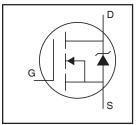
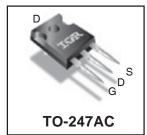


AUIRFP064N


Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dV/dT Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *


Description

Specifically designed for Automotive applications, this Cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low onresistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

HEXFET® Power MOSFET

V _{(BR)DSS}	55V
R _{DS(on)} max.	0.008Ω
I _D	110A®

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	110 ^⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	80 S	А
I _{DM}	Pulsed Drain Current ①	390	
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	٧
E _{AS}	Single Pulse Avalanche Energy ②	480	mJ
I _{AR}	Avalanche Current ①	59	Α
E _{AR}	Repetitive Avalanche Energy ①	20	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25° C, $I_D = 1$ mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.008	Ω	$V_{GS} = 10V, I_{D} = 59A \oplus$
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	42			S	$V_{DS} = 25V, I_{D} = 59A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$
			—	250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
Q_g	Total Gate Charge			170		$I_D = 59A$
Q_{gs}	Gate-to-Source Charge			32	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			74		V_{GS} = 10V,See Fig.6 and 13 \oplus
$t_{d(on)}$	Turn-On Delay Time		14			$V_{DD} = 28V$
t _r	Rise Time		100		ns	I _D = 59A
$t_{d(off)}$	Turn-Off Delay Time		43		115	$R_G = 2.5\Omega$
t_f	Fall Time		70			$R_D = 0.39\Omega$, See Fig. 10 \oplus
L _D	Internal Drain Inductance		5.0			Between lead,
			5.0		nH	6mm (0.25in.)
L _S	Internal Source Inductance		13		''''	from package
			2			and center of die contact
C _{iss}	Input Capacitance		4000			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1300		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		480			f = 1.0MHz,See Fig.5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			110⑤		MOSFET symbol		
	(Body Diode)			1100		showing the		
I _{SM}	Pulsed Source Current			390	Α	integral reverse		
	(Body Diode) ①			390	390	390		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 59A, V_{GS} = 0V $ ④		
t _{rr}	Reverse Recovery Time		110	170	ns	$T_J = 25^{\circ}C, I_F = 59A$		
Q _{rr}	Reverse Recovery Charge		450	680	nC	di/dt = 100A/µs ⊕		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- © V_{DD} = 25V, starting T_J = 25°C, L = 190 μ H, R_G = 25 Ω , I_{AS} = 59A.(See Figure 12)
- 4 Pulse width \leq 300 $\mu s;$ duty cycle \leq 2%
- © Calculated continuous current based on maximum allowable junction temperature; for recommended current-handling of the package refere to Desing Tip # 93-4

Qualification Information[†]

		Automotive (per AEC-Q101) ††				
		Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sens	itivity Level	3L-TO-247 N/A				
	Machine Model Human Body Model		Class M4(+/- 800V) ^{†††} (per AEC-Q101-002)			
ESD			Class H1B(+/- 4000V) ^{†††} (per AEC-Q101-001)			
Charged Device Model		Class C5(+/- 2000V) ^{†††} (per AEC-Q101-005)				
RoHS Compliant		Yes				

[†] Qualification standards can be found at International Rectifier's web site: http://www.irf.com/

^{††} Exceptions to AEC-Q101 requirements are noted in the qualification report.

^{†††} Highest passing voltage

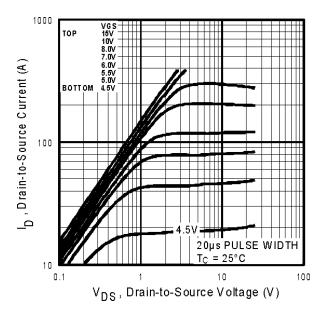


Fig 1. Typical Output Characteristics

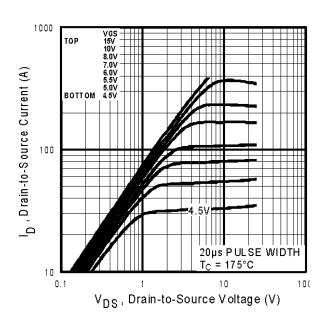
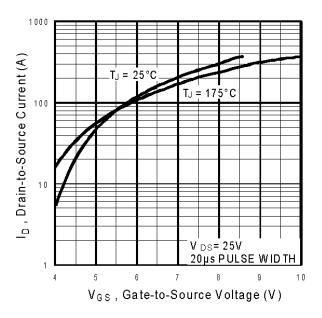
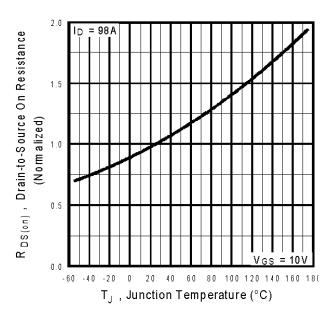
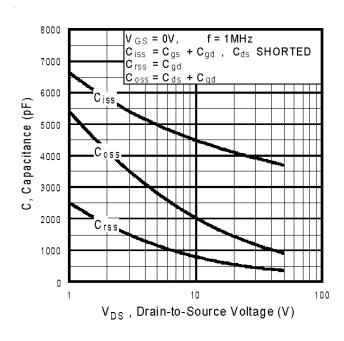
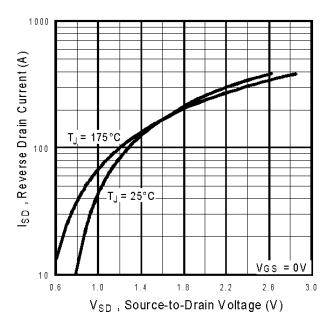


Fig 2. Typical Output Characteristics


Fig 3. Typical Transfer Characteristics

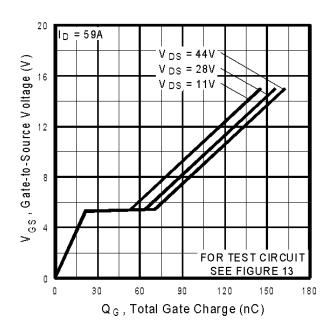

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

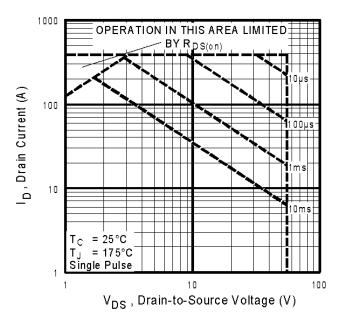
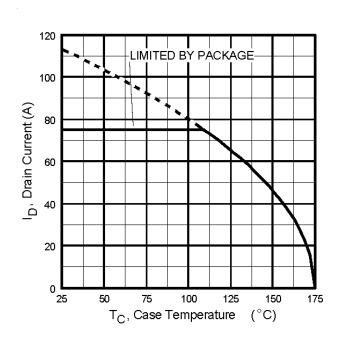
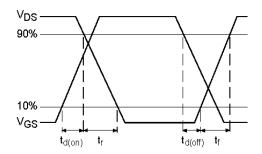




Fig 8. Maximum Safe Operating Area

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

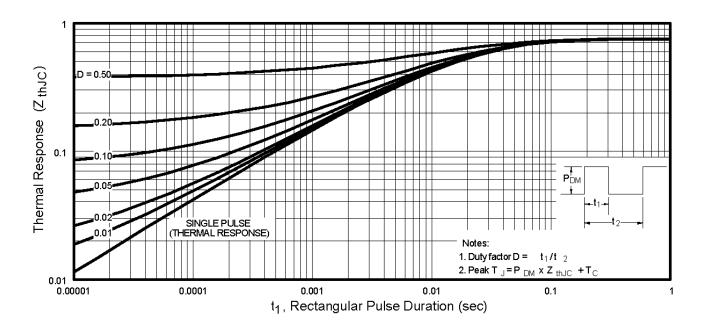


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

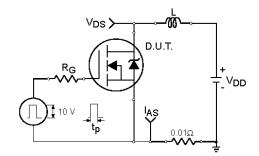


Fig 12a. Unclamped Inductive Test Circuit

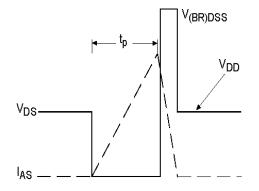


Fig 12b. Unclamped Inductive Waveforms

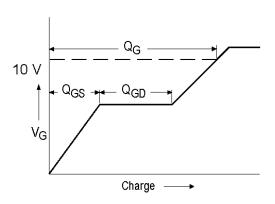
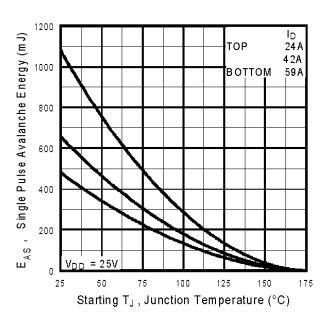



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

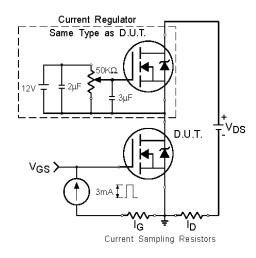
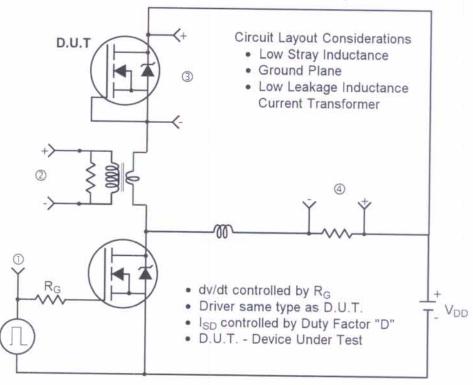
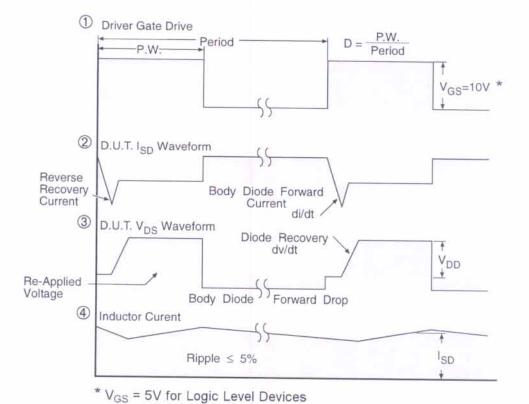
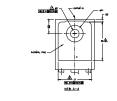



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit




Fig 14. For N-Channel HEXFETS

AUIRFP064N

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005° (0.127)
PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

 $\ensuremath{\mathrm{oP}}$ TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 $^{\circ}$ TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

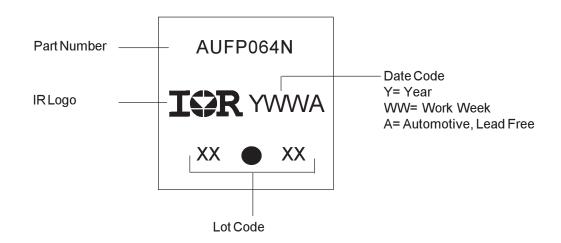
OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

	DIMENSIONS				
SYMBOL	INC	HES	MILLIM	ETERS	1
	MIN.	MAX.	MIN.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1,40	
ь1	.039	.053	0.99	1,35	
b2	.065	.094	1,65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3,43	
b5	.102	.133	2.59	3.38	
С	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19,71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1,35	
E	.602	.625	15.29	15.87	4
E1	.530	-	13,46	-	
E2	.178	.216	4.52	5.49	
e	.215	BSC	5.46	BSC]
Øk	.0	.010		25	1
L	.559	.634	14.20	16.10]
L1	.146	.169	3.71	4.29	
øΡ	.140	.144	3.56	3.66	1
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5,51	BSC]

LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN


IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

DIODES

- 1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

TO-247AC Part Marking Information

Ordering Information

Base part	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRFP064N	TO-247	Tube	25	AUIRFP064N

AUIRFP064N

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:
AUIRFP064N