

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

September 2001
Revised December 2001

FIN1022

2 X 2 LVDS High Speed Crosspoint Switch

General Description

This non－blocking 2×2 crosspoint switch has a fully differ－ ential input to output data path for low noise generation and low pulse width distortion．The device can be used as a high speed crosspoint switch，2：1 multiplexer，1：2 demulti－ plexer or $1: 2$ signal splitter．The inputs can directly interface with LVDS and LVPECL levels．

Features

－Low jitter， 800 Mbps full differential data path
－Worst case jitter of 190ps with PRBS $=2^{23}-1$ data pattern at 800 Mbps
－Rail－to－rail common mode range is 0.5 V to 3.25 V
－Worst case power dissipation is less than 126 mW
－Open－circuit fail safe protection
■ Fast switch time of 1.1 ns typical
■ 35 ps typical pin channel to channel skew
－3．3V power supply operation
－Non－blocking switch
－LVDS receiver inputs accept LVPECL signals directly
■ 7.5 kV HBM ESD protection
－16－lead SOIC package and TSSOP package
■ Inter－operates with TIA／EIA 644－1995 specification
－See the Fairchild Interface Solutions web page for cross reference information： www．fairchildsemi．com／products／interface／lvds．html

Ordering Code：

Order Number	Package Number	Package Description
FIN1022M	M16A	16－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012，0．150＂Narrow
FIN1022MTC	MTC16	16－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Devices also available in Tape and Reel．Specify by appending suffix letter＂X＂to the ordering code．

Logic Symbol

	Connection Diagram	
-		

Pin Descriptions

Pin Name	Description
$\mathrm{R}_{\text {INO+ }}, \mathrm{R}_{\text {IN } 1+}$	LVDS non-inverting data inputs
$\mathrm{R}_{\text {IN0-, }} \mathrm{R}_{\text {IN1- }}$	LVDS inverting data inputs
$\mathrm{D}_{\text {OUT0+ }}, \mathrm{D}_{\text {OUT1+ }}$	LVDS non-inverting data outputs
Dout0-, $\mathrm{D}_{\text {OUT1- }}$	LVDS inverting data outputs
EN_{0}	LVTTL input for enabling $\mathrm{D}_{\text {OUTO+ }} / \mathrm{D}_{\text {OUT0 }-}$
EN_{1}	LVTTL input for enabling $\mathrm{D}_{\text {OUT1+ }} / \mathrm{D}_{\text {OUT1- }}$
SEL_{0}	LVTTL input for selecting $\mathrm{R}_{\mathrm{INO} \mathrm{O}_{+}} / \mathrm{R}_{\mathrm{INO} \mathrm{O}_{-}}$or $\mathrm{R}_{\text {IN } 1+} / \mathrm{R}_{\text {IN } 1-}$ for output $\mathrm{D}_{\text {OUTO+ }} / \mathrm{D}_{\text {OUTO- }}$
SEL_{1}	LVTTL input for selecting $\mathrm{R}_{\mathrm{INO}_{+} /} / \mathrm{R}_{\text {INO- }}$ or $\mathrm{R}_{\text {IN1+ }} / \mathrm{R}_{\text {IN1- }}$ for output $\mathrm{D}_{\text {OUT } 1+} / \mathrm{D}_{\text {OUT1- }}$
$\mathrm{V}_{\text {CC }}$	Power Supply
GND	Ground

Function Table

Inputs				Outputs				Mode
SEL_{0}	SEL ${ }_{1}$	EN_{0}	EN_{1}	$\mathrm{D}_{\text {OUT0+ }}$	$\mathrm{D}_{\text {OUT0- }}$	$\mathrm{D}_{\text {OUT1+ }}$	$\mathrm{D}_{\text {OUT1- }}$	
L/O	L/O	H	H	$\mathrm{R}_{\text {INO+ }}$	$\mathrm{R}_{\text {INO- }}$	$\mathrm{R}_{\mathrm{IN} \mathrm{O}_{+}}$	$\mathrm{R}_{\text {IN0- }}$	1:2 Splitter
L/O	H	H	H	$\mathrm{R}_{\text {IN0+ }}$	$\mathrm{R}_{\text {IN } 0-}$	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN } 1-}$	Repeater
H	L / O	H	H	$\mathrm{R}_{\text {IN1+ }}$	$\mathrm{R}_{\text {IN1- }}$	$\mathrm{R}_{\text {IN } 0_{+}}$	$\mathrm{R}_{\text {IN0- }}$	Switch
H	H	H	H	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	1:2 Splitter
X	L/O	L/O	H	Z	Z	$\mathrm{R}_{\text {IN } \mathrm{O}_{+}}$	$\mathrm{R}_{\text {IN0- }}$	D ${ }_{\text {Outo }}$ Disabled
X	H	L/O	H	Z	Z	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	D ${ }_{\text {Outo }}$ Disabled
L/O	X	H	L/O	$\mathrm{R}_{\text {IN0+ }}$	$\mathrm{R}_{\text {INO- }}$	Z	Z	D ${ }_{\text {Out1 }}$ Disabled
H	X	H	L/O	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	Z	Z	$\mathrm{D}_{\text {Out1 }}$ Disabled
X	X	L/O	L/O	Z	Z	Z	Z	$\mathrm{D}_{\text {OUT0 }}$ and $\mathrm{D}_{\text {OUT1 }}$ Disabled
EN	/ 0 = LO	or OPEN	$\mathrm{H}=\mathrm{H}$	Logic Le	L =	LOW Logic	Level	X = Don't Care \quad Z $=$ High Imped

Function Diagrams

Absolute Maximum Ratings(Note 1)

Supply Voltage (VCC)
DC Input Voltage (V_{IN})
DC Output Voltage ($\mathrm{V}_{\text {OUT }}$)
Driver Short Circuit Current (IOSD)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$) Max Junction Temperature (T_{J})
Lead Temperature (T_{L})
(Soldering, 10 seconds)
-0.3 V to +4.6 V
-0.3 V to +4.6 V
-0.3 V to +4.6 V
Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	3.0 V to 3.6 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Electrostatic Discharge	
$\quad(\mathrm{HBM} 1.5 \mathrm{k} \Omega, 100 \mathrm{pF})$	$>7500 \mathrm{~V}$
Electrostatic Discharge	
$(\mathrm{MM} 0 \Omega, 100 \mathrm{pF})$	$>300 \mathrm{~V}$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified (Note 2)

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
LVDS Differential Driver Characteristics						
$\mathrm{V}_{\text {OD }}$	Output Differential Voltage	$\mathrm{R}_{\mathrm{L}}=75 \Omega$, See Figure 3	270	365	475	mV
		$\begin{aligned} & R_{L}=75 \Omega, \text { See Figure } 3 \\ & T_{A}=25^{\circ} \mathrm{C} \text { and } V_{C C}=3.3 V \end{aligned}$	285	365	440	
$\overline{\Delta V_{\text {OD }}}$	V_{OD} Magnitude Change from Differential LOW-to-HIGH	$\mathrm{R}_{\mathrm{L}}=75 \Omega$, See Figure 3			35	mV
$\mathrm{V}_{\text {OS }}$	Offset Voltage	See Figure 3	1.0	1.2	1.45	V
$\Delta \mathrm{V}_{\text {OS }}$	Offset Magnitude Change from Differential LOW-to-HIGH	See Figure 3			35	mV
IOZD	Disabled Output Leakage Current	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ or GND, Driver Disabled			± 10	$\mu \mathrm{A}$
lofF	Power-Off Current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ or 0 V			± 20	$\mu \mathrm{A}$
IOS	Short Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Driver Enabled			-10	mA
		$\mathrm{V}_{\text {OUTx+ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTx- }}=0 \mathrm{~V}$, Driver Enabled			-10	
LVDS Differential Receiver Characteristics						
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=0.05 \mathrm{~V} \text { or } 1.2 \mathrm{~V} \text { or } 3.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$			100	mV
V_{TL}	Differential Input Threshold LOW		-100			
$\mathrm{V}_{\text {IC }}$	Input Common Mode Voltage		0.05		3.25	V
$\underline{\text { IND }}$	Input Current (Differential Inputs)	$\mathrm{V}_{\text {IN }}=$ GND			± 20	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$			± 20	
LVTTL Control Characteristics						
V_{IH}	Input High Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.8	V
I_{IN}	Input Current	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ or GND			± 20	$\mu \mathrm{A}$
Device Characteristics						
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	-1.5			V
$\mathrm{I}_{\text {PU/PD }}$	Output Power-Up/Power-Down High Z Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 1.5 V			± 10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			4.5		pF
I_{CC}	Power Supply Current	No Load, All Drivers Enabled			35	mA
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$, All Drivers Enabled			35	mA
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$, All Drivers Enabled			35	mA

Note 2: This part will only function with datasheet specification when a resistive load is applied to the driver outputs.
Note 3: All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and with $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Required Specifications

1. When the true and complement LVDS outputs (having a 75Ω connected between outputs) are connected to $3.75 \mathrm{k} \Omega$ resistors and the common point of those 3.75 $\mathrm{k} \Omega$ resistors are connected to a voltage source that sweeps from 0 to 2.4 V , the $D C \mathrm{~V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{\mathrm{OD}}$ are still maintained (see Figure 1).
2. When the true and complement LVDS outputs (having a 5 pF capacitor attached between outputs) are connected with 37.5Ω resistors each to common point, then the common point does not vary by more than 150 mV under all process, temperature and voltage conditions when the outputs switch either from LOW-toHIGH or from HIGH-to-LOW (see Figure 2).
3. Pull-down resistors are required on Enable ($E N_{0}$ and EN_{1}) and select $\left(\mathrm{SEL}_{0}\right.$ and $\left.\mathrm{SEL}_{1}\right)$ inputs.
4. Fail safe protection on the outputs that draw less than $20 \mu \mathrm{~A}$ of current (worst case) on the LVDS inputs. In this condition, if the input is in fail safe selected to $\mathrm{OUT}_{0+} / \mathrm{OUT}_{0-}$ (say) and the outputs are Enabled then $\mathrm{OUT}_{0+}=$ HIGH and $\mathrm{OUT}_{0-}=$ LOW. This prevents noise from being amplified when the connection is broken.
5. In the disabled state the outputs can go beyond V_{CC} but there should be no appreciable leakage (see I OzD and $\mathrm{I}_{\text {OFF }}$ specifications)

FIGURE 1. Common Mode Supply Test Circuit

FIGURE 2. Dynamic V_{OS} Test Circuit and Waveforms

Required Specifications (Continued)

Note A: All input pulses have frequency $=10 \mathrm{MHz}, \mathrm{t}_{\mathrm{R}}$ or $\mathrm{t}_{\mathrm{F}}<=1 \mathrm{~ns}$. Note B: C_{L} includes all probe and jig capacitances.
FIGURE 7. LVTTL Input to LVDS Output AC Waveforms

FIGURE 8. Differential Driver Enable and Disable Test Circuits

FIGURE 9. Enable and Disable AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

