SCES490C - SEPTEMBER 2003 - REVISED JANUARY 2008

 Qualified for Automotive Applications ESD Protection Exceeds 2000 V Per 	D OR PW PACKAGE (TOP VIEW)
MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)	$\begin{array}{c c} 1A \begin{bmatrix} 1 & 14 \end{bmatrix} V_{CC} \\ 1B \begin{bmatrix} 12 & 13 \end{bmatrix} 4B \end{array}$
 Operates From 1.65 V to 3.6 V 	1B [2 13] 4B 1Y [3 12] 4A
 Max t_{pd} of 3 ns at 3.3 V 	2A 🛛 4 11 🗍 4Y
 ±24-mA Output Drive at 3.3 V 	2B 🛛 5 10 🗍 3B
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	2Y [[6 9]] 3A GND [[7 8]] 3Y

description/ordering informatiom

The SN74ALVC00 quadruple 2-input positive-NAND gate is designed for 1.65-V to 3.6-V V_{CC} operation. The device performs the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A + B}$ in positive logic.

TA	PACK	AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
–40°C to 85°C	SOIC – D	Tape and reel	SN74ALVC00IDRQ1	ALVC00I		
	TSSOP – PW	Tape and reel	SN74ALVC00IPWRQ1	VA00I		

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

[‡] Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

FUNCTION TABLE (each gate)									
INP	UTS	OUTPUT							
Α	В	Y	l						
Н	Н	L							
L	Х	н	1						
Х	L	н	l						

logic diagram, each gate (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2008, Texas Instruments Incorporated

SCES490C - SEPTEMBER 2003 - REVISED JANUARY 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Notes 1 and 2)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, I _O	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): D package	
PW package	113°C/W
Storage temperature range, T _{stg}	
tresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the c	device. These are stress ratings only, and

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
V _{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
V _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		$V_{CC} = 2.3 V$		-12	
I _{ОН}	High-level output current	$V_{CC} = 2.7 V$		-12	mA
		$V_{CC} = 3 V$		-24	
		V _{CC} = 1.65 V		4	
		$V_{CC} = 2.3 V$		12	
I _{OL}	Low-level output current	$V_{CC} = 2.7 V$		12	mA
		$V_{CC} = 3 V$		24	
$\Delta t/\Delta v$	Input transition rise or fall rate	<u>.</u>		5	ns/V
T _A	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCES490C - SEPTEMBER 2003 - REVISED JANUARY 2008

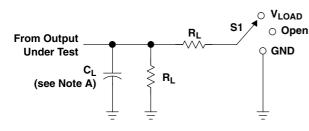
PARAMETER	TEST CONDI	TIONS	v _{cc}	MIN	TYP [†]	МАХ	UNIT			
	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2						
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2						
	I _{OH} = -6 mA		2.3 V	2						
V _{OH}			2.3 V	1.7			V			
	I _{OH} = -12 mA		2.7 V	2.2						
			3 V	2.4						
	I _{OH} = -24 mA		3 V	2						
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2				
	I _{OL} = 4 mA		1.65 V			0.45				
	I _{OL} = 6 mA		2.3 V			0.4				
V _{OL}			2.3 V			0.7	V			
	I _{OL} = 12 mA		2.7 V			0.4				
	I _{OL} = 24 mA		3 V			0.55				
l _l	$V_{I} = V_{CC}$ or GND		3.6 V			±5	μA			
I _{CC}	$V_{I} = V_{CC}$ or GND, I_{C}	₀ = 0	3.6 V			10	μA			
ΔI_{CC}	One input at V _{CC} – 0.6 V, O	ther inputs at V _{CC} or GND	3 V to 3.6 V			750	μA			
Ci	$V_{I} = V_{CC}$ or GND		3.3 V		4.5		pF			

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

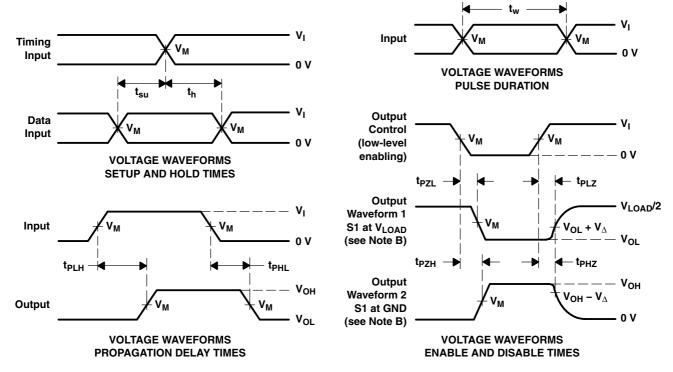
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TO ± 0.15 V		V_{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(001901)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A or B	Y	1	4.4	1	2.8		3.2	0.5	3	ns


operating characteristics, $T_A = 25^{\circ}C$

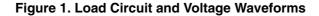
	PARAMETER	TEOTO		V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	FARAMEIER	IESI C	ONDITIONS	ТҮР	ТҮР	ТҮР	UNIT	
Cp	Power dissipation capacitance per gate	$C_L = 0,$	f = 10 MHz	20	21	23	pF	

SCES490C - SEPTEMBER 2003 - REVISED JANUARY 2008



LOAD CIRCUIT

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND


М	IN	PUT	, v	V	•		V	
V _{CC}	VI	t _r /t _f	VM	V _{LOAD}	C∟	RL	V_{Δ}	
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V	
$\textbf{2.5}\pm\textbf{0.2}~\textbf{V}$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V	
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	
3.3 V \pm 0.3 V	2.7 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω.

- C. All highlight pusses are supplied by generators having the following characteristics. $r hh \ge 10$ with the subput pusses are supplied by generators having the following characteristics.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

6-Feb-2020

PACKAGING INFORMATION

Orderab	ole Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
		(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74ALVC0	00IPWRG4Q1	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVC00I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74ALVC00-Q1 :

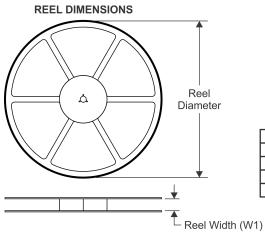
www.ti.com

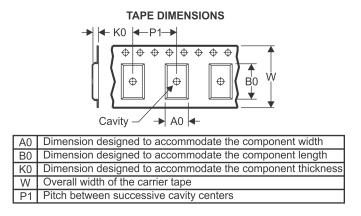
6-Feb-2020

Catalog: SN74ALVC00

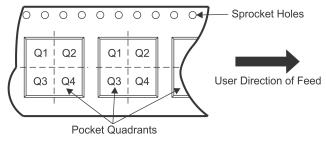
• Enhanced Product: SN74ALVC00-EP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

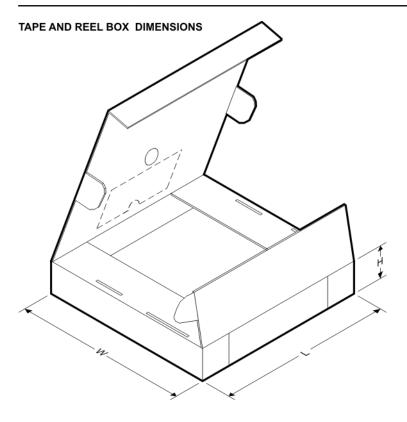

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

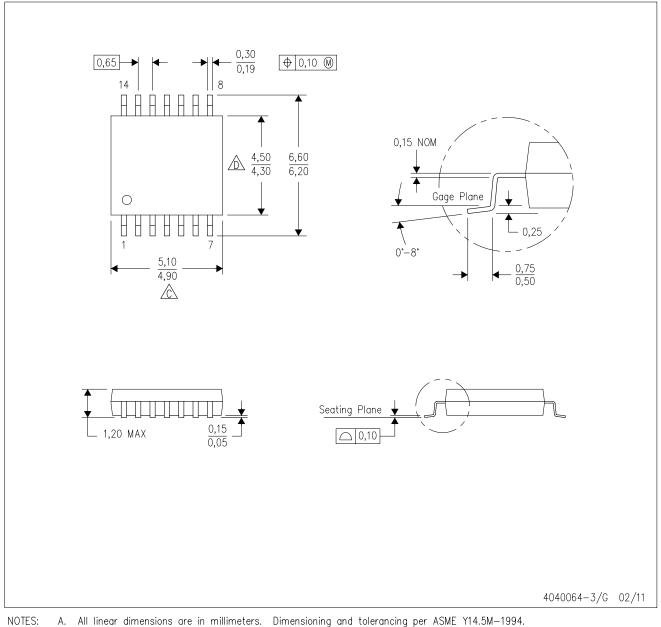

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVC00IPWRG4Q1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Mar-2013

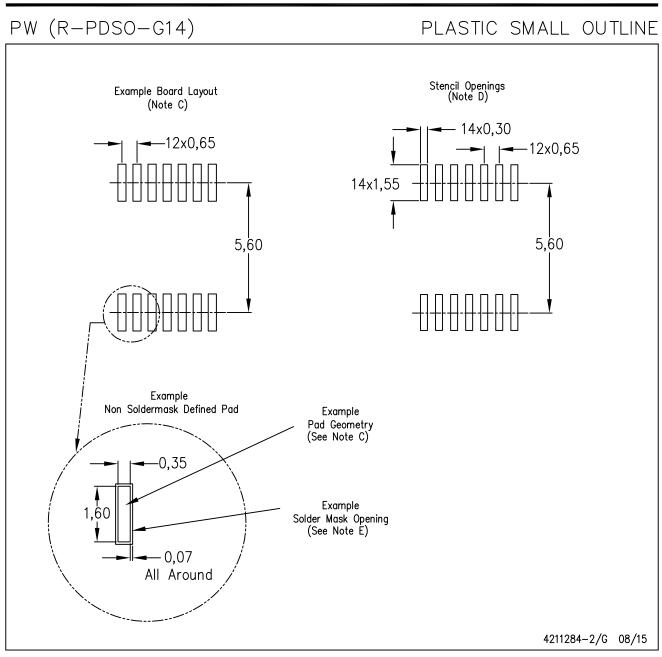


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVC00IPWRG4Q1	TSSOP	PW	14	2000	367.0	367.0	35.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated