

February 2012 Rev. 1.0.0

GENERAL DESCRIPTION

The SPX3940 is a 1A, accurate voltage regulator with a low drop out voltage of 280mV (typical) at 1A.

These regulators are specifically designed for low voltage applications that require a low dropout voltage and a fast transient response. They are fully fault protected against overcurrent, reverse battery, and positive and negative voltage transients.

The SPX3940 is offered in 3-pin SOT223 and TO-263 packages. For a 3A version, refer to the SPX29300 data sheet.

APPLICATIONS

- Power Supplies
- LCD Monitors
- Portable Instrumentation
- Medical and Industrial Equipments

FEATURES

- Guaranteed 1.5A Peak Current
- 1% Output Accuracy SPX3940A
- Low Quiescent Current
- Low Dropout Voltage of 280mV at 1A
- Extremely Tight Load and Line Regulation
- Extremely Fast Transient Response
- Reverse-battery Protection
- Internal Thermal Protection
- Internal Short Circuit Current Limit
- Replacement for LM3940
- Standard SOT223 & TO-263 packages

TYPICAL APPLICATION DIAGRAM

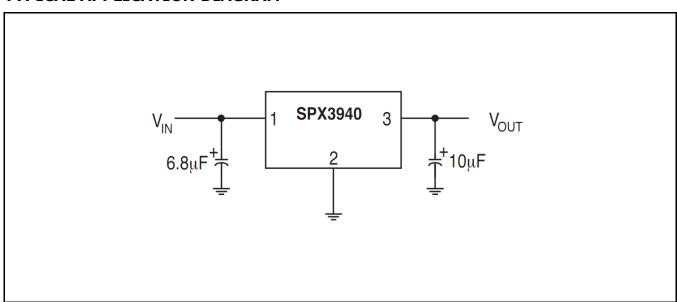


Fig. 1: SPX3940 Application Diagram – Fixed Output Linear Regulator

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Input Voltage V _{IN}	20V ¹
Storage Temperature	65°C to 150°C
Lead Temperature (Soldering, 5 se	ec) 260°C

OPERATING RATINGS

Input Voltage V _{IN}	16V
Junction Temperature Range	40°C to 125°C
Packages Thermal Resistance	
SOT-223 Junction to Case (at T _A)	15°C/W
SOT-223 Junction to Ambient	62.3°C/W
TO-263 Junction to Case (at T _A)	3°C/W
TO-263 Junction to Ambient	31.4°C/W

Note 1: Maximum positive supply voltage of 20V must be of limited duration (<100ms) and duty cycle (<1%). The maximum continuous supply voltage is 16V.

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Ambient Temperature of $T_A = 25$ °C only; limits applying over the full Operating Junction Temperature range are denoted by a "•". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25$ °C, and are provided for reference purposes only. Unless otherwise indicated, $V_{IN} = V_{IN} + 1V$, $I_{OUT} = 10$ mA, $C_{IN} = 6.8$ µF, $C_{OUT} = 10$ µF, $T_A = 25$ °C.

Parameter	Min.	Тур.	Max.	Units		Conditions			
1.8V version			•	•					
Output Voltage CDV20404 (19)	1.782	1.8	1.818	V					
Output Voltage - SPX3940A (1%)	1.755	1.8	1.845	V	•	I _{OUT} =10mA			
Output Voltage - SPX3940 (2%)	1.764	1.8	1.836	V		$10\text{mA} \le I_{\text{OUT}} \le 1A$, $6\text{V} \le \text{V}_{\text{IN}} \le 16\text{V}$			
Output Voltage - SPX3940 (2%)	1.737	1.8	1.863	V	•				
2.5V version									
Output Voltage - SPX3940A (1%)	2.475	2.5	2.525	V					
Output Voltage - 3PX3940A (176)	2.437	2.5	2.563	V	•	I _{OUT} =10mA			
Output Voltage - SPX3940 (2%)	2.450	2.5	2.550	V		$10\text{mA} \le I_{\text{OUT}} \le 1A$, $6\text{V} \le V_{\text{IN}} \le 16\text{V}$			
Output Voltage - 3PX3940 (2%)	2.412	2.5	2.588	V	•				
3.3V version									
Output Voltage - SPX3940A (1%)	3.267	3.3	3.333	3 V					
Output Voltage - 3PX3940A (176)	3.217	3.3	3.383	V	•	I _{OUT} =10mA			
Output Voltage - SPX3940 (2%)	3.234	3.3	3.366	V		10mA≤I _{OUT} ≤1A, 6V≤V _{IN} ≤16V			
Output Voltage 3FX3940 (270)	3.184	3.3	3.416	V	•				
5.0V version									
Output Voltage - SPX3940A (1%)	4.950	5.0	5.050	V					
Output Voltage - 3PX3940A (1%)	4.875	5.0	5.125	V	•	I _{OUT} =10mA			
Output Voltage - SPX3940 (2%)	4.900	5.0	5.100	V		10mA≤I _{OUT} ≤1A, 6V≤V _{IN} ≤16V			
	4.825	5.0	5.175	•	•				
All Voltage Options									
Line Regulation		0.2	1.0	%		$I_{OUT}=10$ mA, $(V_{OUT} +1V) \le V_{IN} \le 16V$			
Load Regulation		0.3	1.5	%		$V_{IN} = V_{OUT} + 1V,10 \text{mA} \le I_{OUT} \le 1A$			
$\frac{\Delta V}{\Delta T}$ - Output Voltage			400	/0.0					
temperature Coefficient		20	100	ppm/°C	•				
Dropout Voltage ²		70	200	mV	•	I _{OUT} =100mA			
(except 1.8V version)		280	550	mV	•	I _{OUT} =1A			
		12	25	mA	•	I_{OUT} =750mA, $V_{IN} = V_{OUT} + 1V$			
Ground Current ³		18		mA		I _{OUT} =1A			
I _{GNDDO} Ground Pin Current at									
Dropout		1.2		mA		$V_{\text{IN}} = 0.1 \text{V}$ less than specified $V_{\text{OUT}} I_{\text{OUT}} = 10 \text{mA}$,			
Current Limit	1.5	2.2		Α		$V_{OUT} = 0V^4$			
Output Noise Voltage		400		μV_{RMS}		10Hz-100KHz, I_L =100mA, C_L =10 μ F			
Output Noise Voltage	-	260		μV_{RMS}		10Hz-100KHz, I_L =100mA, C_L =33 μ F			

Note 2: Dropout voltage is defined as the input to output differential when the output voltage drops to 99% of its normal value.

Note 3: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current to the ground current.

Note 4: $V_{IN} = V_{OUT(NOMINAL)} + 1V$. For example, use $V_{IN} = 4.3V$ for a 3.3V regulator. Employ pulse-testing procedures to minimize temperature rise.

BLOCK DIAGRAM

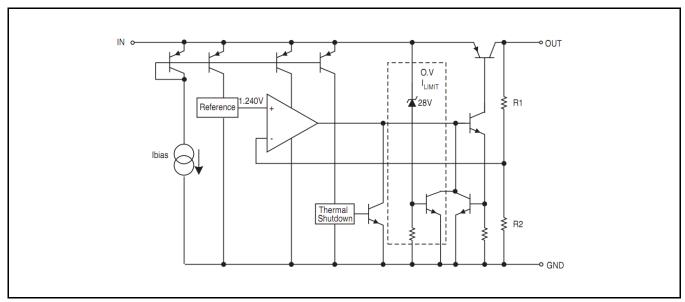


Fig. 2: SPX3940 Block Diagram

PIN ASSIGNMENT

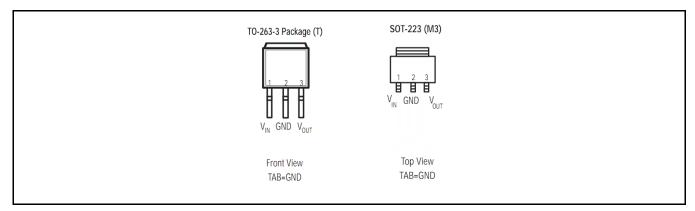


Fig. 3: SPX3940 Pin Assignment

ORDERING INFORMATION

Part Number	Temperature Range	Marking	Package	Packing Quantity	Note 1	Note 2
SPX3940AM3-L-1-8		3940A 18YYWWL XXX	3-pin SOT-223	2.5K/Tape & Reel		1.8V Output Voltage – 1%
SPX3940AM3-L-1-8/TR	-40°C≤T ₁ ≤+125°C			Bulk	Lead Free	
SPX3940AM3-L-2-5		3940A 25YYWWL XXX	3-pin SOT-223	2.5K/Tape & Reel		2.5V Output Voltage – 1%
SPX3940AM3-L-2-5/TR	-40°C≤T ₁ ≤+125°C			Bulk	Lead Free	
SPX3940AM3-L-3-3		3940A 33YYWWL XXX	3-pin SOT-223	2.5K/Tape & Reel		3.3V Output Voltage – 1%
SPX3940AM3-L-3-3/TR	-40°C≤T ₁ ≤+125°C			Bulk	Lead Free	
SPX3940AM3-L-5-0		3940A 50YYWWL XXX	3-pin SOT-223	2.5K/Tape & Reel	Lead Free	5.0V Output Voltage – 1%
SPX3940AM3-L-5-0/TR	-40°C≤T ₁ ≤+125°C			Bulk		
SPX3940AT-L-1-8	400C < T < +12F0C	SPX3940AT 18YYWWLX	3-pin TO-263	500/Tape & Reel	Lead Free	1.8V Output Voltage – 1%
SPX3940AT-L-1-8/TR	-40°C≤T _J ≤+125°C			Bulk		
SPX3940AT-L-3-3	-40°C≤T₁≤+125°C	SPX3940AT 33YYWWLX	3-pin TO-263	500/Tape & Reel	Lond Erron	3.3V Output Voltage – 1%
SPX3940AT-L-3-3/TR	-40°C≤1 ₃ ≤+125°C			Bulk	Lead Free	
SPX3940AT-L-5-0	-40°C≤T₁≤+125°C	SPX3940AT 50YYWWLX	3-pin TO-263	500/Tape & Reel	Lead Free	5.0V Output Voltage – 1%
SPX3940AT-L-5-0/TR	-40°CS1 ₃ S+125°C			Bulk	Lead Free	
SPX3940M3-L-2-5	-40°C≤T₁≤+125°C	3940M3 25YYWWL	3-pin SOT-223	2.5K/Tape & Reel	Lead Free	2.5V Output Voltage – 2%
SPX3940M3-L-2-5/TR	-40°CS1jS+123°C			Bulk	Leau Free	
SPX3940M3-L-3-3	-40°C≤T₁≤+125°C	3940M3 33YYWWL	3-pin SOT-223	2.5K/Tape & Reel	Lead Free	3.3V Output Voltage – 2%
SPX3940M3-L-3-3/TR	-40°CS1jS+125°C			Bulk	Leau Free	
SPX3940M3-L-5-0	400C (T () 12F0C	3940M3 50YYWWL	3-pin SOT-223	2.5K/Tape & Reel	Lead Free	5.0V Output Voltage – 2%
SPX3940M3-L-5-0/TR	-40°C≤T _J ≤+125°C			Bulk	Leau Free	
SPX3940T-L-3-3	-40°C≤T ₁ ≤+125°C	SPX3940T 33YYWWLX	3-pin TO-263	500/Tape & Reel	Lead Free	3.3V Output Voltage – 2%
SPX3940T-L-3-3/TR	-40 CS1jS+125°C			Bulk	Leau Fiee	
SPX3940T-L-5-0	-40°C≤T₁≤+125°C	SPX3940T	3-pin	500/Tape & Reel	Lead Free	5.0V Output Voltage – 2%
SPX3940T-L-5-0/TR	-40 CS1jS+123°C	33YYWWLX	TO-263	Bulk	Leau IIEE	

[&]quot;YY'' = Year - "WW" = Work Week - "X" = Lot Number - when applicable.

TYPICAL PERFORMANCE CHARACTERISTICS

Schematic and BOM from Application Information section of this datasheet.

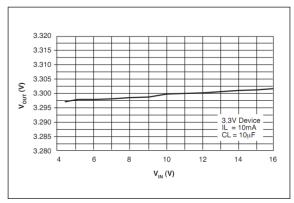


Fig. 4: Line Regulation

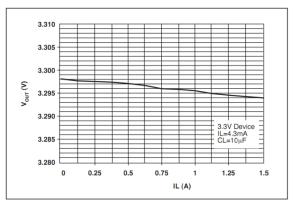


Fig. 5: Load Regulation

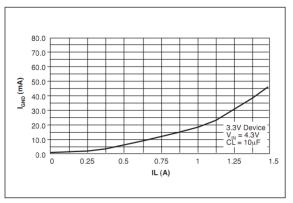


Fig. 6: Ground Current vs Load Current

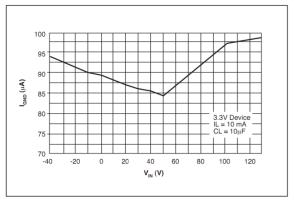


Fig. 7: Ground Current vs Input Voltage

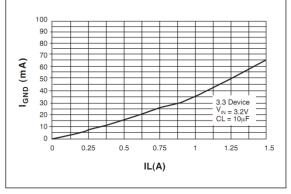


Fig. 8: Ground Current vs Load Current in Dropout

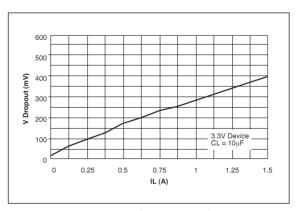


Fig. 9: Dropout Voltage vs Load Current

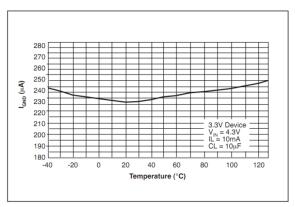


Fig. 10: Ground Current vs Temperature $$I_{\text{LOAD}}\!\!=\!\!100\,\text{mA}$$

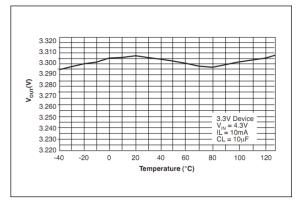


Fig. 11: Output Voltage vs Temperature $I_{\text{LOAD}}{=}100\,\text{mA}$

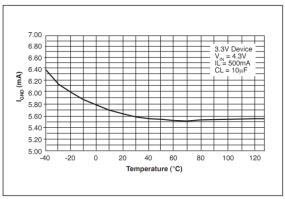


Fig. 12: Ground Current vs Temperature $I_{\text{LOAD}}{=}500\,\text{mA}$

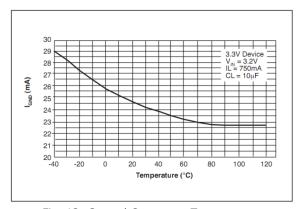


Fig. 13: Ground Current vs Temperature Dropout, I_{LOAD} =750mA

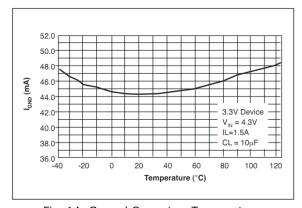


Fig. 14: Ground Current vs Temperature I_{LOAD} =1.5A

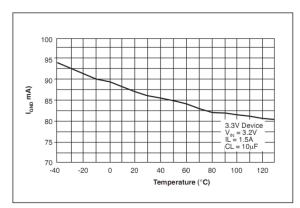


Fig. 15: Ground Current vs Temperature Dropout, I_{LOAD} =1.5A

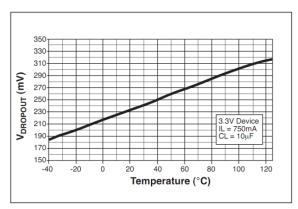
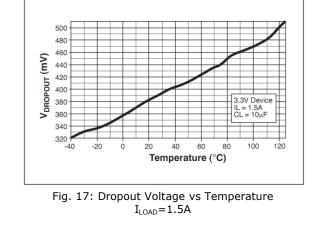



Fig. 16: Dropout Voltage vs Temperature $I_{LOAD} = 750 \text{mA}$

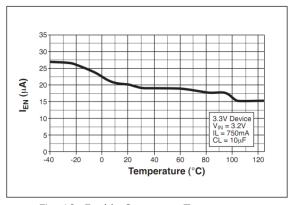


Fig. 18: Enable Current vs Temperature $V_{EN} = 16V$

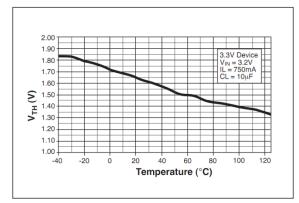


Fig. 19: Enable Threshold vs Temperature

THEORY OF OPERATION

The SPX3940 incorporates protection against over-current faults, reversed load insertion, over temperature operation, and positive and negative transient voltage.

THERMAL CONSIDERATIONS

Although the SPX3940 offers limiting circuitry for overload conditions, it is still necessary to the maximum insure that iunction temperature is not exceeded in the application. Heat will flow through the lowest resistance path, the junction-to-case path. In order to insure the best thermal flow of the component, proper mount-ing is required. Consult heatsink manufacturer for thermal resistance and design of heatsink.

TO-220 Design Example:

Assume that $V_{IN}=10V$, $V_{OUT}=5V$, $I_{OUT}=1.5A$, $T_A=50$ °C/W, $\theta_{HA}=1$ °C/W, $\theta_{CH}=2$ °C/W, and $\theta_{JC}=3$ °C/W.

Where T_A = ambient temperature

 θ_{HA} = heatsink to ambient thermal resistance

 θ_{CH} = case to heatsink thermal resistance

 $\theta_{\rm JC}$ = junction to case thermal resistance

The power calculated under these conditions is:

$$P_D = (V_{IN} - V_{OUT}) * I_{OUT} = 7.5W.$$

And the junction temperature is calculated as

$$T_J = T_A + P_D * (\theta_{HA} + \theta_{CH} + \theta_{JC})$$
 or $T_J = 50 + 7.5 * (1 + 2 + 3) = 95$ °C

Reliable operation is insured.

CAPACITOR REQUIREMENTS

The output capacitor is needed to insure stability and minimize the output noise. The value of the capacitor varies with the load. However, a minimum value of $10\mu F$ aluminum capacitor will guarantee stability over all load conditions. A tantalum capacitor is recommended if a faster load transient response is needed.

If the power source has a high AC impedance, a $0.1\mu\text{F}$ ceramic capacitor between input & ground is recommended.

MINIMUM LOAD CURRENT

To ensure a proper behavior of the regulator under light load, a minimum load of 5mA for SPX3940 is required.

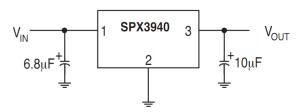
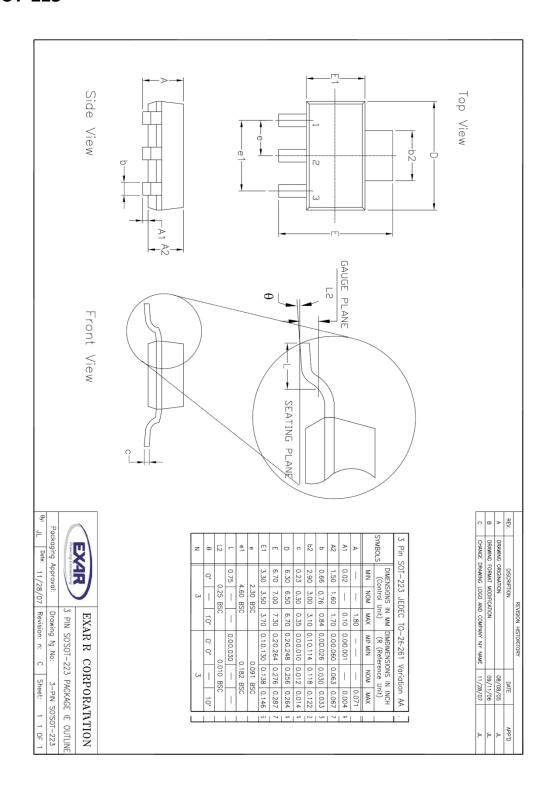
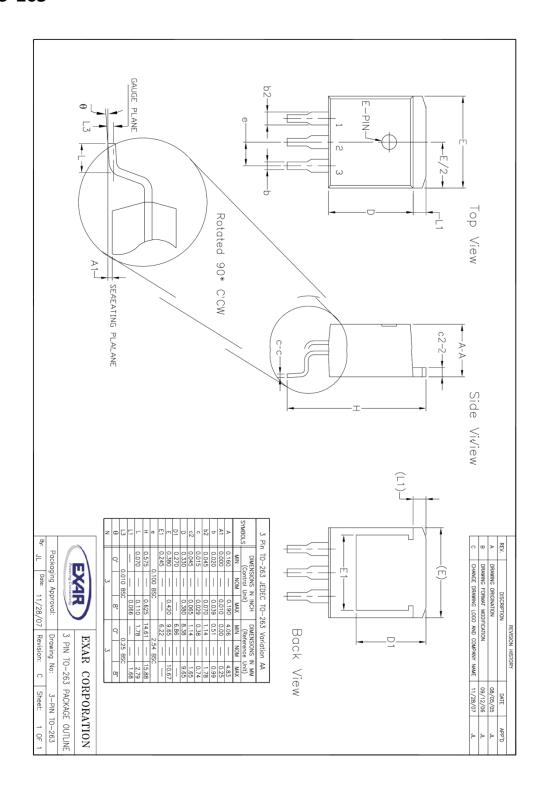



Fig. 20: Fixed Output Linear Regulator


PACKAGE SPECIFICATION

3-PIN SOT-223

3-PIN TO-263

REVISION HISTORY

Revision	Date	Description
Α	04/14/2006	
1.0.0		Reformat of Datasheet Package drawing corrections

FOR FURTHER ASSISTANCE

Email:

Exar Technical Documentation:

customersupport@exar.com

http://www.exar.com/TechDoc/default.aspx?

EXAR CORPORATION

HEADQUARTERS AND SALES OFFICES

48720 Kato Road

Fremont, CA 94538 - USA

Tel.: +1 (510) 668-7000

Fax: +1 (510) 668-7030

www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MaxLinear:

<u>SPX3940M3-L-2-5</u> <u>SPX3940AM3-L-5-0/TR</u> <u>SPX3940T-L-3-3</u> <u>SPX3940AM3-L-5-0</u> <u>SPX3940T-L-5-0/TR</u> <u>SPX3940AM3-L-2-5/TR</u> <u>SPX3940M3-L-3-3</u> <u>SPX3940M3-L-3-3/TR</u> <u>SPX3940AT-L-3-3</u> <u>SPX3940AT-L-5-0/TR</u> <u>SPX3940AM3-L-1-8</u> <u>SPX3940AM3-L-1-8/TR</u> <u>SPX3940AT-L-1-8</u> <u>SPX3940AT-L-5-0</u> <u>SPX3940M3-L-5-0</u> <u>SPX3940T-L-5-0</u> <u>SPX3940M3-L-5-0</u> <u>SPX3940M3-L-1-8/TR</u> <u>SPX3940M3-L-1-</u>