

SN74AUP2G07

SCES748D - SEPTEMBER 2009-REVISED FEBRUARY 2016

SN74AUP2G07 Low-Power Dual Buffer/Driver With Open-Drain Outputs

Features

- Low Static-Power Consumption $(I_{CC} = 0.9 \mu A Maximum)$
- Low Dynamic-Power Consumption $(C_{pd} = 1 pF Typical at 3.3 V)$
- Low Input Capacitance ($C_i = 1.5 pF Typical$)
- Low Noise Overshoot and Undershoot <10% of V_{CC}
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at the Input $(V_{hvs} = 250 \text{ mV Typ at } 3.3 \text{ V})$
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- $t_{pd} = 3.3 \text{ ns Maximum at } 3.3 \text{ V}$
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 4500-V Human-Body Model
 - 1500-V Charged-Device Model

2 Applications

- Active Noise Cancellation (ANC)
- **Barcode Scanners**
- **Blood Pressure Monitors**
- **CPAP Machines**
- Cable Solutions
- DLP 3D Machine Vision, Hyperspectral Imaging, Optical Networking, and Spectroscopy
- E-Books and Smartphones
- Embedded PCs
- Field Transmitters: Temperature or Pressure
- **Fingerprint Biometrics**
- HVAC: Heating, Ventilating, and Air Conditioning
- Network-Attached Storage (NAS)
- Server Motherboards and PSUs
- Software Defined Radios (SDR)
- TVs: High-Definition (HDTV), LCD, and Digital
- Video Communication Systems
- Wireless Data Access Cards, Headsets, Keyboards, Mice, and LAN Cards
- X-ray: Baggage Scanners, Medical, and Dental

3 Description


The SN74AUP2G07 device is a dual buffer gate with open drain output that operates from 0.8 V to 3.6 V.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
SN74AUP2G07	SC70 (6)	3.00 mm x 1.25 mm		
	SON (6)	1.45 mm x 1.00 mm		
	SON (6)	1.00 mm x 1.00 mm		
	DSBGA (6)	1.16 mm x 0.76 mm		

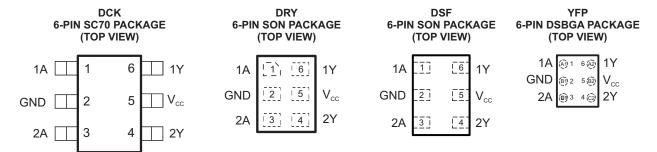
⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Block Diagram

Table of Content	ts
------------------	----

1	Features 1		7.2 Enable and Disable Times	10
2	Applications 1	8	Detailed Description	11
3	Description 1		8.1 Overview	11
4	Revision History2		8.2 Functional Block Diagram	11
5	Pin Configuration and Functions3		8.3 Feature Description	11
6	Specifications4		8.4 Device Functional Modes	11
•	6.1 Absolute Maximum Ratings 4	9	Application and Implementation	12
	6.2 ESD Ratings		9.1 Application Information	12
	6.3 Recommended Operating Conditions		9.2 Typical Application	12
	6.4 Thermal Information	10	Power Supply Recommendations	13
	6.5 Electrical Characteristics 6	11	Layout	13
	6.6 Switching Characteristics, C ₁ = 5 pF		11.1 Layout Guidelines	13
	6.7 Switching Characteristics, C ₁ = 10 pF 7		11.2 Layout Example	13
	6.8 Switching Characteristics, C ₁ = 15 pF	12	Device and Documentation Support	14
	6.9 Switching Characteristics, C ₁ = 30 pF		12.1 Trademarks	14
	6.10 Operating Characteristics		12.2 Electrostatic Discharge Caution	14
	6.11 Typical Characteristics 8		12.3 Glossary	14
7	Parameter Measurement Information	13	Mechanical, Packaging, and Orderable Information	14

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	changes from Revision C (November 2014) to Revision D			
•	Changed the V _{CC} pin TYPE From: "I" To: "—" in the <i>Pin Functions</i> table	3		
•	Added "Junction temperature" to the Absolute Maximum Ratings ⁽¹⁾ table	4		
•	Deleted the I _{OH} High-level output current from the <i>Recommended Operating Conditions</i> table	5		
•	Deleted V _{OH} PARAMETER from the <i>Electrical Characteristics</i> table, these specifications do not pertain to open draid devices			

CI	hanges from Revision B (September 2009) to Revision C	Page
•	Removed Ordering Information table.	1
•	Added Applications, Device Information table, Pin Functions table, Handling Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Updated Ioff in Features.	1

5 Pin Configuration and Functions

See mechanical drawings for dimensions.

Pin Functions

PIN		TVDE	DECORPORTION		
NAME	DCK, DSF, DRY, YFP	TYPE	DESCRIPTION		
1A	1	1	Input 1		
1Y	6	0	Output 1		
2A	3	1	Input 2		
2Y	4	0	Output 2		
GND	2	_	Ground		
V _{CC}	5	_	Power Pin		

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾	<u> </u>		4.6	V
Vo	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾		-0.5	4.6	V
Vo	Output voltage range in the high or low state (2)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±50	mA
T_{J}	Junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

Submit Documentation Feedback

Copyright © 2009–2016, Texas Instruments Incorporated

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT		
V _{CC}	Supply voltage		0.8	3.6	V		
		$V_{CC} = 0.8 \text{ V}$	V _{CC}				
\/		$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V		
V_{IH}	nigri-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.6		V		
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2				
		V _{CC} = 0.8 V		0			
V_{IL}	Low-level input voltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		0.35 × V _{CC}	.,		
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V		
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.9			
V _I	Input voltage		0	3.6	V		
Vo	Output voltage		0	V _{CC}	V		
		V _{CC} = 0.8 V		20	μΑ		
		V _{CC} = 1.1 V		1.1			
	Level bear Level and and account	V _{CC} = 1.4 V		1.7			
l _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	mA		
		V _{CC} = 2.3 V		3.1			
		V _{CC} = 3 V		4			
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$		200	ns/V		
T _A	Operating free-air temperature		-40	85	°C		

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		YFP	DCK	DRY	DSF	LINIT
		5 PINS	5 PINS	6 PINS	6 PINS	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	132	252	234	300	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS	V	T _A = 25°C	$T_A = -40$ °C to 85°C	LINUT	
PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP MAX	MIN MAX	UNIT	
	$I_{OL} = 20 \mu A$	0.8 V to 3.6 V	0.1	0.1		
	I _{OL} = 1.1 mA	1.1 V	$0.3 \times V_{CC}$	0.3 × V _{CC}		
	I _{OL} = 1.7 mA	1.4 V	0.31	0.37		
V	I _{OL} = 1.9 mA	= 1.9 mA 1.65 V	0.31	0.35	V	
V _{OL}	I _{OL} = 2.3 mA	221/	0.31	0.33	V	
	I _{OL} = 3.1 mA	2.3 V	0.44	0.45		
	$I_{OL} = 2.7 \text{ mA}$	3 V	0.31	0.33		
	I _{OL} = 4 mA	3 V	0.44	0.45		
I _I A or B input	$V_I = GND$ to 3.6 V	0 V to 3.6 V	0.1	0.5	μΑ	
I _{off}	V_I or $V_O = 0$ V to 3.6 V	0 V	0.2	0.6	μΑ	
ΔI_{off}	V_I or $V_O = 0$ V to 3.6 V	0 V to 0.2 V	0.2	0.6	μΑ	
I _{CC}	$V_I = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_O = 0$	0.8 V to 3.6 V	0.5	0.9	μΑ	
ΔI _{CC}	$V_1 = V_{CC} - 0.6 V^{(1)}, I_O = 0$	3.3 V	40	50	μΑ	
C	V V or CND	0 V	1.5		~F	
C _i	$V_I = V_{CC}$ or GND	3.6 V	1.5		pF	
Co	V _O = GND	0 V	3		pF	

⁽¹⁾ One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

6.6 Switching Characteristics, $C_L = 5 pF$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	TO (OUTPUT) V _{CC}	T _A = 25°C			T _A = -40°C to 85°C		UNIT																
	(INPUT)	(001P01)		MIN	TYP	MAX	MIN	MAX																	
			0.8 V		12.2				14.7																
t _{pd}		Y	1.2 V ± 0.1 V	3.4	5.1	7.5	1.5	14.7																	
	А		1.5 V ± 0.1 V	2.3	3.6	5.1	1.3	8.3																	
				'	ı	ī	ī	ı	'			ı	1	'	'	ı	'	ī	1.8 V ± 0.15 V	2.4	3.1	4	1	6.3	ns
			2.5 V ± 0.2 V	1.5	2.1	2.9	0.9	4.1																	
			3.3 V ± 0.3 V	1.8	2.2	2.8	1.1	3.3																	

6.7 Switching Characteristics, $C_L = 10 pF$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	T,	(= 25°C		T _A = -	UNIT	
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		15				
			1.2 V ± 0.1 V	4	6.2	9	2.4	16.2	
	Δ.	V	1.5 V ± 0.1 V	3.1	4.4	6.1	2	9.4	20
t _{pd}	A	Y	1.8 V ± 0.15 V	3.3	3.9	4.8	1.6	7.1	ns
			2.5 V ± 0.2 V	2.1	2.8	3.5	1.3	4.8	
			3.3 V ± 0.3 V	2.3	3	4	1.4	4.5	

6.8 Switching Characteristics, $C_L = 15 pF$

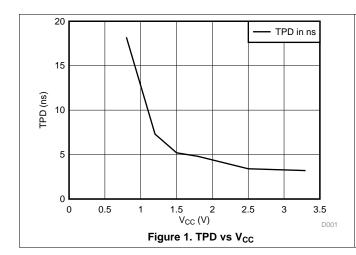
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4)

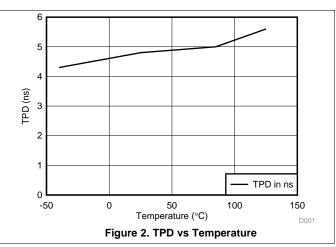
PARAMETER	FROM	TO (OUTPUT)	V _{CC}	T	_λ = 25°C		T _A =	UNIT	
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		18.2				
			1.2 V ± 0.1 V	4.9	7.3	10.4	3.2	17.6	
	Δ	V	1.5 V ± 0.1 V	3.8	5.2	6.8	2.6	10.2	
t _{pd}	Α	Y	1.8 V ± 0.15 V	3.4	4.8	6.7	2.2	7.9	ns
			2.5 V ± 0.2 V	2.4	3.4	4.5	1.9	5.3	
			3.3 V ± 0.3 V	2.2	3.7	5.4	1.8	6.1	

6.9 Switching Characteristics, $C_L = 30 pF$

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	T,	_{\(\)} = 25°C		T _A = -	40°C 5°C	UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		26.5				
			1.2 V ± 0.1 V	8.1	10.7	14.4	4.5	21.9	
	Δ.	V	1.5 V ± 0.1 V	6.5	7.7	9.4	3.8	13	20
t _{pd}	A	Y	1.8 V ± 0.15 V	5.8	7.5	9.7	3.2	11	ns
			2.5 V ± 0.2 V	4.5	5.4	6.7	3	7.1	
			3.3 V ± 0.3 V	3.9	6.3	9.7	2.8	10.4	

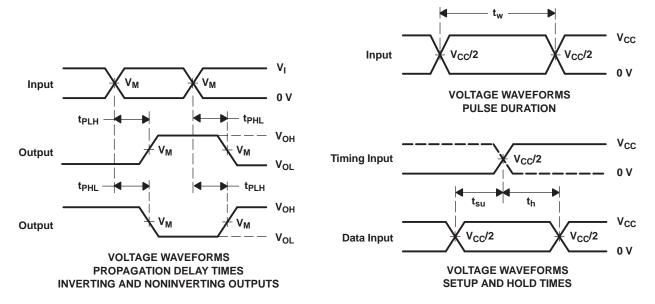



6.10 Operating Characteristics

 $T_A = 25$ °C

	PARAMETER	TEST CONDITIONS	V _{CC}	TYP	UNIT	
			0.8 V	4		
		1.5 V ±	1.2 V ± 0.1 V	4		
	Davis dissination associtores		1.5 V ± 0.1 V	4	pF	
C_{pd}	Power dissipation capacitance	f = 10 MHz	1.8 V ± 0.15 V			
			2.5 V ± 0.2 V	4.1		
			3.3 V ± 0.3 V	4.3		

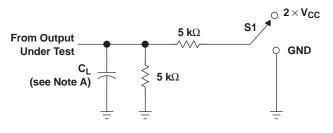
6.11 Typical Characteristics


7 Parameter Measurement Information

7.1 Propagation Delays, Setup and Hold Times, and Pulse Duration

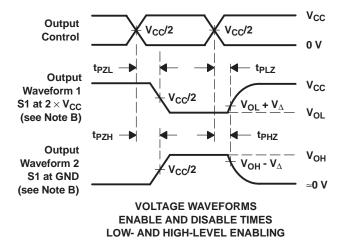
LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V_{CC} = 1.8 V \pm 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}


NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f/t_f = 3$ ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- $\begin{array}{ll} \text{D.} & t_{\text{PLH}} \text{ and } t_{\text{PHL}} \text{ are the same as } t_{\text{pd}}. \\ \text{E.} & \text{All parameters and waveforms are not applicable to all devices.} \end{array}$

Figure 3. Load Circuit and Voltage Waveforms


7.2 Enable and Disable Times

TEST	S 1
t _{PLZ} /t _{PZL}	2×V _{CC}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

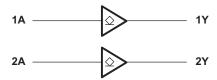
	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V_{CC} = 1.8 V \pm 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V _∆	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f/t_f = 3~ns$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

Submit Documentation Feedback


8 Detailed Description

8.1 Overview

The SN74AUP2G07 device is a dual buffer gate with open-drain outputs that operate from 0.8 V to 3.6 V. The output of this dual buffer/driver is open-drain, and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The I_{off} feature also allows for live insertion.

8.2 Functional Block Diagram

8.3 Feature Description

- Wide operating V_{CC} range of 0.8 V to 3.6 V
- 3.6-V I/O tolerant to support down translation
- · Input hysteresis allows slow input transition and better switching noise immunity at the input
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V
- · Low noise due to slower edge rates

8.4 Device Functional Modes

Table 1 is the function table for SN74AUP2G07.

Table 1. Function Table

INPUT A	OUTPUT Y
Н	H/Z
L	L

9 Application and Implementation

9.1 Application Information

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures very low static and dynamic power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in increased battery life. This product also maintains excellent signal integrity. It has a small amount of hysteresis built in, allowing for slower or noisy input signals. The lowered drive produces slower edges and prevents overshoot and undershoot on the outputs.

9.2 Typical Application

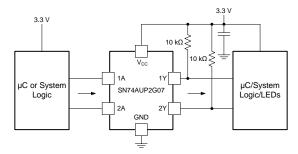
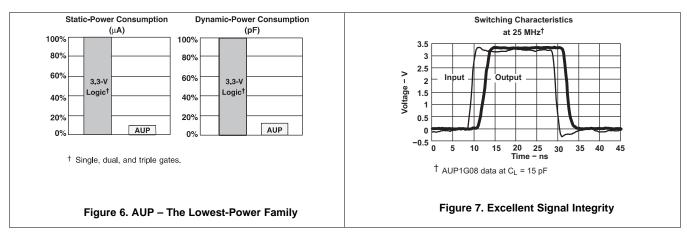


Figure 5. Typical Application Schematic


9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see Δt/ΔV in the Recommended Operating Conditions table.
 - For specified high and low levels. See V_{IH} and V_{IL} in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as 3.6 V at any valid V_{CC}.
- 2. Recommend Output Conditions:
 - Load currents should not exceed 20 mA on the output and 50 mA total for the part.

9.2.3 Application Curves

The AUP family of single gate logic makes excellent translators for the new lower voltage microprocessors that typically are powered from 0.8 V to 1.2 V. They can drop the voltage of peripheral drivers and accessories that are still powered by 3.3 V to the new uC power levels.

Submit Documentation Feedback

10 Power Supply Recommendations

The power supply can be any voltage between the Min and Max supply voltage rating located in the Recommended Operating Conditions table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used, or when only 3 of the 4 buffer gates are used.

Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 8 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the I/Os, so they cannot float when disabled.

11.2 Layout Example

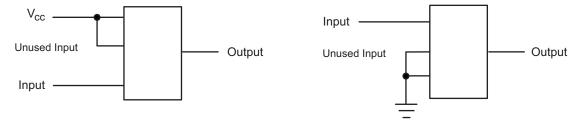


Figure 8. Layout Diagram

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

21-Feb-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
SN74AUP2G07DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(H55 ~ H5F)	Samples
SN74AUP2G07DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H5	Samples
SN74AUP2G07DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	H5	Samples
SN74AUP2G07YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HVN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

21-Feb-2017

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

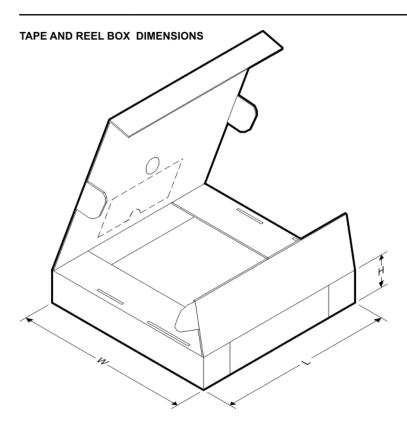
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Oct-2018

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP2G07DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP2G07DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74AUP2G07DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP2G07DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP2G07YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1

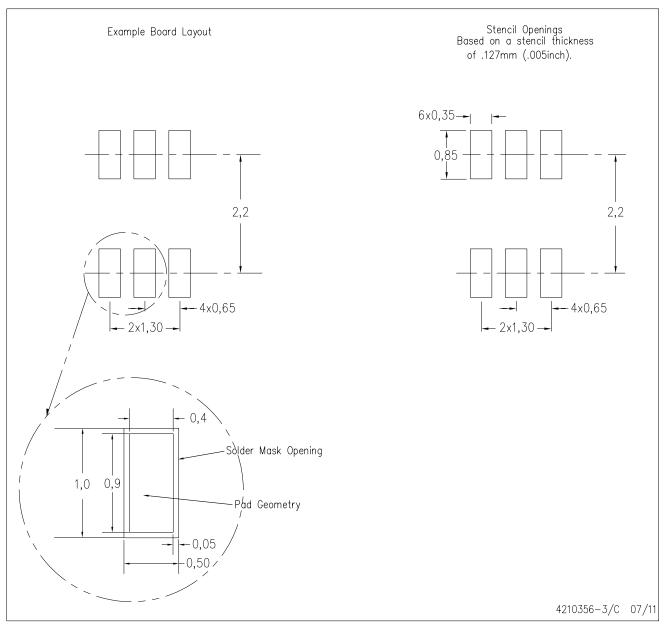
www.ti.com 25-Oct-2018

*All dimensions are nominal

7 til dillionsions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP2G07DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74AUP2G07DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74AUP2G07DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP2G07DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP2G07YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0

DCK (R-PDSO-G6)

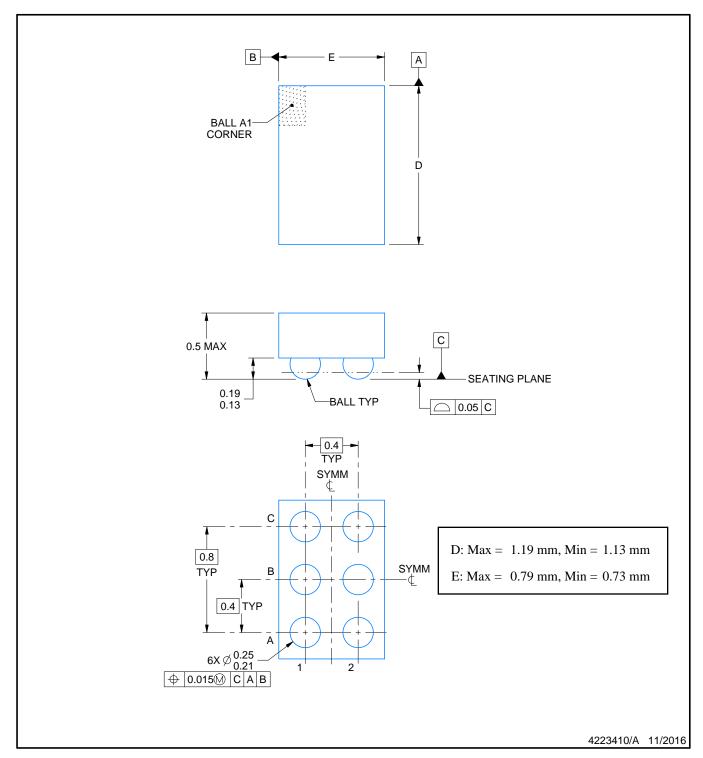
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

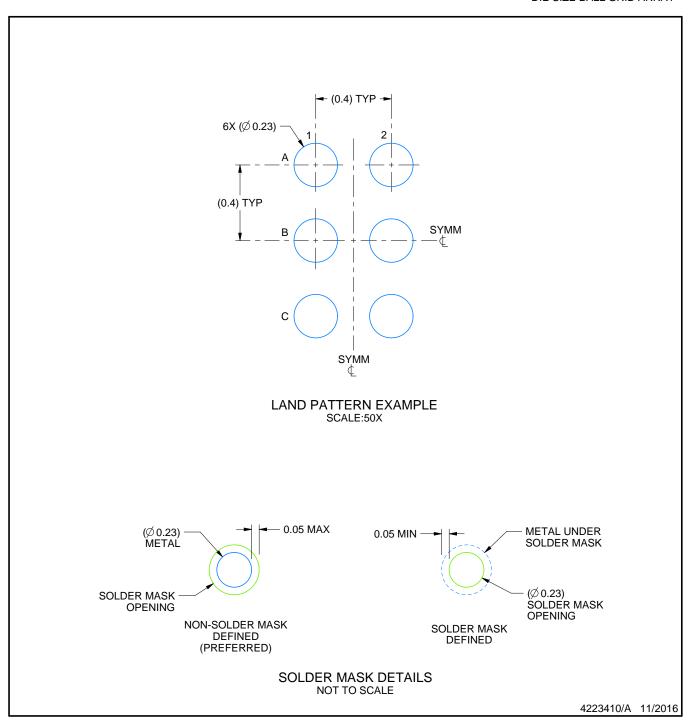
DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

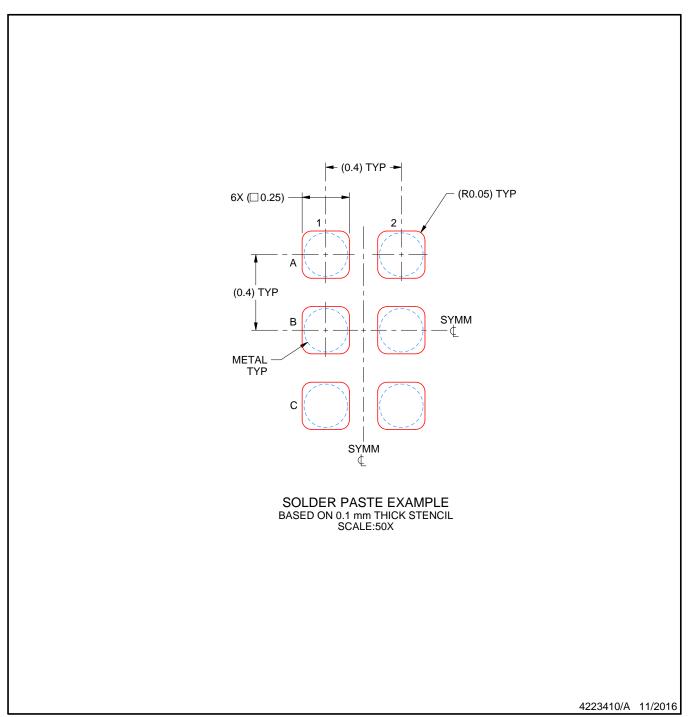
DIE SIZE BALL GRID ARRAY



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

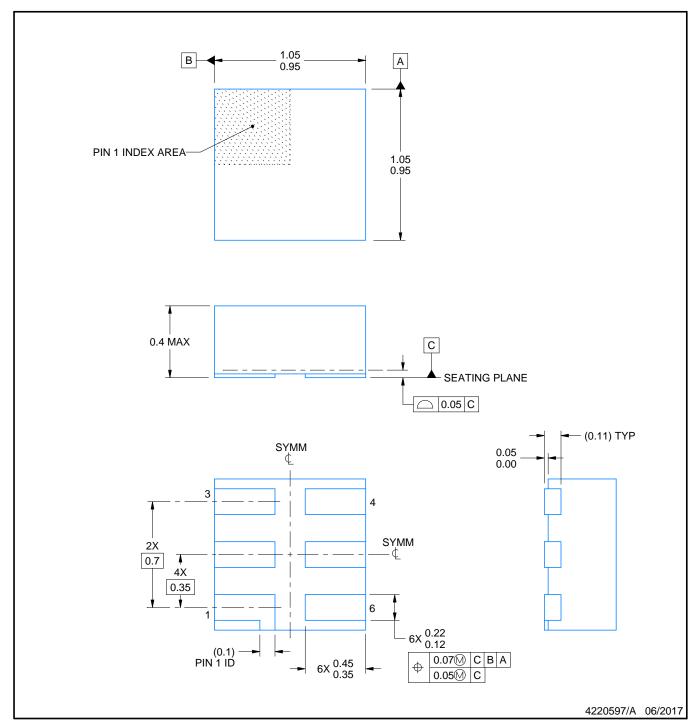
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

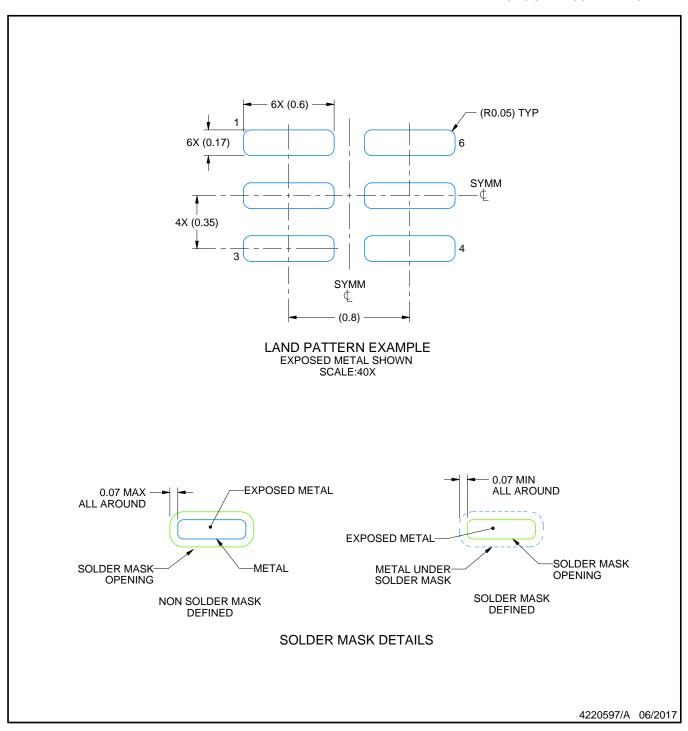
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

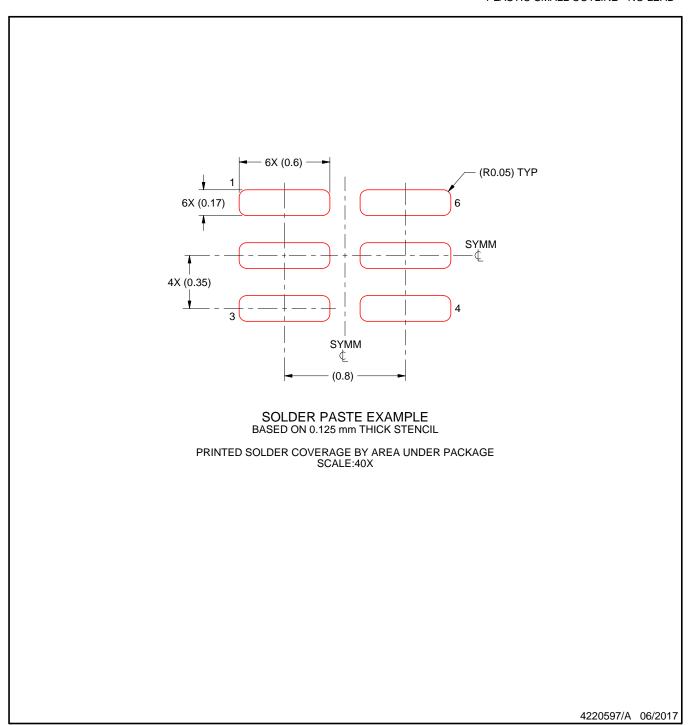
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

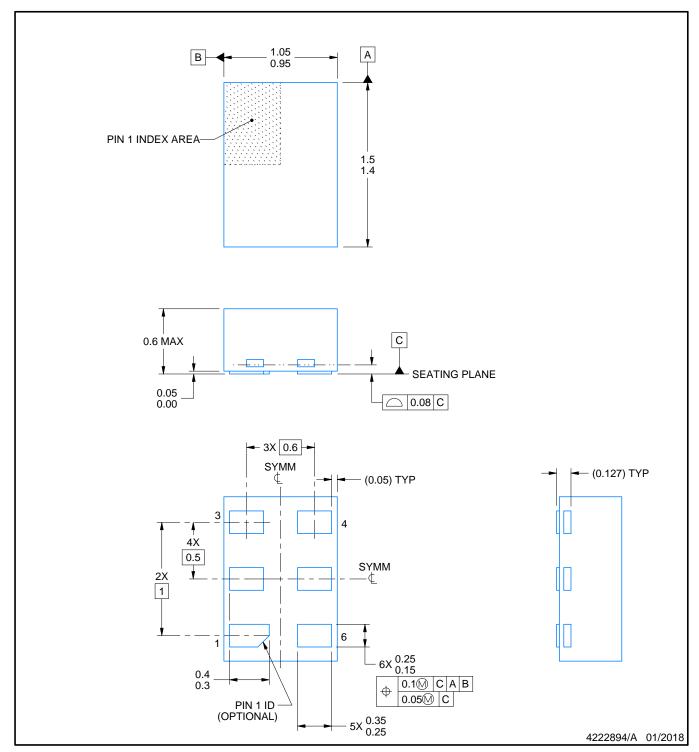
 3. Reference JEDEC registration MO-287, variation X2AAF.



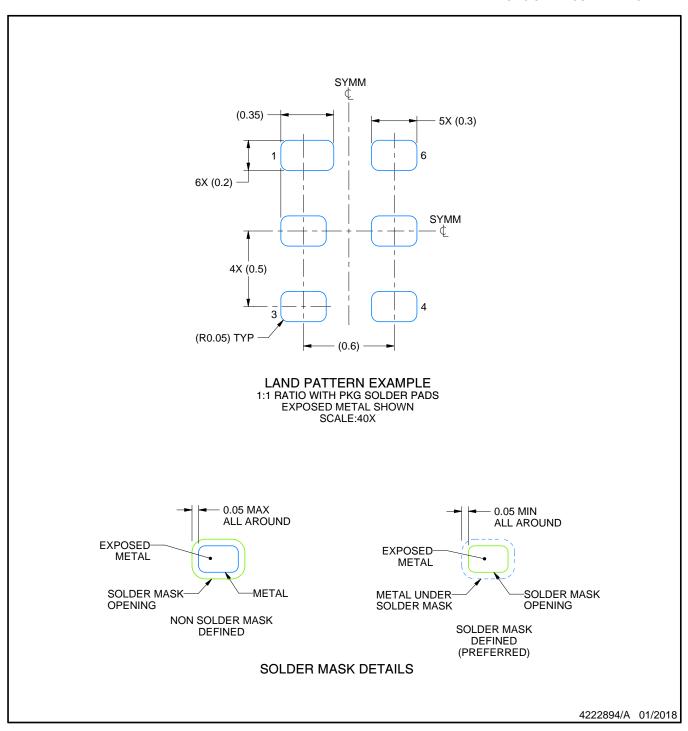
NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



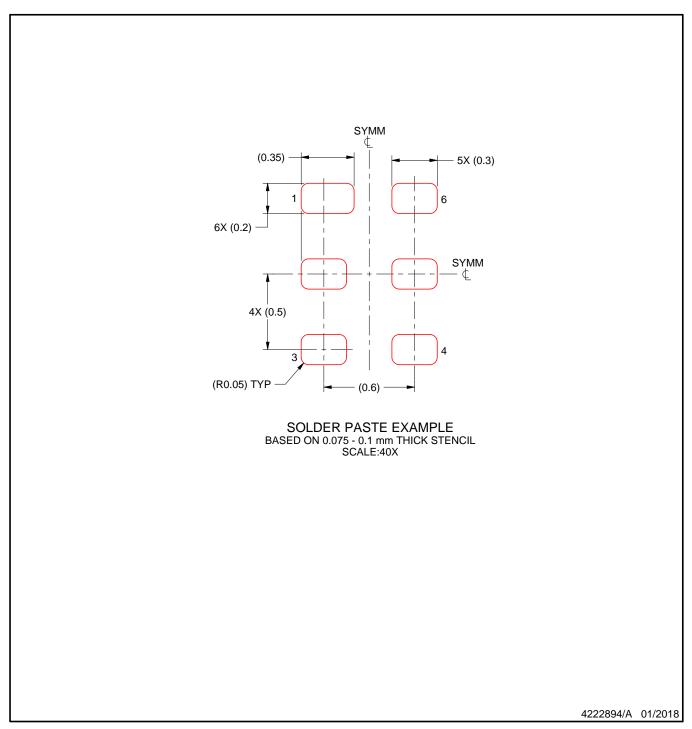
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.



NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated