MOSFET – Power, Dual N-Channel, Logic Level 60 V, 65 mΩ, 12 A

Features

- Small Footprint (5x6 mm) for Compact Designs
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- 175°C Operating Temperature
- NVMFD5489NLWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- This is a Pb–Free Device

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

	(.] =0				-
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Current $R_{\Psi J-mb}$	Steady	T _{mb} = 25°C	Ι _D	12	A
(Notes 1, 2, 3, 4)		$T_{mb} = 100^{\circ}C$		8.8	
Power Dissipation	State	$T_{mb} = 25^{\circ}C$	PD	23.4	W
R _{ΨJ-mb} (Notes 1, 2, 3)		$T_{mb} = 100^{\circ}C$		11.7	
Continuous Drain Cur- rent R _{0JA} (Notes 1, 3 & 4)		T _A = 25°C	Ι _D	4.5	А
	Steady	T _A = 100°C		3.2	
Power Dissipation	State	T _A = 25°C	PD	3.0	W
R _{0JA} (Notes 1 & 3)		T _A = 100°C		1.5	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	62	А
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			۱ _S	22	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, I _{L(pk)} = 19.5 A, L = 0.1 mH, R_G = 25 Ω)			E _{AS}	19	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

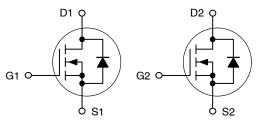
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

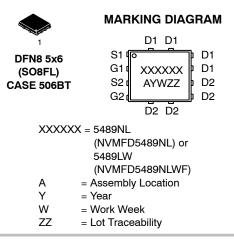
THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	6.4	
Junction-to-Ambient - Steady State (Note 3)		50	°C/W
Junction-to-Ambient - Steady State (min footprint)	R_{\thetaJA}	161	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.




ON Semiconductor®

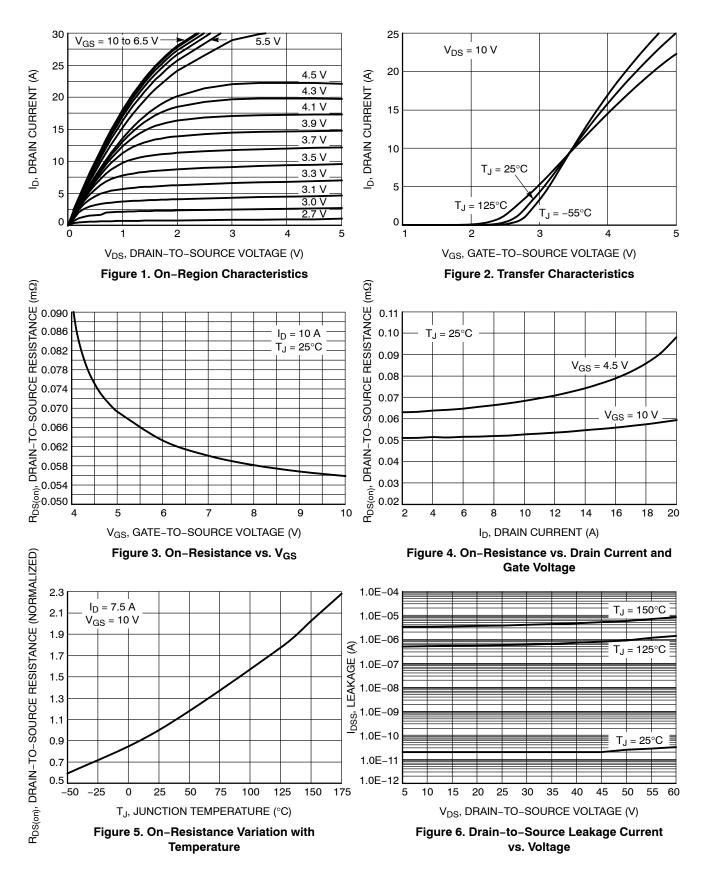
www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	65 mΩ @ 10 V	12 A
00 V	79 mΩ @ 4.5 V	127

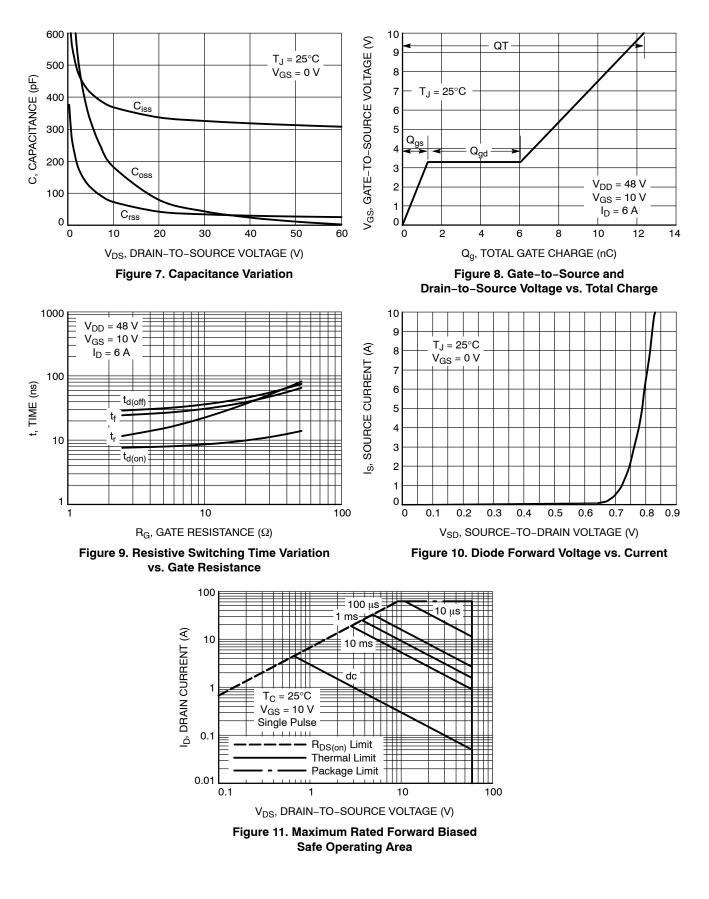
Dual N-Channel

ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFD5489NLT1G	DFN8 (Pb-Free)	1500/ Tape & Reel
NVMFD5489NLT3G	DFN8 (Pb-Free)	5000/ Tape & Reel
NVMFD5489NLWFT1G	DFN8 (Pb-Free)	1500/ Tape & Reel
NVMFD5489NLWFT3G	DFN8 (Pb-Free)	5000/ Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
 Continuous DC current rating. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle.


Parameter	Symbol	Test Conditi	ion	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		60	1		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C $I_D = 250 \mu A$			67		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	T _J = 25°C T _J = 125°C			1.0 10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	-			±100	nA
ON CHARACTERISTICS (Note 5)	0.00						
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D =	250 μA	1.5		2.5	V
Negative Threshold Temperature Co- efficient	V _{GS(TH)} /T _J	$V_{GS} = V_{DS}, I_D = 250 \mu A$ Reference to 25°C $I_D = 250 \mu A$			4.86		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	= 15 A		52	65	mΩ
	~ /	V _{GS} = 4.5 V, I _D =	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 7.5 \text{ A}$		66	79	-
CHARGES AND CAPACITANCES					•		
Input Capacitance	C _{iss}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 25 V			330		pF
Output Capacitance	C _{oss}				80		
Reverse Transfer Capacitance	C _{rss}				39		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 48 V, I _D = 6 A			12.4		nC
Threshold Gate Charge	Q _{G(TH)}				0.31		1
Gate-to-Source Charge	Q _{GS}				1.3		
Gate-to-Drain Charge	Q _{GD}				4.74		
SWITCHING CHARACTERISTICS (No	ote 6)						
Turn–On Delay Time	t _{d(on)}				7		ns
Rise Time	tr	V _{GS} = 10 V, V _{DS}	= 48 V,		11		
Turn-Off Delay Time	t _{d(off)}	V _{GS} = 10 V, V _{DS} I _D = 6 A, R _G = 1	2.5 Ω		31		1
Fall Time	t _f		ľ		21		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.83	1.2	V
		$I_{S} = 10 \text{ A}$	T _J = 125°C		0.71		1
Reverse Recovery Time	t _{RR}				24.2		ns
Charge Time	t _a	V_{GS} = 0 V, d_{IS}/d_t = 100 A/µs, I_S = 10 A			20.2		
Discharge Time	t _b				4.0		
Reverse Recovery Charge	Q _{RR}				26.5		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S	T _A = 25°C			0.93		nH
Drain Inductance	L _D				0.005		1
Gate Inductance	L _G				1.84		1
Gate Resistance	R _G				12		Ω

5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

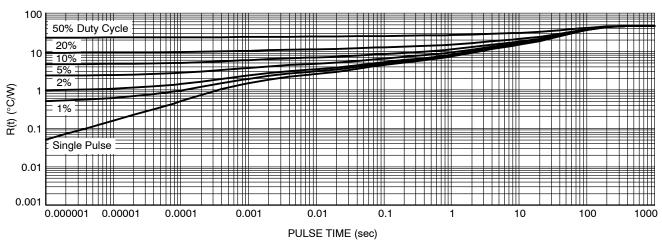
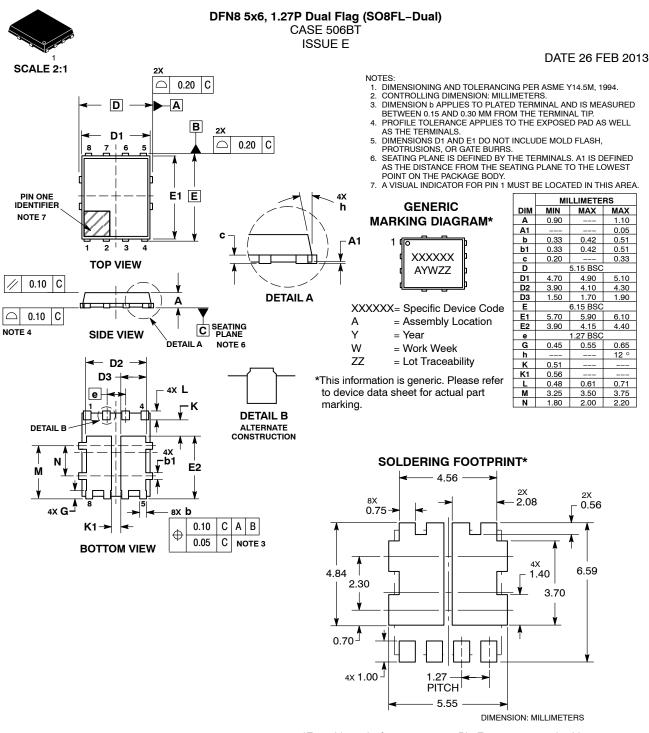



Figure 12. Thermal Response

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON50417E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DFN8 5X6, 1.27P DUAL FL	5X6, 1.27P DUAL FLAG (SO8FL-DUAL)			
ON Semiconductor and una are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative