DATASHEET

6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER AC INPUT PHOTOCOUPLER H11AAX Series

Features

- H11AAX series: H11AA1, H11AA2, H11AA3, H11AA4
- High isolation voltage between input and output
- Viso = 5000 Vrms
- Creepage distance >7.62 mm
- Compact dual-in-line package
- The product itself will remain within RoHS compliant version
- Compliance with EU REACH
- UL and cUL approved(No. E214129)
- VDE approved (No.132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CQC approved

Description

The H11AAX series of devices each consist of two infrared emitting diode, connected in inverse parallel, optically coupled to a phototransistor detector.

They are packaged in a 6-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- AC line monitor
- Unknown polarity DC sensor
- Telephone line interface

Schematic

Pin Configuration

1. Anode / Cathode

- 2. Cathode / Anode 3. No Connection
- 4. Emitter
- 4. Emilier
- 5. Collector
- 6. Base

n RoHS complian

Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rating	Unit
	Forward current	١ _F	60	mA
Input	Peak forward current (t = 10µs)	I _{FM}	1	А
	Power dissipation (TA = 25° C)	D	120	mW
	Derating factor (above 90°C)	P _D —	3.8	mW/°C
Output	Power dissipation (T _A = 25°C) No derating up to 100°C	P _C	150	mW
	Collector-Emitter voltage	V _{CEO}	80	V
	Collector-Base voltage	V _{CBO}	80	V
	Emitter-Collector voltage	V _{ECO}	7	V
Total Power Dissipation		P _{TOT}	P _{TOT} 200	
Isolation Voltage*1		V _{ISO} 5000		V rms
Operating Temperature		T _{OPR}	OPR -55 to 100	
Storage Temperature		T _{STG}	-55 to 125	°C
Soldering Temperature* ²		T _{SOL}	260	°C

Notes

*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together. *2 For 10 seconds

Electro-Optical Characteristics (Ta=25 $^{\circ}$ C unless specified otherwise)

Input								
Parameter		Symbol	Min.	Тур.	Max.	Unit	Condition	
Forward Voltage		V _F	-	1.2	1.5	V	$I_F = \pm 10 \text{mA}$	
Input capac	itance	C _{in}	-	80	-	pF	V = 0, f = 1MHz	
Output								
Pa	arameter	Symbol	Min	Тур.	Max.	Unit	Condition	
Collector-Er	mitter dark current	I _{CEO}	-	-	50	nA	$V_{CE} = 10V, I_F = 0mA$	
	eakdown voltage BV _{CEO} 80 -		-	-	V	$I_{\rm C} = 1 { m mA}$		
Collector-Ba		BV_{CBO}	80	-	-	V	$I_{\rm C} = 0.1 {\rm mA}$	
Emitter-Collector breakdown voltage		BV_{ECO}	7	-	-	V	$I_E = 0.1 \text{mA}$	
Collector-Emitter capacitance		C _{CE}	-	10	-	pF	VCE = 0V, f = 1MHz	
	characteristics	Symbol	Min	Тур.	Max.	Unit	Condition	
	H11AA1		20	-	-			
Current	H11AA1 H11AA2	-	20 10	-	-			
Current Transfer ratio		CTR			-	%	$I_{F} = \pm 10 \text{mA}$, $V_{CE} = 10 \text{V}$	
Transfer	H11AA2	CTR	10	-	-	%	$I_F = \pm 10 \text{mA}$, $V_{CE} = 10 \text{V}$	
Transfer	H11AA2 H11AA3 H11AA4	- CTR	10 50	-	- - - 2.0	%	$I_F = \pm 10 \text{mA}$, $V_{CE} = 10 \text{V}$ $I_F = \pm 10 \text{mA}$, $V_{CE} = 10 \text{V}$	
Transfer ratio	H11AA2 H11AA3 H11AA4 netry mitter	- CTR -	10 50 100	-		% V		
Transfer ratio CTR Symn Collector-e	H11AA2 H11AA3 H11AA4 netry mitter voltage		10 50 100		2.0		$I_{F} = \pm 10 \text{mA}$, $V_{CE} = 10 \text{V}$	
Transfer ratio CTR Symn Collector-e saturation Isolation re	H11AA2 H11AA3 H11AA4 netry mitter voltage	- V _{CE(sat)}	10 50 100 0.5 -		2.0	V	$I_F = \pm 10 \text{mA}$, $V_{CE} = 10 \text{V}$ $I_F = \pm 10 \text{mA}$, $I_C = 0.5 \text{mA}$ $V_{IO} = 500 \text{Vdc}$,	
Transfer ratio CTR Symn Collector-e saturation Isolation re	H11AA2 H11AA3 H11AA4 hetry mitter voltage esistance ut capacitance	V _{CE(sat)}	10 50 100 0.5 - 10 ¹¹		2.0	VΩ	$I_{F} = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$ $I_{F} = \pm 10 \text{mA}, I_{C} = 0.5 \text{mA}$ $V_{IO} = 500 \text{Vdc},$ $40 \sim 60\% \text{ R.H.}$	
Transfer ratio CTR Symn Collector-e saturation Isolation re Input-outpu	H11AA2 H11AA3 H11AA4 hetry mitter voltage esistance ut capacitance he	V _{CE(sat)} R _{IO} C _{IO}	10 50 100 0.5 - 10 ¹¹ -	- - - - - - 0.7	2.0 0.4 -	V Ω pF	$I_{F} = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$ $I_{F} = \pm 10 \text{mA}, I_{C} = 0.5 \text{mA}$ $V_{IO} = 500 \text{Vdc},$ $40 \sim 60\% \text{ R.H.}$ $V_{IO} = 0, f = 1 \text{MHz}$ $V_{CC} = 10 \text{V},$	
Transfer ratio CTR Symn Collector-e saturation Isolation re Input-outpu Turn-on tim	H11AA2 H11AA3 H11AA4 hetry mitter voltage esistance ut capacitance he	V _{CE(sat)} R _{IO} C _{IO} T _{on}	10 50 100 0.5 - 10 ¹¹ - -	- - - - - - 0.7 -	2.0 0.4 - - 10	VΩ	$I_{F} = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$ $I_{F} = \pm 10 \text{mA}, I_{C} = 0.5 \text{mA}$ $V_{IO} = 500 \text{Vdc},$ $40 \sim 60\% \text{ R.H.}$ $V_{IO} = 0, f = 1 \text{MHz}$	
Transfer ratio CTR Symm Collector-e saturation Isolation re Input-outpu Turn-on tim Turn-off tim	H11AA2 H11AA3 H11AA4 hetry mitter voltage esistance ut capacitance he	V _{CE(sat)} R _{IO} C _{IO} T _{on} T _{off}	10 50 100 0.5 - 10 ¹¹ - - -	- - - - - 0.7 - -	2.0 0.4 - 10 10	V Ω pF	$I_{F} = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$ $I_{F} = \pm 10 \text{mA}, I_{C} = 0.5 \text{mA}$ $V_{IO} = 500 \text{Vdc},$ $40 \sim 60\% \text{ R.H.}$ $V_{IO} = 0, \text{ f} = 1 \text{MHz}$ $V_{CC} = 10 \text{V},$	

* Typical values at $T_a = 25^{\circ}C$

EVERLIGHT

Typical Electro-Optical Characteristics Curves



Figure 3. Current Tranfer Ratio vs Ambient Temperature

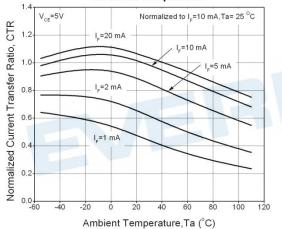
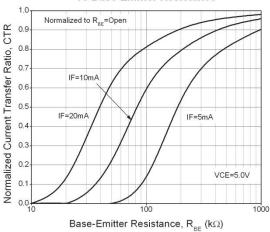



Figure 5. Current Transfer Ratio (Unsaturated) vs Base-Emitter Resistance

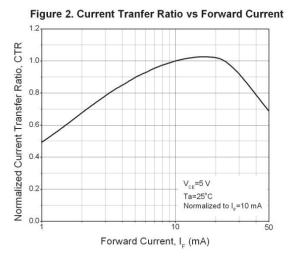
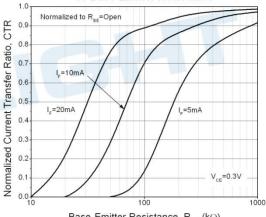
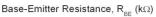
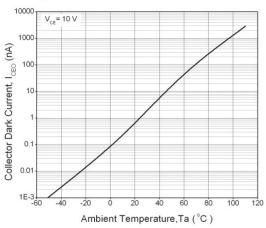





Figure 4. Current Transfer Ratio (Saturated) vs Base-Emitter Resistance

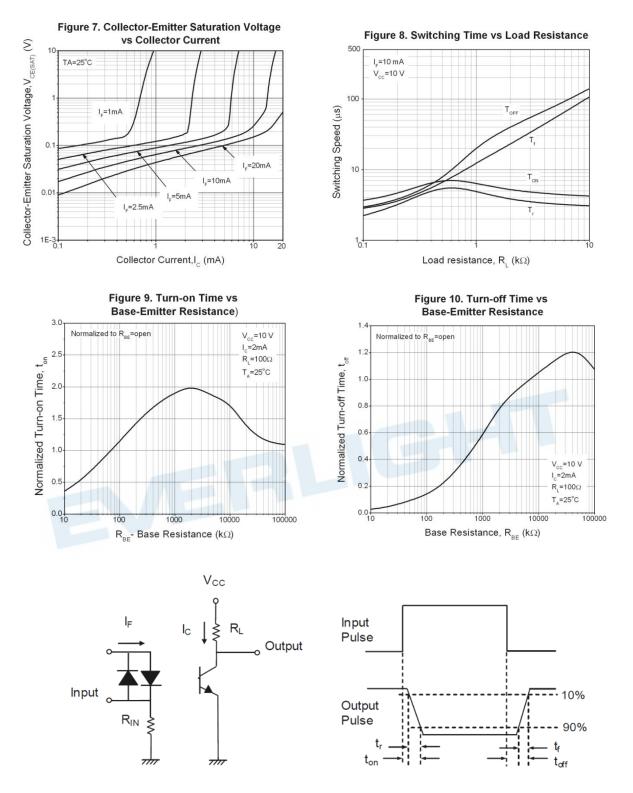
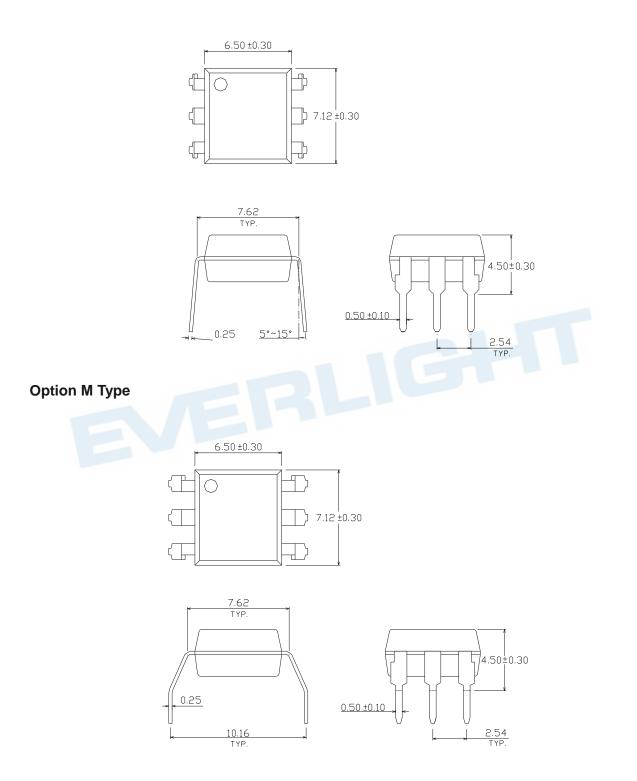


Figure 11. Switching Time Test Circuit & Waveforms

EVERLIGHT

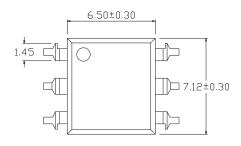
Order Information

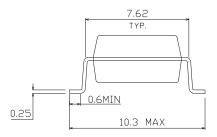
Part Number

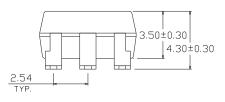

Notes

- Х = CTR Rank (1, 2, 3, or 4)
- Υ = Lead form option (S, S1, M or none)
- Ż = Tape and reel option (TA, TB, or none).
- = VDE safety (optional).

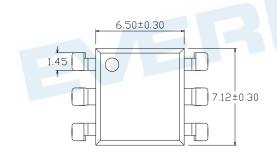
Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

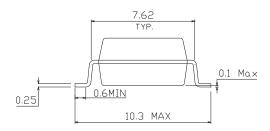

Package Dimension (Dimensions in mm)

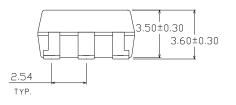

Standard DIP Type



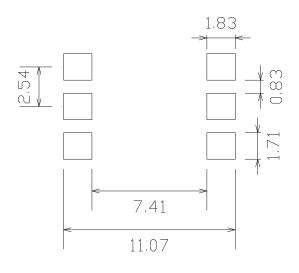
EVERLIGHT

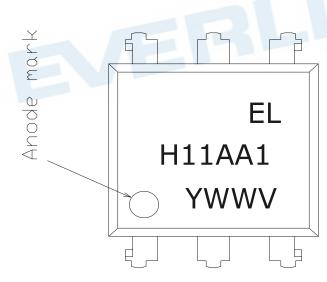

Option S Type





Option S1 Type

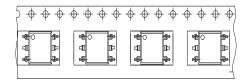



Recommended pad layout for surface mount leadform

Notes

Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

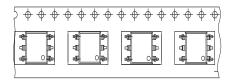
Device Marking



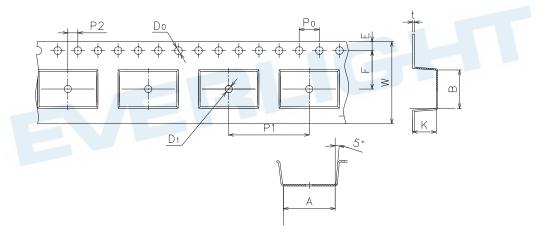
Notes

EL	denotes Everlight
H11AA1	denotes Part Number
Υ	denotes 1 digit Year code
WW	denotes 2 digit Week code
V	denotes VDE safety (optional)

Tape & Reel Packing Specifications

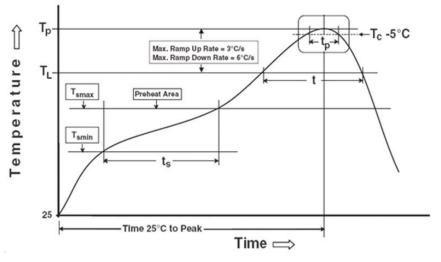

Option TA

Direction of feed from reel


Option TB

Direction of feed from reel

Tape dimensions


Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.8±0.1	7.55±0.1	1.5±0.1	1.5+0.1/-0	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	w	к
Dimension (mm)	4.0±0.15	12±0.1	2.0±0.1	0.35±0.03	16.0±0.2	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Notes

Preheat

Temperature min (T_{smin}) 150 °Temperature max (T_{smax}) 200°Time $(T_{smin} \text{ to } T_{smax})$ (t_s) 60-12Average ramp-up rate $(T_{smax} \text{ to } T_p)$ 3 °C/

Other

Liquidus Temperature (T_L) Time above Liquidus Temperature (t_L) Peak Temperature (T_P) Time within 5 °C of Actual Peak Temperature: $T_P - 5$ °C Ramp- Down Rate from Peak Temperature Time 25°C to peak temperature Reflow times Reference: IPC/JEDEC J-STD-020D

217 °C 60-100 sec 260°C 30 s 6°C /second max. 8 minutes max. 3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.