

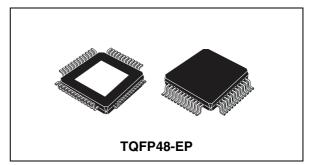
STP24DP05

24-bit constant current LED sink driver with output error detection

Features

- Low-voltage power supply down to 3 V
- 8 x 3 constant current output channels
- Adjustable output current through external resistors
- Short and open output error detection
- Serial data IN/parallel data OUT
- Shift register data flow register control
- Accepts 3.3 V and 5 V micro driver
- Output current: 5-80 mA
- 25 MHz clock frequency
- High thermal efficiency package

Description


The STP24DP05 is a monolithic, low-voltage, low current power 24-bit shift register designed for LED panel displays. The device contains an 8 x 3-bit serial-IN, parallel-OUT shift register that feeds a 8 x 3-bit D-type storage register. In the output stage, twenty four regulated current sources were designed to provide 5-80 mA constant current to drive the LEDs.

The 8 x 3 shift register data flow sequence order can be managed through two dedicated pins.

The STP24DP05 has a dedicated pin to activate the outputs with a sequential delay, that prevents inrush current during output turn-ON.

The device detection circuit checks 3 different conditions that can occur on the output line: short to GND, short to V_O , or open line.

The data detection results are loaded in the shift registers and shifted out via the serial line output. **Table 1. Device summary**

The detection functionality is activated with a dedicated pin or alternatively, through a logic sequence that allows the user to enter or exit detection mode.

Through three external resistors, the user can adjust the output current for each 8-channel group, therefore controlling the light intensity of LEDs.

The STP24DP05 guarantees a 20 V output driving capability, allowing the user to connect more LEDs in series.

The high clock frequency, 25 MHz, makes the device suitable for high data rate transmission.

The 3.3 V of voltage supply is useful for applications that interface any microcontroller from 3.3 V.

Order code	Package	Packaging
STP24DP05BTR	TQFP48-EP ⁽¹⁾	Tape and reel

1. Thermal pad size: 3.5 mm x 3.5 mm.

```
February 2012
```

Doc ID 14714 Rev 5

Contents

1	Sum	Summary description				
	1.1	Pin connection and description 3				
2	Elec	trical ratings				
	2.1	Absolute maximum ratings 5				
	2.2	Thermal data				
	2.3	Recommended operating conditions				
3	Elec	trical characteristics7				
4	Bloc	k diagram9				
5	Equi	ivalent circuit and outputs 10				
6	Timi	ng diagrams				
7	Feat	ures description				
	7.1	DG: gradual output delay 15				
	7.2	Error detection condition 15				
	7.3	Phase one: "entering detection mode" 16				
	7.4	Phase two: "error detection" 17				
	7.5	Phase three: "resuming normal mode"				
	7.6	Shift register data flow control 18				
	7.7	EFLAG/TFLAG - output detection and overtemperature monitoring 19				
8	Турі	cal application schematic				
9	Турі	Typical characteristics				
10	Pack	Package mechanical data 22				
11	Revi	sion history				

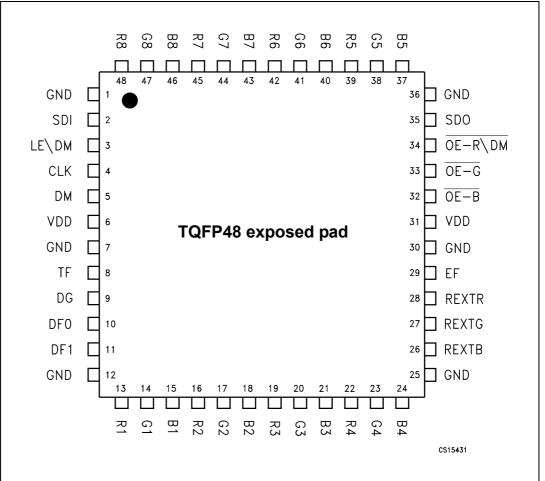

1 Summary description

Table 2. Current accuracy

Output voltage	Typical current accuracy		Output current	V _{DD}	Temperature	
output voltage	Between bits	Between ICs			remperature	
≥ 1.0 V	± 3%	± 6%	\geq 15 to 80 mA	3.3 V to 5 V	25 °C	
≥ 0.2 V	± 6%	± 6%	5 to 15 mA	0.0 V 10 0 V	20 0	

1.1 Pin connection and description

Note:

The exposed pad should be electrically connected to a PCB metal dissipation area electrically isolated or connected to ground.

Pin N°	Symbol	Name and function
1, 7, 12, 25, 30, 36	GND	Ground terminal
2	SDI	Serial data input
35	SDO	Serial data output
4	CLK	Clock for serial data
3	LE\DM	Data latch in both SH registers
5	DM	Detection mode pin
13, 16, 19, 22, 39, 42, 45, 48	R1 - 8	8-channel LED driver outputs
8	TF	Thermal flag (open drain)
29	EF	Error detection flag (open drain)
9	DG	Gradual delay
15, 18, 21, 24 37, 40, 43, 46	B1 - 8	8-channel LED driver outputs
32	OE-B	Output enable for B1 - 8
33	OE-G	Output enable for G1 - 8
34	OE-R\DM	Output enable for R1 - 8
28	REXTR	Control outputs R1 - 8
27	REXTG	Control outputs G1 - 8
26	REXTB	Control outputs B1 - 8
14, 17, 20, 23 38, 41, 44, 48	G1 - 8	8-channel LED driver outputs
10	DF0	Data banks flow bit 0
11	DF1	Data banks flow bit 1
31	VDD	Supply voltage terminal

Table 3. Pin description

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in *Table 4* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage - digital	0 to 7	V
Vo	Output voltage - LED driver	-0.5 to 20	V
V _{TF} and V _{ER}	Open drain absolute voltage	0 to 7	V
Ι _Ο	Output current - LED driver	80	mA
VI	Input voltage - digital	-0.4 to V _{DD} +0.4	V
I _{GND}	GND terminal current	2000	mA
f _{CLK}	Clock frequency	30	MHz

Table 4. Absolute maximum ratings

2.2 Thermal data

Table	5.	Thermal	data
10010	0.	i no mai	aata

Symbol	Parameter	Value	Unit
T _{OPR}	Operating temperature range	-40 to 125	°C
T _{STG}	Storage temperature range	-40 to 150	°C
R _{thJA}	Thermal resistance junction-ambient (1) (2)	33	°C/W

1. The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

2. Packages tested on multi-layer (1S2P) JEDEC compliant test boards.

2.3 Recommended operating conditions

Table 0.	Recommended of	crating conditions				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage		3.0		5.5	V
Vo	Output voltage				20	V
Ι _Ο	Output current	OUTn	5		80	mA
I _{OH}	Output current	Serial-OUT		+10		mA
I _{OL}	Output current	Serial-OUT		-10		mA
V _{IH}	Input voltage		0.7 V _{DD}		V _{DD} +0.3	V
V _{IL}	Input voltage		-0.3		0.3 V _{DD}	V
t _{wLAT}	LE pulse width		15			ns
t _{wCLK}	CLK pulse width		15			ns
t _{wEN}	OE pulse width		150			ns
t _{SETUP(D)}	Setup time for DATA	$V_{DD} = 3.0 \text{ V to } 5.0 \text{ V}$	15			ns
t _{HOLD(D)}	Hold time for DATA		5			ns
t _{SETUP(L)}	Setup time for LATCH		10			ns
f _{CLK}	Clock frequency	Cascade operation ⁽¹⁾			25	MHz

Table 6. Recommended operating conditions

1. If the device is connected in cascade, it may not be possible to achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

T = 25 °C, unless otherwise specified.

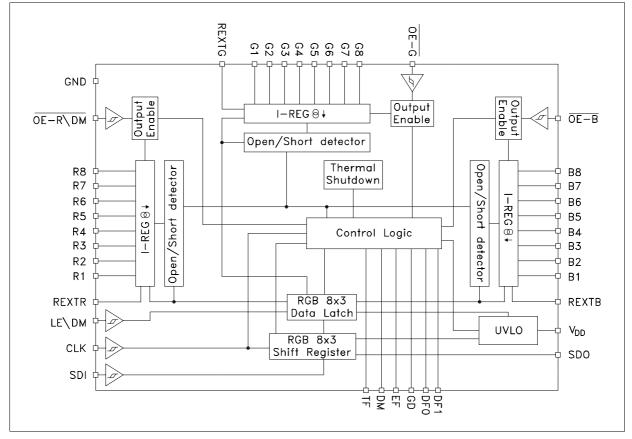
Table 7.Electrical characteristics (V_{DD} = 3.3 V to 5 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IH}	Input voltage high level		0.7 V _{DD}		V _{DD}	V
V _{IL}	Input voltage low level		GND		0.3 V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 20 V			10	μA
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA			0.4	V
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4 V			V
I _{OL1}		$V_O = 0.3 \text{ V}, \text{ R}_{\text{EXT}} = 2 \text{ k}\Omega,$ $I_O = 10 \text{ mA}$		10		mA
I _{OL2}	Output current	$V_O = 0.3$ V, $R_{EXT} = 1$ k Ω , $I_O = 20$ mA		20		mA
I _{OL3}		$\label{eq:VO} \begin{array}{l} V_{O} = 0.3 \; V, \; R_{EXT} = 250 \; \Omega, \\ I_{O} = 80 \; mA \end{array}$		80		mA
ΔI_{OL1}		$V_O = 0.3$ V, $R_{EXT} = 2$ k Ω , $I_O = 10$ mA		± 2	± 3	%
ΔI_{OL2}	Output current error among the channels (All outputs ON)	V_{O} = 0.3 V, R_{EXT} = 1 k Ω , I_{O} = 20 mA		± 2	± 3	%
ΔI_{OL3}		$\label{eq:VO} \begin{array}{l} V_{O} = 0.3 \; V, \; R_{EXT} = 250 \; \Omega, \\ I_{O} = 80 \; mA \end{array}$		± 2	± 3	%
R _{SIN(up)}	Pull-up resistor		300	600	800	kΩ
R _{SIN(down)}	Pull-down resistor		300	400	500	kΩ
LE _(up) DG _(up) OE-R\ DM (up) OE-G (up) OE-B (up) DF0 DF1	Pull-up resistor		300	400	500	kΩ
I _{DD(OFF1)}	- Supply current (OFF)	$R_{EXT} = 1 \ k\Omega$ OUT 0 to 15 = OFF		9	12	
I _{DD(OFF2)}		R _{EXT} = 250 Ω OUT 0 to 15 = OFF		32	40	mA
I _{DD(ON1)}	- Supply current (ON)	$R_{EXT} = 1 k\Omega$ OUT 0 to 15 = ON		13	18	ШA
I _{DD(ON2)}		R _{EXT} = 250 Ω OUT 0 to 15 = ON		35	40	

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Thermal	Thermal protection			170		°C
V _{TF}	Output voltage				5	V
I _{TF}	Output current	V _{TF} @ 1 V	20			mA
V _{EF}	Output voltage				5	V
I _{EF}	Output current	V _{EF} @ 1 V	20			mA

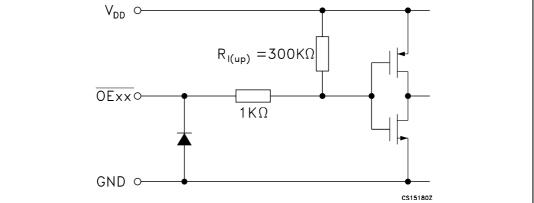
Table 7.Electrical characteristics (V_{DD} = 3.3 V to 5 V) (continued)

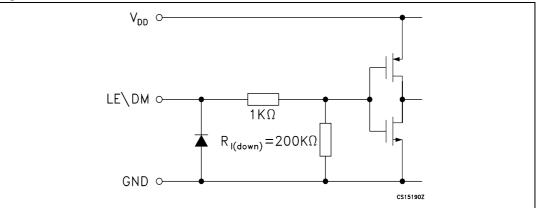
Table 8.Switching characteristics ($V_{DD} = 3.3 V, 5 V$)


Symbol	Parameter	T	est conditions	;	Min.	Тур.	Max.	Unit
t	Propagation delay time,			V _{DD} = 3.3 V		62	100	ns
t _{PLH1}	$CLK-\overline{OUTn}$, $LE = H$, $\overline{OE} = L$			$V_{DD} = 5 V$		38	60	115
tourie	Propagation delay time,		V _{DD} = 3.3 V		67	107	ns	
t _{PLH2}	$LE-\overline{OUTn}, \overline{OE} = L$			$V_{DD} = 5 V$		44	60	115
t _{PLH3}	Propagation delay time,			V _{DD} = 3.3 V		65	83	ns
PLH3	\overline{OE} - \overline{OUTn} , LE = H			$V_{DD} = 5 V$		38	45	115
t _{PLH}	Propagation delay time,			V _{DD} = 3.3 V	14	22	36	ns
PLH	CLK-SDO			V _{DD} = 5 V	9	14	23	115
	Propagation delay time, CLK-OUTn, LE = H, OE = L			V _{DD} = 3.3 V		46	70	
t _{PHL1}		V _{IH} = V _{DD} V _{IL} = GND	C _L = 10 pF	$V_{DD} = 5 V$		39	50	ns
t	Propagation delay time,	I _O = 20 mA	$V_{L} = 3.0 V$	V _{DD} = 3.3 V		51	76	ns
t _{PHL2}	$\overline{\text{LE-OUTn}}, \overline{\text{OE}} = L$	R _{EXT} = 1 kΩ	$R_L = 60 \Omega$	V _{DD} = 5 V		46	55	115
t	Propagation delay time,			V _{DD} = 3.3 V		41	45	ns
t _{PHL3}	OE-OUTn, LE = H			$V_{DD} = 5 V$		33	39	115
t	Propagation delay time,			V _{DD} = 3.3 V	15	24	38	ns
t _{PHL}	CLK-SDO			$V_{DD} = 5 V$	9	15	24	115
	Output rise time			V _{DD} = 3.3 V		33	57	
t _{ON}	10~90% of voltage waveform			$V_{DD} = 5 V$		17	27	ns
	Output fall time			V _{DD} = 3.3 V		24	34	
t _{OFF}	90~10% of voltage waveform			V _{DD} = 5 V		25	37	ns
t _r	CLK rise time ⁽¹⁾						5000	ns
t _f	CLK fall time ⁽¹⁾						5000	ns

1. In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Block diagram


Figure 2. Block diagram



5 Equivalent circuit and outputs

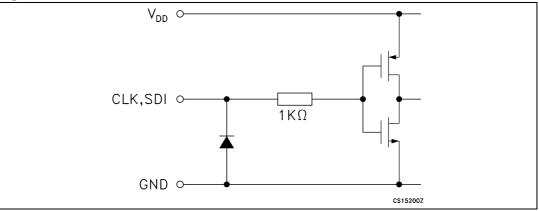


Figure 4. LE\DM terminal

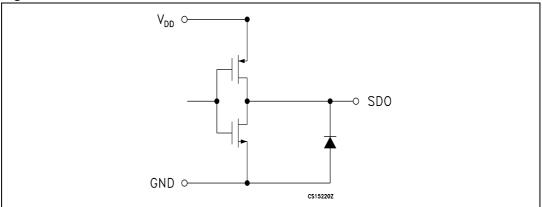


Figure 5. CLK, SDI terminal

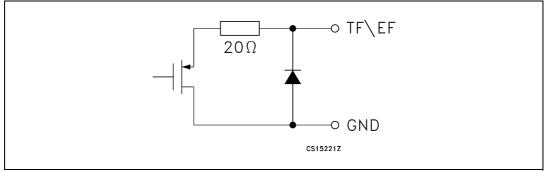


Figure 6. SDO terminal

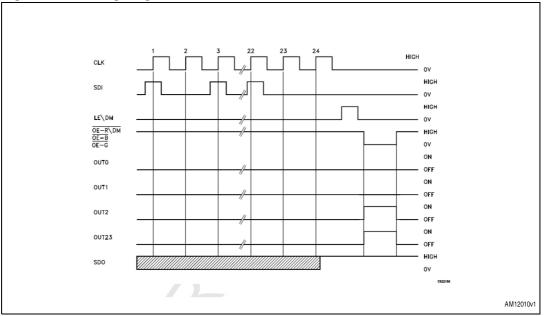


Figure 7. TF and EF

6 Timing diagrams

- Note: 1 Latch and output enable are level sensitive and are not synchronized with rising-or-falling edge of CLK signal.
 - 2 When LE\DM terminal is low level, the latch circuit holds the previous set of data.
 - 3 When LE\DM terminal is high level, the latch circuit refreshes the new set of data from the SDI chain.
 - 4 When either OE-R\DM, OE-G, or OE-B terminals are at low level, output terminals R\G\B1 to R\G\B8 respond to the data, either ON or OFF.
 - 5 When either OE-R\DM, OE-G, or OE-B terminals are at high level, all the data on the output terminal R\G\B1 to R\G\B8 is switched off.
 - 6 This device can customize the RGB sequence serial data flow by means of setting DF0 and DF1 (refer to Table 14.).

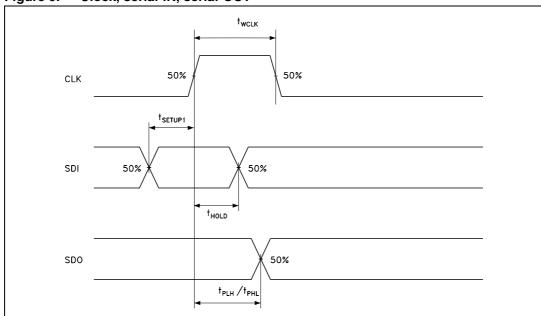


Figure 9. Clock, serial-IN, serial-OUT

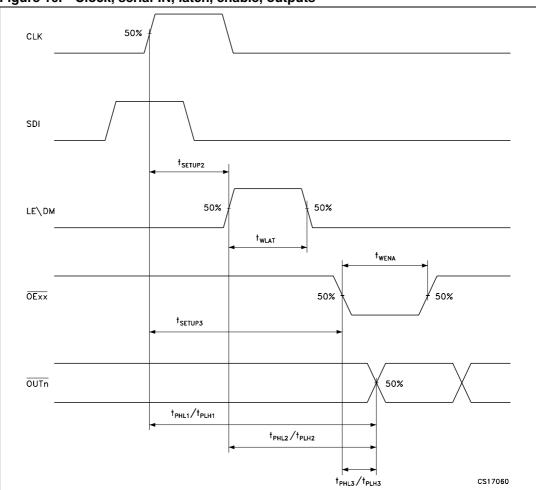
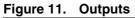
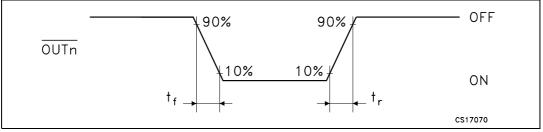




Figure 10. Clock, serial-IN, latch, enable, outputs

R8

G8

B8

210

0

7 Features description

7.1 DG: gradual output delay

This feature prevents large inrush current and reduces the bypass capacitors.

The fixed delay time can be activated with DG = LOW and the typical output delay is 30 ns for each group of 8 outputs, R, G, and B. E.g.: R1, G1, B1 has no delay, R2, G2, B2 has 30 ns delay and R3, G3, B3, has 60 ns delay, etc.

R2 R3 **R7** R1 R4 R5 R6 Delay time (ns) from ↓ OExx G1 G2 G3 G4 G6 G7 G5 **B**3 **B1** B2 **B**4 **B**5 **B7 B6** DG = 00 30 60 90 120 150 180 DG = 1 0 0 0 0 0 0

Table 9. Typical gradual delay time table

7.2 Error detection condition

Table 10.	Detection conditions (V_{DD} = 3.3 to 5 V, I_O = 20 mA, t_A = 25 °C)
-----------	---

SW-1 Open or SW-3b	Open line or output short to GND detected	=> $I_{ODEC} \le 0.4 \text{ x } I_{O}$	No error detected	=> $I_{ODEC} \ge 0.35 \times I_{O}$
SW-2 Closed or SW-3a	Short on LED or short to V-LED detected	=> V _O ≥ 2.6 V	No error detected	=> V _O ≤ 2.4 V

Note: $I_O =$ the output current programmed by the R_{EXT}

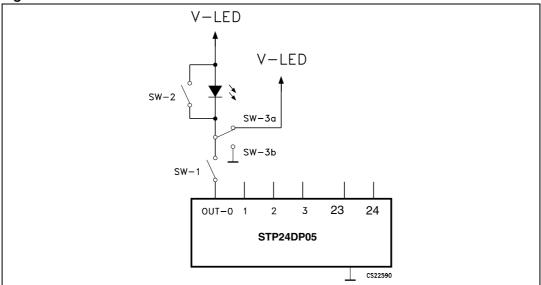
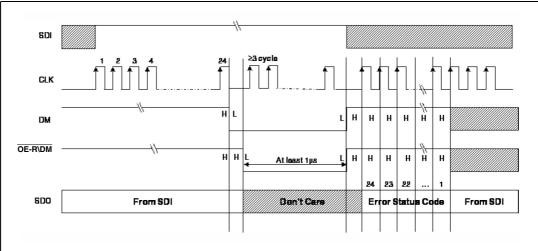
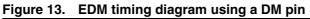

 I_{ODEC} = the detected output current in detection mode

Table 11.	Typical current threshold values to detect LED open line
-----------	--

lset (mA)	Rext (Ω)	Typ. out current detection (mA)
5	3920	1.28
10	1960	2.45
20	980	7.4
50	386	17
80	241	27




Figure 12. Detection circuit

7.3 Phase one: "entering detection mode"

From the "normal mode" condition the device can switch to the "error detection mode" through a DM PIN set to LOW or a logic sequence on the \overline{OE} -R\DM and LE\DM pins as shown in *Figure 13, 14* and *Table 12*:

Table 12.	SPI sequence to enter detection mode - truth table
-----------	--

CLK	1 °	2 °	3 °	4 °	5°
OE-R\DM	Н	L	Н	Н	н
LE\DM	L	L	L	Н	L

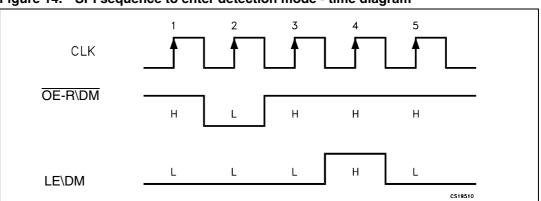


Figure 14. SPI sequence to enter detection mode - time diagram

After these five CLK cycles the device goes into "error detection mode" and at the 6th rise front of CLK, the SDI data are ready for the sampling.

7.4 Phase two: "error detection"

The eight data bits must be set "1" in order to set all the outputs ON during detection. The data are latched by LE\DM and after that the outputs are ready for the detection process. When the microcontroller switches the \overline{OE} -R\DM to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

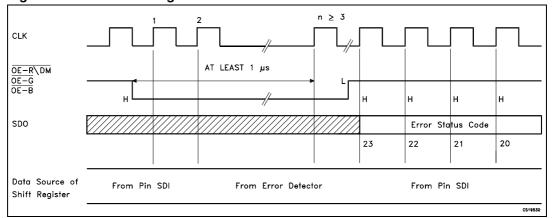


Figure 15. Detection diagram

The LED status is detected after at least 1 microsecond and after this time the microcontroller sets \overline{OE} -R\DM in HIGH state and the output data detection result goes to the microprocessor via the SDO pin.

Detection mode and normal mode both use the same format data. As soon as all the detection data bits are available on the serial line, the device may go back to normal operation mode. The result of the error detection is shifted out of the SDO pin providing 24 clock pulses. A faulty output is indicated as "0", whereas a good output is indicated as "1".

The result is shifted out according to the selected data flow (DF0 and DF1 status, see *Section 7.6*).

7.5 Phase three: "resuming normal mode"

In order to re-enter normal mode, either the LE\DM pin or the sequence shown in the following table can be used:

CLK	1 °	2 °	3 °	4 °	5°
OE-R\DM	Н	L	Н	Н	Н
LE\DM	L	L	L	L	L

 Table 13.
 SPI sequence to resume in normal mode - truth table

Note:

For proper device operation the "entering detection" sequence must be followed by a "resume mode" sequence, it is not possible to insert a consecutive equal sequence.

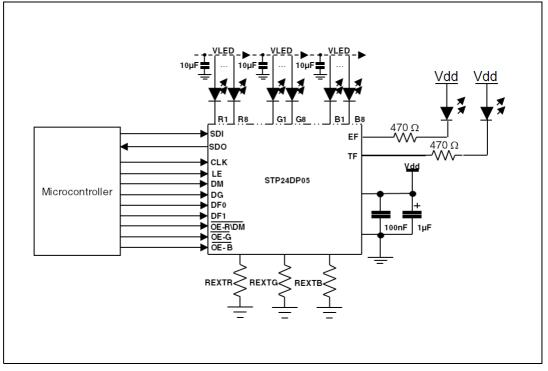
7.6 Shift register data flow control

The 8x3 shift registers have a default RGB sequence serial data flow as show in the block diagram of *Figure 2*.

The data can be redirected by the DF0 and DF1 pins, these pins change the order of the data flow according to the following table:

Sequence	DF0	DF1			
BGR	1	1			
BRG	0	1			
RGB	1	0			
GRB	0	0			

 Table 14.
 Shifter register data flow control


The status of pins DF0 and DF1 also influences the sequence of the error detection result shifted out of the SDO pin.

Note: If the DF0 and DF1 pins are left floating, they are pulled-up to Vdd by internal pull-up resistors. In such conditions, the shift register sequence is set to BGR.

7.7 EFLAG/TFLAG - output detection and overtemperature monitoring

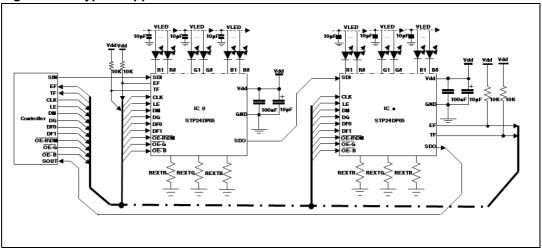

The open drain output EFLAG and TFLAG are used to report the STP24DP05 status flags. During normal operating conditions, the EFLAG/TFLAG pins should be pulled up through an external resistor. The EFLAF is turned on (shorted to GND) while the error detection is running. The TFLAG is turned on (shorted to GND) when the silicon temperature exceeds 180 °C.

Figure 16. TF and EF test circuit

8 Typical application schematic

9 Typical characteristics

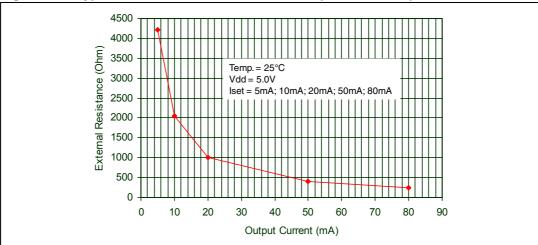
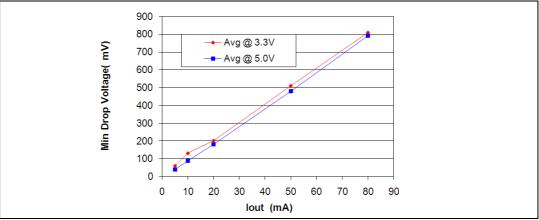



Figure 18. Typical external resistor values vs. output current capabilities

Table 15.	Typical external resistor values vs.	output current capabilities

Iset	5 mA	10 mA	20 mA	50 mA	80 mA
Rext (Ω)	4210	2050	1000	400	249

Figure 19. Typical dropout voltage vs. output current

Table 16. Typical dropout voltage vs. output current

lset	Rext (Ω)	Avg (mV) @ 3.3 V	Avg (mV) @ 5.0 V
5	4210	59	41
10	2050	130	90
20	1000	201	180
50	400	500	480
80	249	810	790

Doc ID 14714 Rev 5

10 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim.	Min.	Тур.	Мах
А			1.20
A1	0.05		0.15
A2	0.95	1.00	1.05
b	0.17	0.22	0.27
С	0.09		0.20
D	8.80	9.00	9.20
D1	6.80	7.00	7.20
D2		3.50	
D3		5.50	
E	8.80	9.00	9.20
E1	6.80	7.00	7.20
E2		3.50	
E3		5.50	
е		0.50	
L	0.45	0.60	0.75
L1		1.00	
k	0	3.5	7
CCC			0.08

Table 17. TQFP48-EP mechanical data

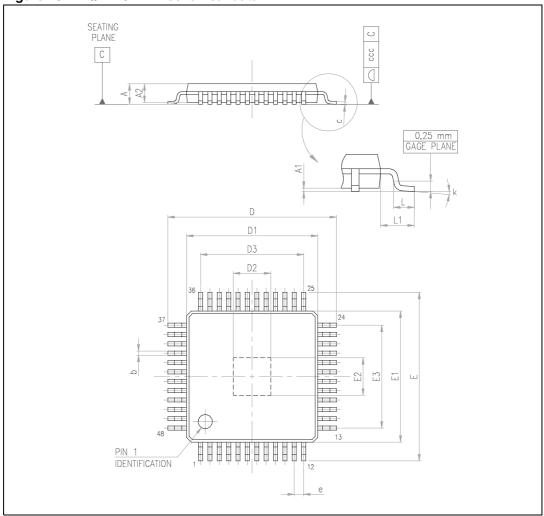


Figure 20. TQFP48-EP mechanical data

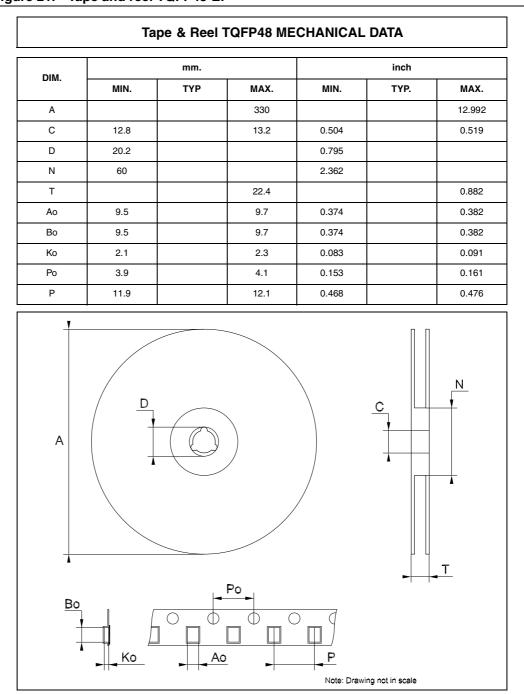


Figure 21. Tape and reel TQFP48-EP

11 Revision history

	Table 18.	Document revision history	
--	-----------	---------------------------	--

Date	Revision	Changes
19-Apr-2008	1	First release
12-Jan-2009	2	Updated package to TQFP48-EP
04-Mar-2009	3	Updated Table 3 on page 4
13-Nov-2009	4	Updated Table 3 on page 4
21-Feb-2012	5	 Modified: Section 6, 7.4 and 7.7 Modified: Table 14 Modified: Figure 8

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14714 Rev 5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STP24DP05BTR