

FEATURES

- **Controlled Baseline**
 - One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- **Enhanced Product-Change Notification**
- Qualification Pedigree (1)
- Single-Chip and Single-Supply Interface for IBM[™] PC/AT[™] Serial Port
- **RS-232 Bus-Pin ESD Protection Exceeds** ±15 kV Using Human-Body Model (HBM)
- D Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- **Three Drivers and Five Receivers** .
- Low Standby Current ... 1 mA Typical
- External Capacitors . . . $4 \times 0.1 \text{ mF}$
- Accepts 5-V Logic Input With 3.3-V Supply •
- **Always-Active Noninverting Receiver Output (ROUT2B)**
- Serial-Mouse Driveability .
- **Auto-Powerdown Feature to Disable Driver Outputs When No Valid RS-232 Signal Is** Sensed
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

DESCRIPTION

The MAX3243 consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT or compatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. IBM, PC/AT are trademarks of IBM.

- Applications
 - Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and **Hand-Held Equipment**

	r Pw P# (Top Vie		AGE
C2+ [C2- [V- [RIN1 [RIN2 [RIN3 [RIN4 [DOUT1 [DOUT2 [DOUT3 [DIN3 [DIN2 [DIN1 [1 2 3 4 5 6 7 8 9 10 11 12 13	28 27 26 25 24 23 22 21 20 19 18 17 16 15	C1+ V+ V _{CC} GND C1- FORCEON FORCEOFF INVALID ROUT2B ROUT1 ROUT2 ROUT3 ROUT4 ROUT5
			•

SGLS328A-MARCH 2006-REVISED MAY 2006

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and FORCEOFF are high and should be done when driving a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 μ s. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. See Figure 5 for receiver input levels.

ORDERING INFORMATION

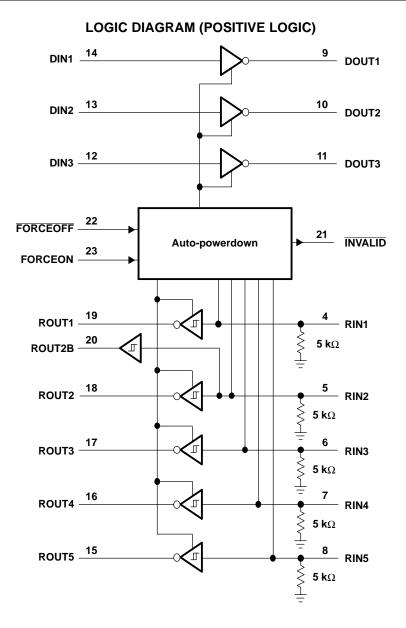
T _A	PACKAGE ⁽¹⁾ SSOP – DB Reel of 2000		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DB	Reel of 2000	MAX3243MDBREP	MB3243M
–55°C to 125°C	TSSOP – PW	Reel of 2000	MAX3243MPWREP	MB3243M

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLES

Each Driver⁽¹⁾

	INP	UTS		OUTPUT				
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS			
Х	Х	L	Х	Z	Powered off			
L	н	Н	Х	Н	Normal operation with auto-powerdown			
Н	н	Н	Х	L	disabled			
L	L	Н	YES	Н	Normal operation with auto-powerdown			
Н	L	Н	YES	L	enabled			
L	L	Н	NO	Z	Bower off by outo powerdown feature			
Н	L	Н	NO	Z	Power off by auto-powerdown feature			


(1) H = high level, L = low level, X = irrelevant, Z = high impedance

^Each Receiver⁽¹⁾

	INP	UTS		OUT	PUTS	
RIN2	RIN1, RIN3–RIN5	FORCEOFF	VALID RIN RS-232 LEVEL	ROUT2B	ROUT	RECEIVER STATUS
L	Х	L	Х	L	Z	Doward off while DOUT2D is active
н	Х	L	Х	н	Z	Powered off while ROUT2B is active
L	L	Н	YES	L	Н	
L	н	Н	YES	L	L	
Н	L	Н	YES	Н	Н	Normal operation with auto-powerdown disabled/enabled
Н	н	Н	YES	Н	L	
Open	Open	Н	YES	L	Н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

SGLS328A-MARCH 2006-REVISED MAY 2006

Submit Documentation Feedback

MAX3243-EP 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION SGLS328A-MARCH 2006-REVISED MAY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
VI		Driver (FORCEOFF, FORCEON)	-0.3	6	V
	Input voltage range	Receiver	-25	25	v
	Output voltage range	Driver	-13.2	13.2	V
Vo		Receiver (INVALID)	-0.3	V _{CC} + 0.3	v
		DB package		62	
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	DW package		46	°C/W
		PW package		62	
TJ	Operating virtual junction temperature	L		150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient (3) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
V	/ _{IH} Driver and control high-level input voltage	DIN, FORCEOFF,	V _{CC} = 3.3 V	2			V
V _{IH} D		FORCEON	$V_{CC} = 5 V$	2.4			v
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FOR	RCEON			0.8	V
VI	Driver and control input voltage	DIN, FORCEOFF, FOR	RCEON	0		5.5	V
VI	Receiver input voltage			-25		25	V
T _A	Operating free-air temperature			-55		125	°C

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ±0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ±0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PAR	AMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I_{I}	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μA
	Supply current	Auto-powerdown disabled	No load, FORCEOFF and FORCEON at V_{CC}		0.3	2	mA
		Powered off	No load, FORCEOFF at GND		1	10	
I _{CC}	Supply current (T _A = 25°C)	Auto-powerdown enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded, All DIN are grounded		1	20	μΑ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ±0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ±0.5 V.

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (2) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TES	ST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to 0	GND		5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to (GND		-5	-5.4		V
Vo	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 DOUT1 = DOUT2 = 2.5 m		GND at DOUT3,	±5			V
I _{IH}	High-level input current	$V_{I} = V_{CC}$				±0.01	±1	μΑ
I	Low-level input current	V _I at GND				±0.01	±1	μΑ
V_{hys}	Input hysteresis						±1	V
	Chart aircuit autaut aurreat(3)	V _{CC} = 3.6 V,	$V_{O} = 0 V$			1.25		~ ^
IOS	Short-circuit output current ⁽³⁾	V _{CC} = 5.5 V,	$V_{O} = 0 V$			±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$		300	10M		Ω
			$V_0 = \pm 12 V$,	V_{CC} = 3 to 3.6 V	.6 V ±		±25	
I _{off}	Output leakage current	FORCEOFF = GND,	$V_O = \pm 10 V$,	V_{CC} = 4.5 to 5.5 V			±25	μA

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ±0.5 V.

All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V and T_A = 25°C. (2)

(3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER TEST CONDITIONS			MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	$C_L = 1000 \text{ pF},$ One DOUT switching,	$R_L = 3 \ k\Omega$, See Figure 1	150	250		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150 pF to 2500 pF,	$R_L = 3 \ k\Omega$ to 7 $k\Omega$, See Figure 2		100		ns
	Slew rate, transition region	V _{CC} = 3.3 V,	C _L = 150 pF to 1000 pF	6		30	
SR(tr)	(see Figure 1)	$R_L = 3 k\Omega \text{ to } 7 k\Omega$	C _L = 150 pF to 2500 pF	4		30	V/μs

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V + 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ±0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V and T_A = 25°C. (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OH} = 1.6 mA			0.4	V
V	T+ Positive-going input threshold voltage	$V_{CC} = 3.3 V$		1.6	2.4	V
V _{IT+}		$V_{CC} = 5 V$		1.9	2.4	
V	Negotive going input threshold values	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT-}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		
V _{hys}	Input hysteresis (V _{IT+} – V _{IT-})			0.5		V

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ±0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V and T_A = 25°C. (1) (2)

SGLS328A-MARCH 2006-REVISED MAY 2006

Electrical Characteristics (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _{off}	Output leakage current (except ROUT2B)	FORCEOFF = 0 V		±0.05	±10	μA
r _l	Input resistance	$V_{I} = \pm 3 \text{ V or } \pm 25 \text{ V}$	3	5	8	kΩ

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output		150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time		200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ±0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V and T_A = 25°C. (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

AUTO-POWERDOWN SECTION

Electrical Characteristics

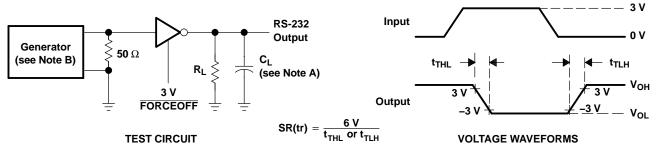
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{IT+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V_{CC}		2.7	V
V _{IT-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V_{CC}	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	I_{OH} = -1 mA, FORCEON = GND, FORCEOFF = V_{CC}	V _{CC} – 0. 6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V_{CC}		0.4	V

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

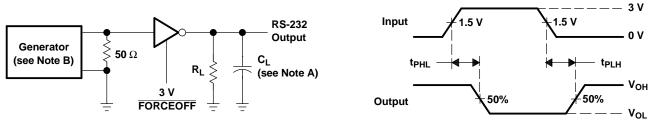
	PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	$V_{CC} = 5 V$	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	$V_{CC} = 5 V$	30	μs
t _{en}	Supply enable time	$V_{CC} = 5 V$	100	μs


(1) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V and $T_A = 25^{\circ}C$.

TEXAS INSTRUMENTS www.ti.com

MAX3243-EP 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION

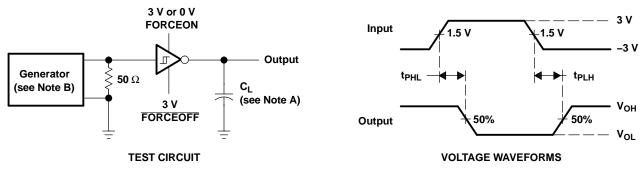
SGLS328A-MARCH 2006-REVISED MAY 2006


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s

Figure 1. Driver Slew Rate

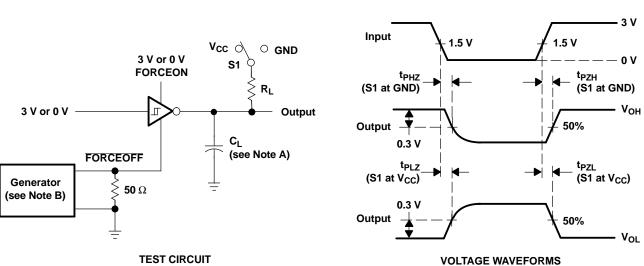

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew



NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

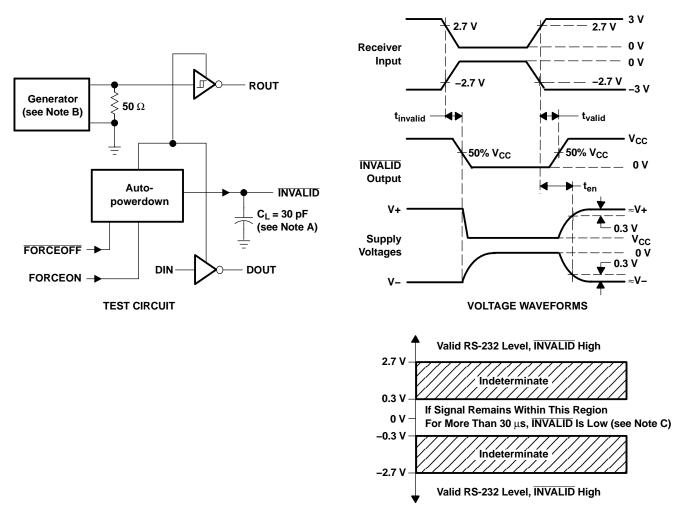
Figure 3. Receiver Propagation Delay Times

SGLS328A-MARCH 2006-REVISED MAY 2006

PARAMETER MEASUREMENT INFORMATION

Ŀ

TEXAS


INSTRUMENTS www.ti.com

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
 - C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 4. Receiver Enable and Disable Times

SGLS328A-MARCH 2006-REVISED MAY 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

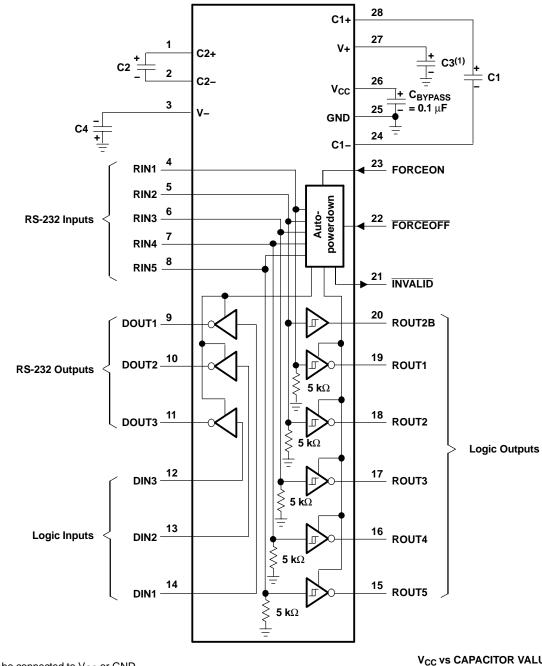

- B. The pulse generator has the following characteristics: PRR = 5 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. Auto-powerdown disables drivers and reduces supply current to 1 μ A.

Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

TEXAS INSTRUMENTS www.ti.com

SGLS328A-MARCH 2006-REVISED MAY 2006

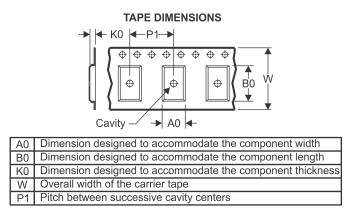
APPLICATION INFORMATION

(1) C3 can be connected to V_{CC} or GND.

- NOTES: A. Resistor values shown are nominal.
 - B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V _{CC} vs	CAPACITO	R VALUES

V _{CC}	C1	C2, C3, and C4			
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF			

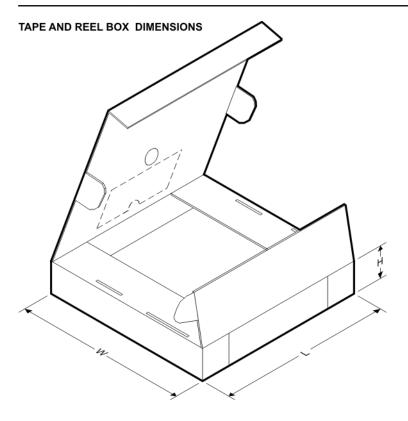

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

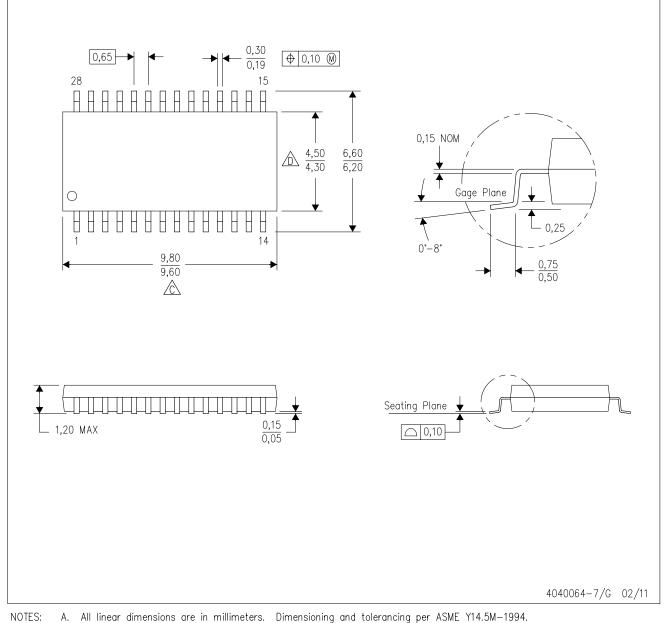

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX3243MDBREP	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
MAX3243MPWREP	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Mar-2016



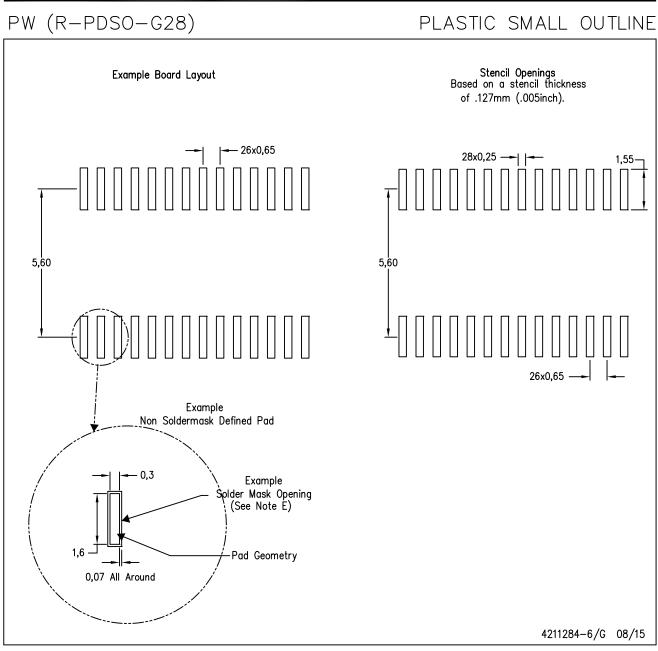
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX3243MDBREP	SSOP	DB	28	2000	367.0	367.0	38.0
MAX3243MPWREP	TSSOP	PW	28	2000	367.0	367.0	38.0

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

All finited dimensions die in finite cers. Dimensioning e
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

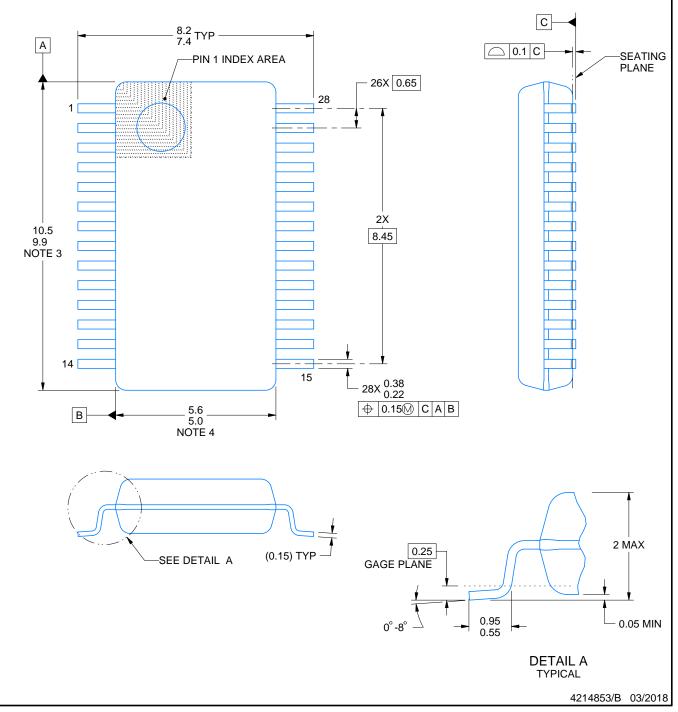
E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


DB0028A

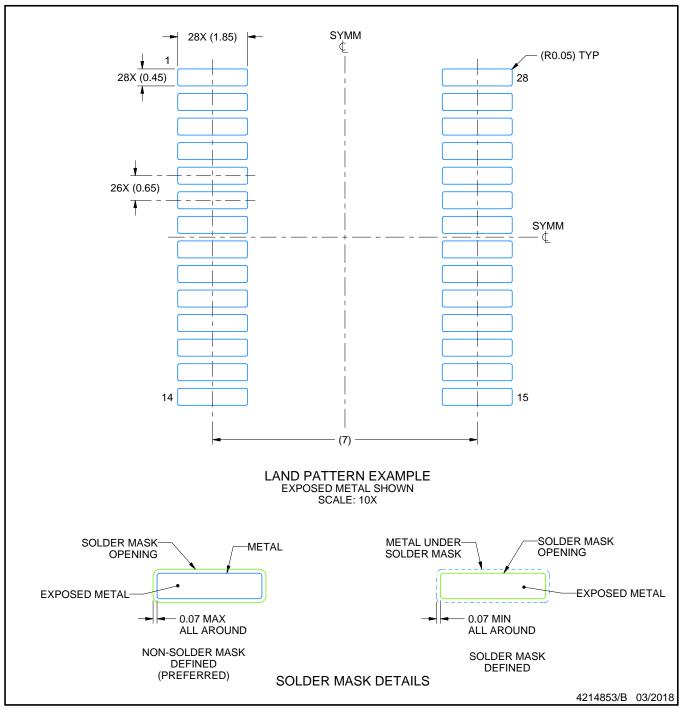
PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0028A

EXAMPLE BOARD LAYOUT

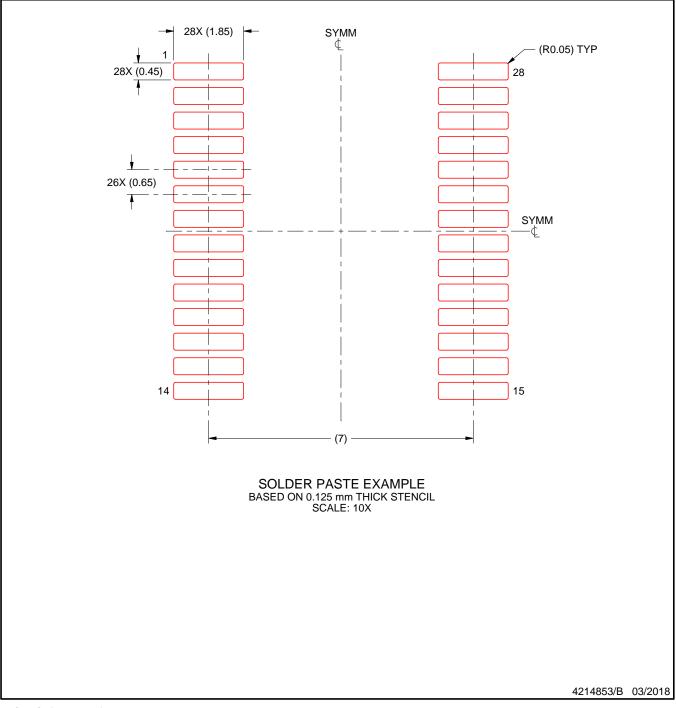
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0028A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated