

STW75NF30

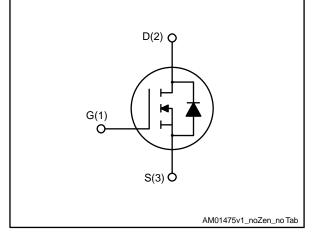
N-channel 300 V, 35 mΩ typ., 60 A STripFET™ II Power MOSFET in a TO-247 package

Datasheet - production data

Order code	VDS	RDS(on) max.	ID	Ртот
STW75NF30	300 V	45 mΩ	60 A	320 W

- Exceptional dv/dt capability
- 100% avalanche tested
- Low gate charge

Applications


• Switching applications

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET™ process is specifically designed to minimize input capacitance and gate charge. It is therefore ideal as a primary switch in advanced high-efficiency isolated DC-DC converters.

Figure 1: Internal schematic diagram

TO-247

Table 1: Device summary

Order code	Marking	Package	Packing
STW75NF30	75NF30	TO-247	Tube

DocID14067 Rev 4

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	TO-247 package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
Vds	Drain-source voltage	300	V	
V _{GS}	Gate-source voltage	±20	V	
lo	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	60	А	
lo	Drain current (continuous) at Tc= 100 °C	37.8	А	
IDM ⁽¹⁾	Drain current (pulsed)	240	А	
Ртот	Total dissipation at $T_c = 25 \ ^{\circ}C$	320	W	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	12	V/ns	
T _{stg}	Storage temperature range			
Tj	Operating junction temperature range	- 55 to 150	°C	

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(2)}$ I_{SD} \leq 60 A, di/dt \leq 200 A/µs; V_{DD} \leq 80% V(_BR)DSS

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case	0.39	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or non- repetitive (pulse width limited by T _{jmax} .)	50	А
Eas	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V)	400	mJ

2 Electrical characteristics

(Tc= 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	300			V
		$V_{GS} = 0 V, V_{DS} = 300 V$			1	μA
	Zero-gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 300 \text{ V},$ $T_{C} = 125 \text{ °C} (1)$			10	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30 \text{ A}$		35	45	mΩ

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5930	-	pF
Coss	Output capacitance	$V_{DS} = 25 V, f = 1 MHz,$	-	837	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	110	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0 V$ to 240 V, $V_{GS} = 0 V$	-	462	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	1.55	-	Ω
Qg	Total gate charge	$V_{DD} = 240 \text{ V}, I_D = 60 \text{ A}, V_{GS} = 0$	-	164	-	nC
Qgs	Gate-source charge	to 10 V (see Figure 15: "Test circuit for gate charge	-	36	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	69	-	nC

Table 6: Dynamic

Notes:

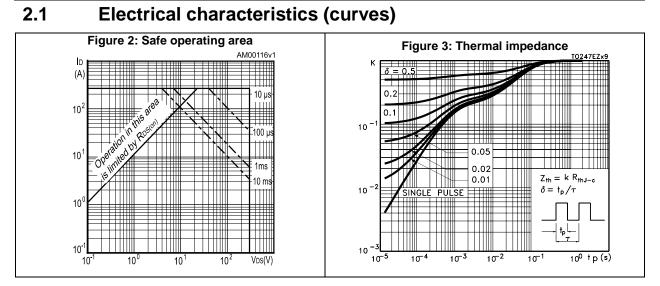
 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

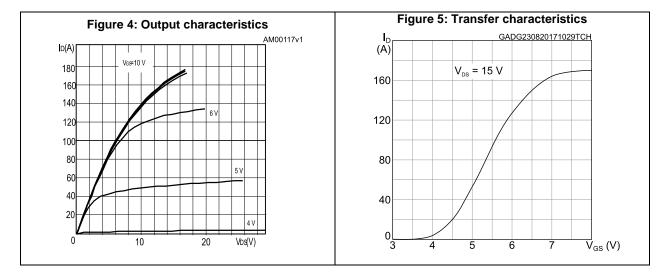
Т	able 7:	Switching	times

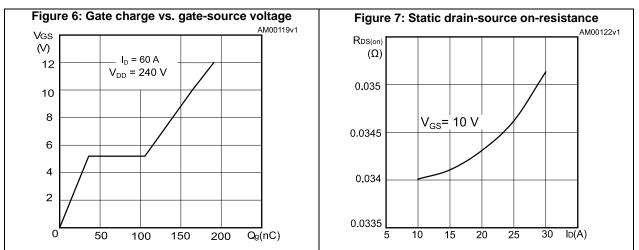
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 150 \text{ V}, \text{ I}_{D} = 30 \text{ A}$	I	115	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	87	-	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times"	-	141	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	101	-	ns

Electrical characteristics

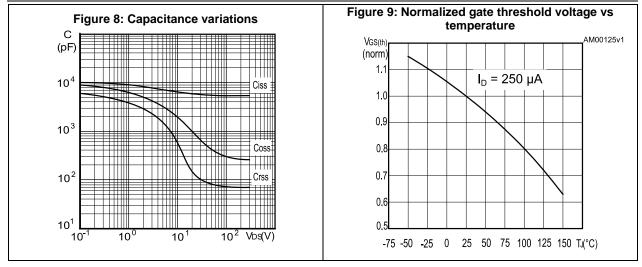
Table 8: Source-drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Isd	Source-drain current		-		60	А	
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		240	А	
Vsd ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 60 A	-		1.6	V	
trr	Reverse recovery time	I _{SD} = 60 A, di/dt = 100 A/µs,	-	252		ns	
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	2.5		μC	
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	20		A	
trr	Reverse recovery time	I _{SD} = 60 A, di/dt = 100 A/µs,	-	316		ns	
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	3.7		μC	
Irrm	Reverse recovery current	inductive load switching and diode recovery times")	-	23.2		A	

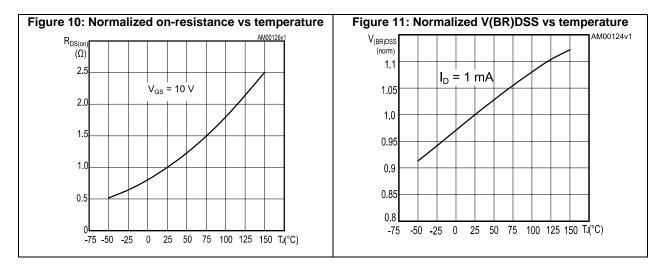

Notes:

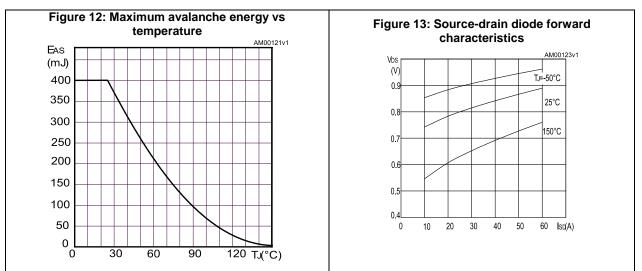

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width is limited by safe operating area.


 $^{(2)}\text{Pulse test: pulse duration}$ = 300 $\mu\text{s},$ duty cycle 1.5%.

Electrical characteristics

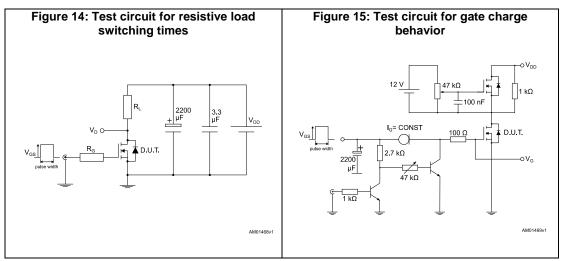

DocID14067 Rev 4

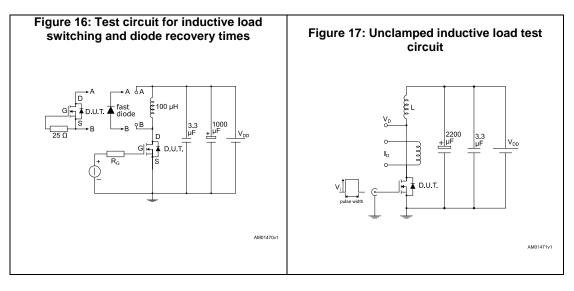


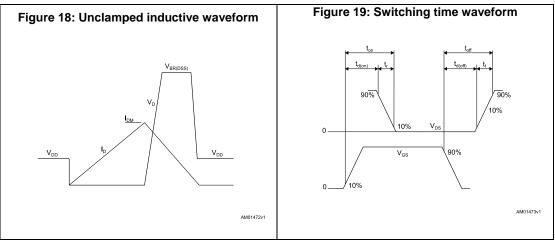

STW75NF30

57

Electrical characteristics

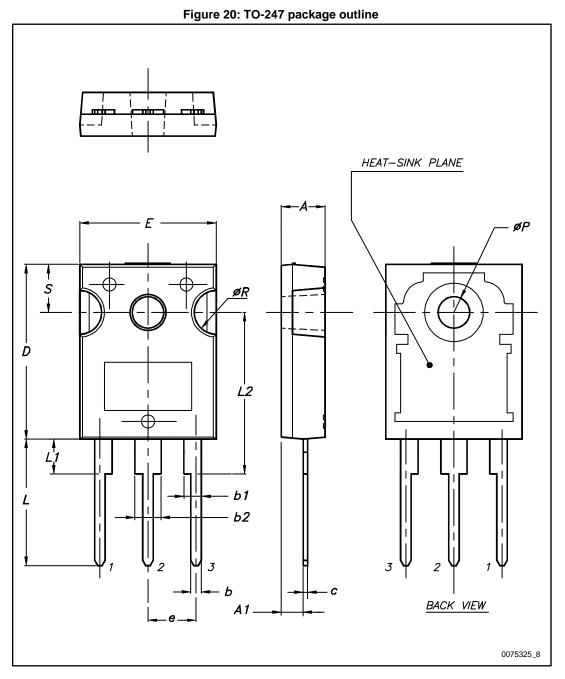






DocID14067 Rev 4

3 Test circuits



57

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

DocID14067 Rev 4

Package mechanical data

Table 9: TO-247 package mechanical data

STW75NF30

Dim.		mm			
Dini.	Min.	Тур.	Max.		
A	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
23-Oct-2007	1	First release.
27-May-2008	2	New value inserted in Table 6: Dynamic
15-Jul-2008	3	Document status promoted from preliminary data to datasheet.
24-Aug-2017	4	Updated Section 2.1: "Electrical characteristics (curves)" and Section 4.1: "TO-247 package information".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STW75NF30