS} = 0\text{V} \qquad T_{J} = 125^{\circ}\text{C}$ $V_{GS} = \pm 20\text{V}, V_{DS} = 0\text{V}$ $V_{GS} = V_{DS}, I_{D} = 250\mu\text{A}$			100 ±100	mV/°C μA nA
own Voltage Temperature ient ate Voltage Drain Current o Source Leakage Current ics o Source Threshold Voltage o Source Threshold Voltage	$I_{D} = 250\mu\text{A}, \text{ referenced to } 25^{\circ}\text{C}$ $V_{DS} = 24\text{V},$ $V_{GS} = 0\text{V} \qquad T_{J} = 125^{\circ}\text{C}$ $V_{GS} = \pm 20\text{V}, V_{DS} = 0\text{V}$ $V_{GS} = V_{DS}, I_{D} = 250\mu\text{A}$	1		100 ±100	μA nA
o Source Leakage Current ics o Source Threshold Voltage o Source Threshold Voltage	$V_{GS} = 0V$ $T_{J} = 125^{\circ}C$ $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{GS} = V_{DS}, I_{D} = 250\mu A$	1	1.7	100 ±100	nA
o Source Leakage Current ics o Source Threshold Voltage o Source Threshold Voltage	$V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{GS} = V_{DS}, I_D = 250\mu A$	1	1.7	±100	nA
ics Source Threshold Voltage Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1	1.7	1	I
Source Threshold Voltage Source Threshold Voltage		1	1.7	3	
Source Threshold Voltage		1	1.7	3	
•	$I_{-} = 250 \mu A$ referenced to $25^{\circ}C$			Ŭ	V
	$T_D = 200 \mu A$, referenced to 20 G		-5.7		mV/°C
Drain to Source On Resistance	V _{GS} = 10V, I _D = 9.6A		9.6	14.0	
	V _{GS} = 4.5V, I _D = 8.7A		12.1	17.0	mΩ
	V_{GS} = 10V, I _D = 9.6A , T _J = 125°C		13.5	20.0	
1 Transconductance	V _{DS} = 5V, I _D = 9.6A		35		S
cteristics					
apacitance			1000	1230	pF
Capacitance			183	255	pF
e Transfer Capacitance	f = 1MHz		118	180	pF
esistance	f = 1MHz		1.1		Ω
me ff Delay Time	[—] V _{DD} = 15V, I _D = 9.6A — V _{GS} = 10V, R _{GEN} = 6Ω		4 20	10 36	ns ns ns
			-		ns
	$V_{} = 10V_{} = 15V_{}$		18	26	nC
-			-		nC
Drain "Miller" Charge			3.9		nC
ode Characteristics					
	$V_{cc} = 0V_{cc} = 9.6A_{cc}$ (Note 2)		0.8	1.2	V
•			23	35	ns
e Recovery Charge	— I _F = 9.6A, di/dt = 100A/μs		14	21	nC
	eteristics apacitance Capacitance e Transfer Capacitance esistance acteristics n Delay Time me ff Delay Time ne ate Charge Source Gate Charge Drain "Miller" Charge ode Characteristics to Drain Diode Forward Voltage e Recovery Time e Recovery Charge	I Transconductance $V_{DS} = 5V, I_D = 9.6A$ eteristics apacitance $V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$ e Transfer Capacitance $f = 1MHz$ e Transfer Capacitance $f = 1MHz$ esistance $f = 1MHz$ etteristics $f = 1MHz$ n Delay Time $V_{DD} = 15V, I_D = 9.6A$ me $V_{DD} = 15V, I_D = 9.6A$ ff Delay Time $V_{GS} = 10V, N_{GEN} = 6\Omega$ ne $I_D = 9.6A$ Source Gate Charge $V_{GS} = 10V, V_{DD} = 15V, I_D = 9.6A$ Drain "Miller" Charge $V_{GS} = 0V, I_S = 9.6A$ (Note 2) e Recovery Time $I_F = 9.6A, di/dt = 100A/\mu s$	I Transconductance $V_{DS} = 5V$, $I_D = 9.6A$ eteristics apacitance $V_{DS} = 15V$, $V_{GS} = 0V$, f = 1MHz e Transfer Capacitance f = 1MHz e sistance f = 1MHz eteristics f = 1MHz n Delay Time $V_{DD} = 15V$, $I_D = 9.6A$ me $V_{DD} = 15V$, $I_D = 9.6A$ ff Delay Time $V_{GS} = 10V$, $R_{GEN} = 6\Omega$ ne $I_D = 9.6A$ Source Gate Charge $I_D = 9.6A$ Drain "Miller" Charge $V_{GS} = 0V$, $I_S = 9.6A$ (Note 2) e Recovery Time $I_F = 9.6A$, di/dt = 100A/µs	I Transconductance $V_{DS} = 5V$, $I_D = 9.6A$ 35atteristicsapacitance $V_{DS} = 15V$, $V_{GS} = 0V$, f = 1MHz1000Capacitancef = 1MHz118e Transfer Capacitancef = 1MHz1.1esistancef = 1MHz1.1incteristics $V_{DD} = 15V$, $I_D = 9.6A$ 8me $V_{DD} = 15V$, $I_D = 9.6A$ 4Me $V_{GS} = 10V$, $R_{GEN} = 6\Omega$ 20ineate Charge $V_{GS} = 10V$, $V_{DD} = 15V$, $I_D = 9.6A$ 18Source Gate Charge $V_{GS} = 10V$, $V_{DD} = 15V$, $I_D = 9.6A$ 3.9ode Characteristics3.93.9ode Characteristics $V_{GS} = 0V$, $I_S = 9.6A$ (Note 2)0.8e Recovery Time e Recovery Charge $I_F = 9.6A$, di/dt = 100A/µs14	I Transconductance $V_{DS} = 5V$, $I_D = 9.6A$ 35 eteristics apacitance $V_{DS} = 15V$, $V_{GS} = 0V$, f = 1MHz 1000 1230 Capacitance f = 1MHz 183 255 e Transfer Capacitance f = 1MHz 118 180 esistance f = 1MHz 1.1 118 180 esistance f = 1MHz 1.1 111 111 incteristics V_{DD} = 15V, $I_D = 9.6A$ 8 16 me $V_{DD} = 15V, R_{GEN} = 6\Omega$ 20 36 in Delay Time V_{GS} = 10V, R_{GEN} = 6\Omega 20 36 in Delay Time V_{GS} = 10V, V_{DD} = 15V, $I_D = 9.6A$ 4 10 in Delay Time V_{GS} = 10V, V_{DD} = 15V, $I_D = 9.6A$ 2.8 2.8 in Date Charge V_{GS} = 10V, V_{DD} = 15V, $I_D = 9.6A$ 2.8 2.8 in Drain "Miller" Charge 3.9 3.9 3.9 ode Characteristics 3.9 3.9 3.9 3.9 in Drain Diode Forward Voltage V_{GS} = 0V, I_S = 9.6A 0.04(dt = 100A/us) 2.3 3.5

www.fairchildsemi.com

FDMC8878 N-Channel Power Trench[®] MOSFET


©2012 Fairchild Semiconductor Corporation FDMC8878 Rev. D5 www.fairchildsemi.com




©2012 Fairchild Semiconductor Corporation FDMC8878 Rev. D5

www.fairchildsemi.com

FDMC8878 N-Channel Power Trench[®] MOSFET

RECOMMENDED LAND PATTERN

NOTES:

- A EXCEPT AS NOTED, PACKAGE CONFORMS TO JEDEC REGISTRATION MO-240 VARIATION BA.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. SEATING PLANE IS DEFINED BY TERMINAL TIPS ONLY
- E. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS.
- F. FLANGE DIMENSIONS INCLUDE INTERTERMINAL FLASH OR PROTRUSION. INTERTERMINAL FLASH OR PROTRUSION SHALL NOT EXCEED 0.25MM PER SIDE.
- G. IT IS RECOMMENDED TO HAVE NO TRACES OR VIA WITHIN THE KEEP OUT AREA.
- H. DRAWING FILENAME: MKT-MLP08Trev4.
- I. GENERAL RADII FOR ALL CORNERS SHALL BE 0.20MM MAX.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDMC8878 FDMC8878_F126 FDMC8878_F127 FDMC8878_NBSE003