Power MOSFET 40 V, 123 A, Single N–Channel DPAK

Features

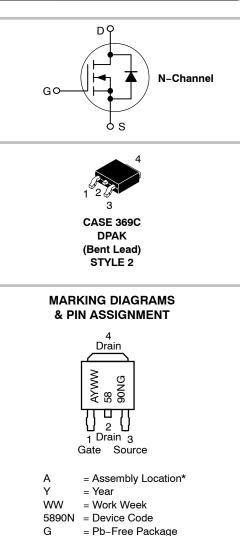
- Low R_{DS(on)} to Minimize Conduction Losses
- MSL 1/260°C
- AEC Q101 Qualified and PPAP Capable
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Motor Drivers
- Pump Drivers for Automotive Braking, Steering and Other High Current Systems

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Param	eter		Symbol	Value	Unit
Drain-to-Source Voltage	Э		V _{DSS}	40	V
Gate-to-Source Voltage	Gate-to-Source Voltage				V
Continuous Drain Cur-		$T_C = 25^{\circ}C$	I _D	123	А
rent (R _{θJC})		$T_C = 85^{\circ}C$		95	
Power Dissipation ($R_{\theta JC}$)	Steady	$T_C = 25^{\circ}C$	P _D	107	W
Continuous Drain Cur-	State	$T_A = 25^{\circ}C$	I _D	24	А
rent (R _{θJA}) (Note 1)		$T_A = 85^{\circ}C$		18.5	
Power Dissipation $(R_{\theta JA})$ (Note 1)		$T_A = 25^{\circ}C$	PD	4.0	W
Pulsed Drain Current	t _p =10μs	$T_A = 25^{\circ}C$	I _{DM}	400	А
Current Limited by Packa	age	$T_A = 25^{\circ}C$	I _{DmaxPkg}	100	А
Operating Junction and S	Storage Te	mperature	T _J , T _{stg}	–55 to 175	°C
Source Current (Body Di	iode)		۱ _S	100	А
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 32 V, V _{GS} = 10 V, L = 0.3 mH, I _{L(pk)} = 40 A, R _G = 25 Ω)			E _{AS}	240	mJ
Lead Temperature for So (1/8" from case for 10 s)		irposes	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS} R _{DS(on)}		ID
40 V	$3.7~\mathrm{m}\Omega$ @ 10 V	123 A

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	37	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	76	

Surface-mounted on FR4 board using 650 mm² pad size, 2 oz Cu.
 Surface-mounted on FR4 board using 36 mm² pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Paramete	er Symbol	Test Condition	Min	Тур	Max	Unit

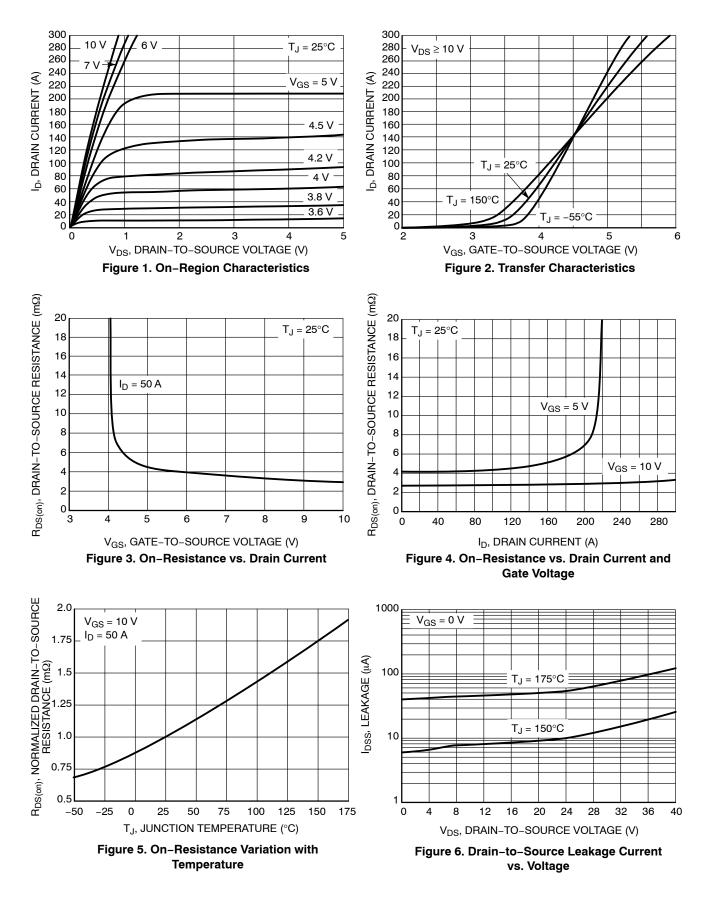
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				40		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 40 V$	T _J = 150°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V				±100	nA

ON CHARACTERISTICS (Note 3)

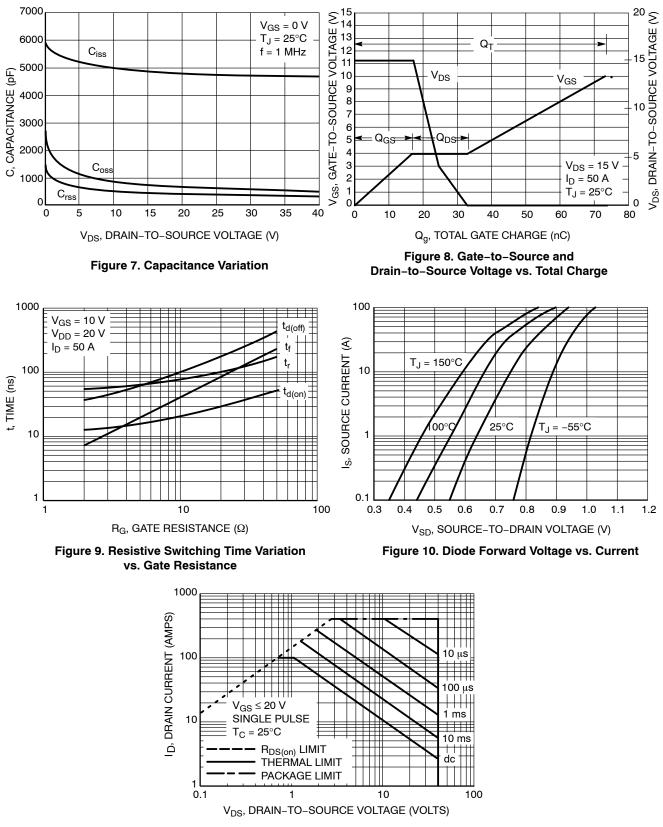
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A	1.5		3.5	V
Negative Threshold Temperature Co- efficient	V _{GS(TH)} /T _J			7.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 50 A		2.9	3.7	mΩ
Forward Transconductance	gFS	V _{DS} = 15 V, I _D = 15 A		16.8		S

CHARGES AND CAPACITANCES

Input Capacitance	C _{iss}		4975		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 12 V	785		
Reverse Transfer Capacitance	C _{rss}		490		
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V	4760		pF
Output Capacitance	C _{oss}	V _{DS} = 25 V	580		
Reverse Transfer Capacitance	C _{rss}		385		
Total Gate Charge	Q _{G(TOT)}		74	100	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 15 V,	5.0		
Gate-to-Source Charge	Q _{GS}	I _D = 50 Å	17		1
Gate-to-Drain Charge	Q _{GD}		16		


SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(on)}		14	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 20 V,	55	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 50 {\rm A}, {\rm R}_{\rm G} = 2.0 {\Omega}$	35	
Fall Time	t _f		7.0	


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHARACTERISTICS									
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 50 A	$T_J = 25^{\circ}C$		0.9	1.2	V		
		V _{GS} = 0 V, I _S = 20 A	T _J = 25°C		0.8	1.0			
Reverse Recovery Time	t _{RR}				35		ns		
Charge Time	ta	V _{GS} = 0 V, dls/	dt = 100 A/μs,		20				
Discharge Time	tb	V _{GS} = 0 V, dls/ I _S = 5	50 A		15				
Reverse Recovery Charge	Q _{RR}				40		nC		

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

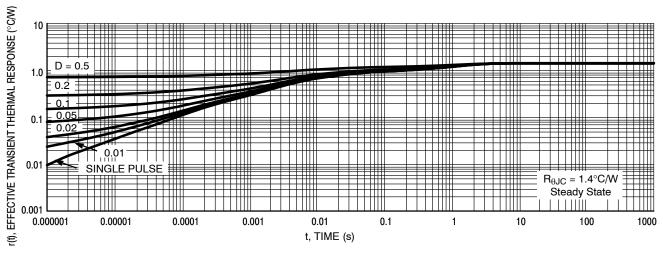
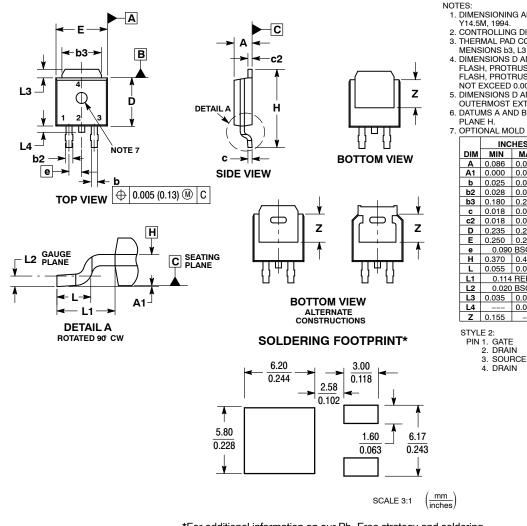


Figure 12. Thermal Response

ORDERING INFORMATION


Order Number	Package	Shipping [†]
NVD5890NT4G	DPAK (Pb-Free)	2500/Tape & Reel
NVD5890NT4G-VF01	DPAK (Pb-Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C **ISSUE F**

- DILES.
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM

PLANE H. OPTIONAL MOLD FEATURE

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
e	0.090	BSC	2.29 BSC	
н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Ζ	0.155		3.93	

*For additional information on our Pb-Free strategy and soldering

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/point-atent- warking.por. ON semiconductor reserves the right to make changes winnout further notice to any products nerein. ON semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor does not convey any license or any EDA Clong of medical during and enters or a with a core or citized comparent is patent or patient or products are not dependent or utberging different applications and actual performance may any core time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON semiconductor does not convey any license under its patent rights of others. ON semiconductor products are not dependent or utberging different applications are circular applications are applied or any explicit or application products are not dependent or utberging different applications are circle applied or any customer or any EDA Clong of medical during or utberging different applications are circle applications are applied or any expline appli designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NVD5890NT4G