

CMOS, ± 5 V/+5 V, 4 Ω Dual SPST Switches

ADG621 Data Sheet

FEATURES

5.5 Ω (maximum) on resistance 0.9Ω (typical) on resistance flatness 2.7 V to 5.5 V single supply ±2.7 V to ±5.5 V dual supply **Rail-to-rail operation** 10-lead MSOP package Typical power consumption: <0.01 μW TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment Power routing Communication systems Data acquisition systems Sample-and-hold systems **Avionics Relay replacements Battery-powered systems**

GENERAL DESCRIPTION

The ADG621 is a monolithic, CMOS, single-pole, single-throw (SPST) switch. The ADG621 conducts equally well in both directions when on. The ADG621 contains two independent switches. The ADG621 is a normally open switch.

The ADG621 offers low on resistance of 4 Ω , which is matched to within 0.25 Ω between channels. The ADG621 also provides low power dissipation yet offers high switching speeds.

All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS compatibility when using single +5 V or dual ±5 V supplies. The ADG621 is available in a 10-lead MSOP package.

FUNCTIONAL BLOCK DIAGRAM

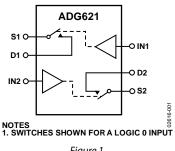


Figure 1.

PRODUCT HIGHLIGHTS

- Low on resistance, R_{ON} (4 Ω typical).
- Dual ± 2.7 V to ± 5.5 V or single +2.7 V to +5.5 V.
- Low power dissipation; CMOS construction ensures low power dissipation.
- Tiny 10-lead MSOP package.

TABLE OF CONTENTS

Features1	Absolute Maximum Ratings	5
Applications1	ESD Caution	5
Functional Block Diagram1	Pin Configuration and Function Descriptions	6
General Description	Typical Performance Characteristics	7
Product Highlights	Test Circuits	9
Revision History	Terminology	11
Specifications	Outline Dimensions	12
Dual Supply3	Ordering Guide	12
Single Supply4		
REVISION HISTORY		
5/2017—Rev. B to Rev. C	Moved Terminology Section	11
Deleted ADG622 and ADG623Universal	Changes to Terminology Section	11
Changes to Features Section and General Description Section 1	Changes to Ordering Guide	12
Deleted Figure 2 and Figure 3; Renumbered Sequentially 1		
Deleted Break-Before-Make Time Delay Parameter, Table 1 3	11/2009—Rev. A to Rev. B	
Deleted Note 1, Table 1; Renumbered Sequentially 3	Changes to Table 5	5
Added Note 2, Table 1	Changes to Ordering Guide	12
Deleted Break-Before-Make Time Delay Parameter, Table 2 4		
Deleted Note 1, Table 2; Renumbered Sequentially4	6/2007—Rev. 0 to Rev. A	
Added Note 2, Table 24	Change to On Resistance Flatness, R _{FLAT(ON)}	
Added Note 1, Table 3; Renumbered Sequentially5	Specification (Table 1)	3
Changes to Table 35	Change to On Resistance Flatness, R _{FLAT(ON)}	
Deleted Table 5; Renumbered Sequentially5	Specification (Table 2)	4
Moved Table 56	Added Table 6	
Changes to Figure 2, Table 4, and Table 5	Changes to Terminology Section	7
Changes to Figure 11, Figure 12, and Figure 138	Changes to Figure 13	
Changes to Figure 14, Figure 15, Figure 16, Figure 17, and	Updated Outline Dimensions	
Figure 189	Changes to Ordering Guide	
Changes to Figure 19 and Figure 2110	-	
Deleted Figure 20	11/2001—Revision 0: Initial Version	

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{SS} to V _{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance, R _{ON}	4		Ωtyp	$V_s = \pm 4.5 \text{ V, } I_s = -10 \text{ mA, see Figure 14}$
	5.5	7	Ω max	
On Resistance Match Between Channels, ΔR _{ON}	0.25		Ωtyp	$V_s = \pm 4.5 \text{ V, } I_s = -10 \text{ mA}$
	0.35	0.4	Ω max	
On Resistance Flatness, R _{FLAT(ON)}	0.9	0.9	Ωtyp	$V_s = \pm 3.3 \text{ V, } I_s = -10 \text{ mA}$
		1.5	Ω max	
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.01		nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}, \text{ see Figure 15}$
3,,,,,	±0.25	±1	nA max	15 = 10 1, 15 10 1, 200 1 19 10 10
Drain Off Leakage, I _D (Off)	±0.01		nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}, \text{ see Figure 15}$
	±0.25	±1	nA max	V3 = ±4.5 V, VD = 1 4.5 V, 3cc rigure 15
Channel On Leakage, ID, Is (On)	±0.23		nA typ	$V_S = V_D = \pm 4.5 \text{ V}$, see Figure 16
Charmer on Ecakage, 10, 15 (OH)	±0.25	±1	nA max	ν ₃ = ν ₀ = ±4.5 ν, see rigure το
DIGITAL INPUTS	20.23		TITATION	
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, linL or linH	0.005	0.0	μA typ	V _{IN} = V _{INL} or V _{INH}
input current, find of find	0.003	±0.1	μΑ typ	VIN — VINL OI VINH
Digital Input Capacitance, C _{IN}	2	±0.1	pF typ	
DYNAMIC CHARACTERISTICS ¹			pi typ	
ton	75		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 17
CON	120	155	ns max	N ₂ = 300 Ω, C ₂ = 33 βi , v ₃ = 3.3 v, see Figure 17
toff	45	155	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 17
COFF	70	85	ns max	N _L = 300 Ω, C _L = 35 pi , V _S = 3.5 V, see Figure 17
Charge Injection, Q _{INJ}	110	03	pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 18
Off Isolation	-65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 19
Channel to Channel Crosstalk	_90		dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$, see Figure 20
-3 dB Bandwidth	230		MHz typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $T = 7 \text{ MHz}$, see Figure 20 $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, see Figure 21
Cs (Off)	20		pF typ	f = 1 MHz
C _D (Off)	20		pF typ	f = 1 MHz
C _D , C _S (On)	70		pF typ	f = 1 MHz
POWER REQUIREMENTS ²	70		рі тур	$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
	0.001		11A +140	$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$ Digital inputs = 0 V or 5.5 V
I _{DD}	0.001	1.0	μΑ typ μΑ max	Digital inputs = 0 v or 5.5 v
I	0.001	1.0	μΑ max	Digital inputs = 0 V or 5.5 V
I _{SS}	0.001	1.0		Digital iliputs = 0 v of 5.5 v
		1.0	μA max	

¹ Guaranteed by design; not subject to production test.

² The device is fully specified at ±5 V dual supply and at +5 V single supply only. It is possible to operate the ADG621 with unbalanced supplies or at other voltage supplies (±2.7 V to ±5.5 V dual supply, and +2.7 V to +5.5 V single supply); however, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance, Ron	7		Ωtyp	$V_S = 0 \text{ V to } 4.5 \text{ V}, I_S = -10 \text{ mA}, \text{ see Figure } 14$
	10	12.5	Ω max	
On Resistance Match Between Channels, ΔRoN	0.5		Ωtyp	$V_S = 0 \text{ V to } 4.5 \text{ V, } I_S = -10 \text{ mA}$
	0.75	1	Ω max	
On Resistance Flatness, RFLAT(ON)	0.5	0.5	Ωtyp	$V_S = 1.5 \text{ V to } 3.3 \text{ V, } I_S = -10 \text{ mA}$
		1.2	Ω max	
LEAKAGE CURRENTS				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage Is (Off)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}, \text{ see Figure 15}$
	±0.25	±1	nA max	
Drain Off Leakage I _D (Off)	±0.01		nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}, \text{ see Figure 15}$
	±0.25	±1	nA max	
Channel On Leakage, ID, Is (On)	±0.01		nA typ	$V_S = V_D = 1 \text{ V}/4.5 \text{ V}$, see Figure 16
	±0.25	±1	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	2		pF typ	
DYNAMIC CHARACTERISTICS ¹				
ton	120		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 17
	210	260	ns max	
toff	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3.3 V$, see Figure 17
	75	100	ns max	
Charge Injection, Q _{INJ}	6		pC typ	$V_S = 0 \text{ V}$; $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 18
Off Isolation	-65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 19
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 20
–3 dB Bandwidth	230		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 21
C _s (Off)	20		pF typ	f = 1 MHz
C _D (Off)	20		pF typ	f = 1 MHz
C_D , C_S (On)	70		pF typ	f = 1 MHz
POWER REQUIREMENTS ²				$V_{DD} = 5.5 \text{ V}$
I _{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	

¹ Guaranteed by design; not subject to production test. ² The device is fully specified at ±5 V dual supply and at +5 V single supply only. It is possible to operate the ADG621 with unbalanced supplies or at other voltage supplies (±2.7 V to ±5.5 V dual supply, and +2.7 V to +5.5 V single supply); however, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, VINL, VINH, and switching times. The optimal power-up sequence for the device is ground, VDD, VSS, and then the digital inputs, before applying the analog input signal.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 5.				
Parameter	Rating			
V _{DD} to V _{SS} ¹	13 V			
V _{DD} to GND	−0.3 V to +6.5 V			
V _{SS} to GND	+0.3 V to -6.5 V			
Analog Inputs ²	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$			
Digital Inputs ²	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or } 30 \text{ mA},$ whichever occurs first			
Peak Current, Sx or Dx	100 mA (pulsed at 1 ms, 10% duty cycle maximum)			
Continuous Current, S or D	50 mA			
Operating Temperature Range Industrial	-40°C to +85°C			
Storage Temperature Range	−65°C to +150°C			
Junction Temperature	150°C			
MSOP Package				
θ_{JA} Thermal Impedance	206°C/W			
θ_{JC} Thermal Impedance	44°C/W			
Lead Soldering				
Lead Temperature, Soldering (10 sec)	300°C			
Infrared (IR) Reflow, Peak Temperature	220°C			
Pb-Free Soldering				
Reflow, Peak Temperature	260 (+0/-5)°C			
Time at Peak Temperature	20 sec to 40 sec			
Time at reak temperature	20 300 10 70 300			

¹ The device is fully specified at ± 5 V dual supply and at ± 5 V single supply only. It is possible to operate the ADG621 with unbalanced supplies or at other voltage supplies (± 2.7 V to ± 5.5 V, and 2.7 V to 5.5 V); however, the switch characteristics change. These changes include, but are not limited to, analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Overvoltages at INx, S, or D must be clamped by internal diodes. Limit currents to the maximum ratings given.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

		Transfer of the control of the contr
Pin No.	Mnemonic	Description
1, 7	S1, S2	Source Terminals. S1 and S2 can be inputs or outputs.
2, 8	D1, D2	Drain Terminals. D1 and D2 can be inputs or outputs.
3, 9	IN2, IN1	Control Inputs.
4	GND	Ground (0 V) Reference.
5	V _{SS}	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, tie this pin to ground at the device.
6	NIC	Not Internally Connected.
10	V_{DD}	Most Positive Power Supply Potential.

Table 5. Truth Table

INx	Switch Sx Condition
0	Off
1	On

TYPICAL PERFORMANCE CHARACTERISTICS

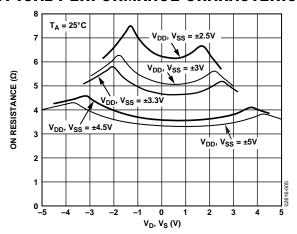


Figure 3. On Resistance vs. V_D , V_S (Dual Supply)

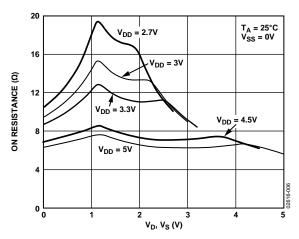


Figure 4. On Resistance vs. V_D, V_S (Single Supply)

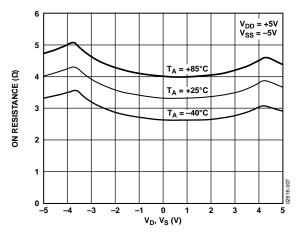


Figure 5. On Resistance vs. V_D , V_S for Different Temperatures (Dual Supply)

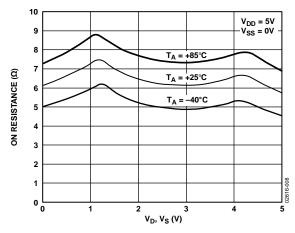


Figure 6. On Resistance vs. V_D , V_S for Different Temperature (Single Supply)

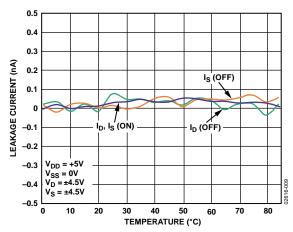


Figure 7. Leakage Current vs. Temperature (Dual Supply)

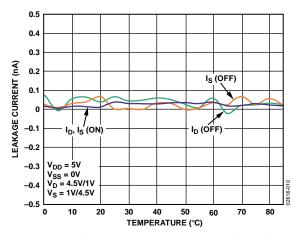


Figure 8. Leakage Current vs. Temperature (Single Supply)

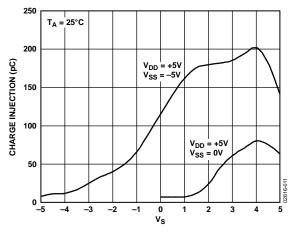


Figure 9. Charge Injection vs. Source Voltage (Vs)

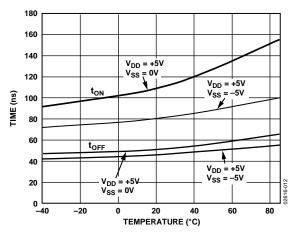


Figure 10. t_{ON}/t_{OFF} Times vs. Temperature

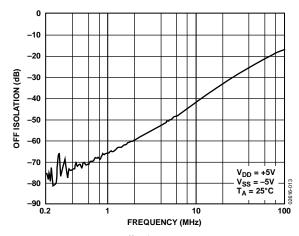


Figure 11. Off Isolation vs. Frequency

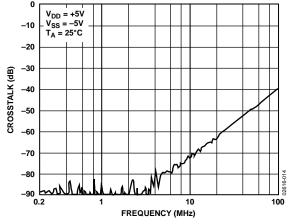


Figure 12. Crosstalk vs. Frequency

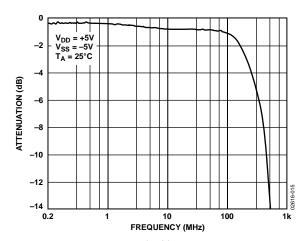


Figure 13. Bandwidth vs. Frequency

TEST CIRCUITS

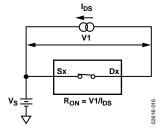


Figure 14. On Resistance

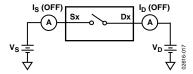


Figure 15. Off Leakage



Figure 16. On Leakage

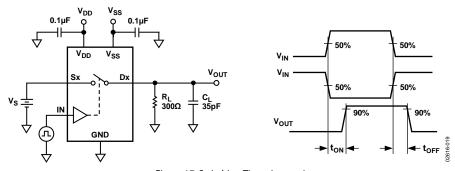


Figure 17. Switching Times (ton, toff)

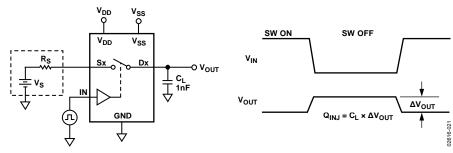


Figure 18. Charge Injection

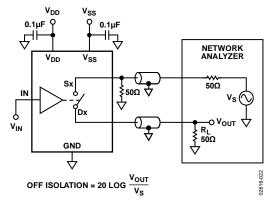


Figure 19. Off Isolation

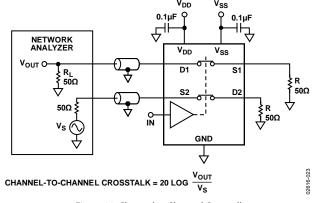


Figure 20. Channel to Channel Crosstalk

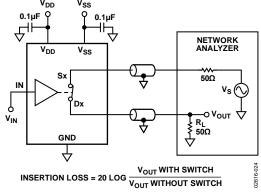


Figure 21. Bandwidth

TERMINOLOGY

I_{DD}

 I_{DD} is the positive supply current.

Iss

Iss is the negative supply current.

$V_D(V_S)$

 V_{D} and V_{S} are the analog voltages on Terminal D and Terminal S, respectively.

\mathbf{R}_{ON}

R_{ON} is the ohmic resistance between Terminal D and Terminal S.

R_{FLAT} (ON)

On resistance flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

ΔR_{ON}

 $\Delta R_{\rm ON}$ is the on resistance match between any two channels.

Is (Off

Is (Off) is the source leakage current with the switch off.

ID (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D , I_S (On)

 $I_{D}\left(On\right)$ and $I_{S}\left(On\right)$ are the channel leakage currents with the switch on.

V_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

VINE

 V_{INH} is the minimum input voltage for Logic 1.

IINL (IINH)

I_{INL} and I_{INH} are the input currents of the digital input.

C_s (Off)

Cs (Off) is the off switch source capacitance, measured with reference to ground.

C_D (Off)

 $C_{\scriptscriptstyle D}$ (Off) is the off switch drain capacitance, measured with reference to ground.

C_D , C_S (On)

 C_D (On) and C_S (On) are the on switch capacitances, measured with reference to ground.

CIN

C_{IN} is the digital input capacitance.

ton

 $t_{\rm ON}$ is the delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

t_{OFF} is the delay time between the 50% and the 90% points of the digital input and switch off condition.

Charge Injection

Charge injection, $Q_{\rm INJ}$, is a measure of the glitch impulse transferred from the digital input to the analog output during on and off switching.

Off Isolation

Off isolation is a measure of an unwanted signal coupling through an off switch.

Crosstalk

Crosstalk is a measure of an unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

-3 dB bandwidth is the frequency at which the output is attenuated by -3 dB.

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the attenuation between the input and output ports of the switch when the switch is in the on condition and is due to the on resistance of the switch.

OUTLINE DIMENSIONS

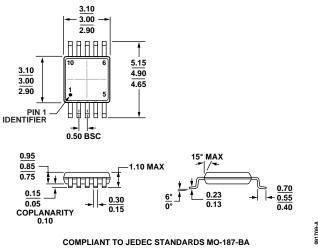


Figure 22. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding ²
ADG621BRMZ	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB#
ADG621BRMZ-REEL	-40°C to +85°C	10-Lead Mini Small Outline Package [MSOP]	RM-10	SXB#

 $^{^{1}}$ Z = RoHS Compliant Part.

² # denotes RoHS compliant product; may be top or bottom marked.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG621BRMZ-REEL ADG621BRMZ ADG621C-PT7