MOSFET – Power, Single N-Channel 60 V, 15 mΩ, 39 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- NVMFS5885NLWF Wettable Flanks Product
- AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

			,		
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage			V _{GS}	± 20	V
Continuous Drain Cur-		T _{mb} = 25°C	I _D	39	А
rent R _{ΨJ-mb} (Notes 1, 2, 3)	Steady	$T_{mb} = 100^{\circ}C$		28	
Power Dissipation	State	T _{mb} = 25°C	PD	54	W
R _{ΨJ-mb} (Notes 1, 2, 3)		$T_{mb} = 100^{\circ}C$		27	
Continuous Drain Cur-		$T_A = 25^{\circ}C$	I _D	10.2	А
rent R _{θJA} (Notes 1 & 3)	Steady State	$T_A = 100^{\circ}C$		7.2	
Power Dissipation		T _A = 25°C	PD	3.7	W
$R_{\theta JA}$ (Notes 1 & 3)		T _A = 100°C		1.8	
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	179	А
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 175	°C
Source Current (Body Diode)			۱ _S	46	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)} = 18 \text{ A}, L = 0.3 \text{ mH}, R_G = 25 \Omega$)			E _{AS}	49	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

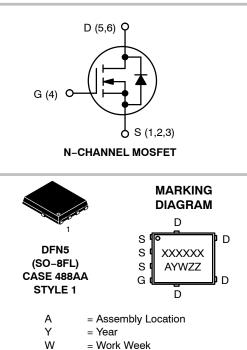
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	2.8	°C/W
Junction-to-Ambient - Steady State (Note 3)	Веца	41	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.


3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	$15\mathrm{m}\Omega$ @ $10\mathrm{V}$	00.4
60 V	21 mΩ @ 4.5 V	39 A

ORDERING INFORMATION

= Lot Traceability

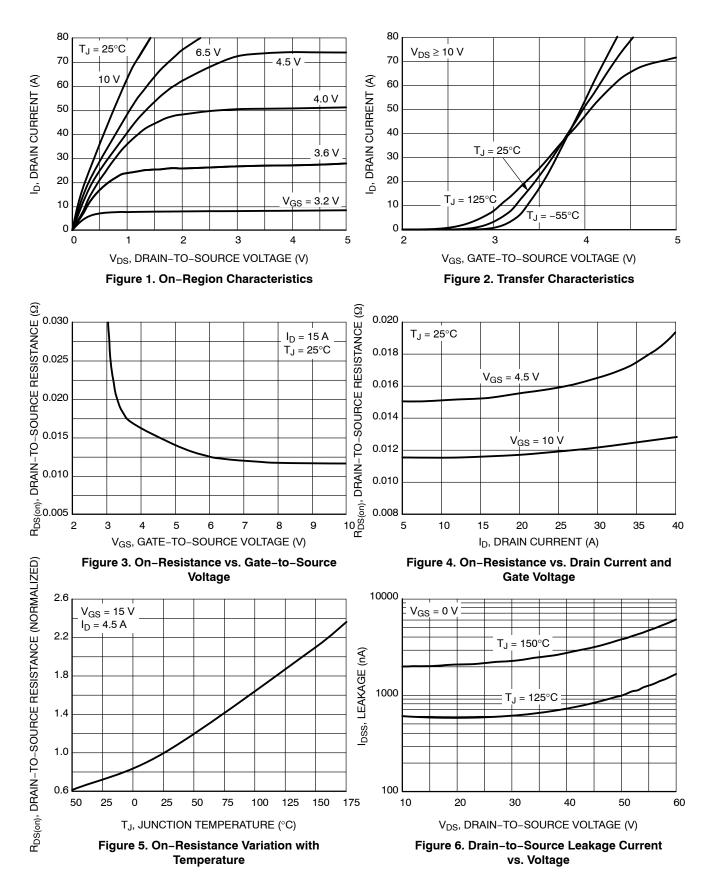
77

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

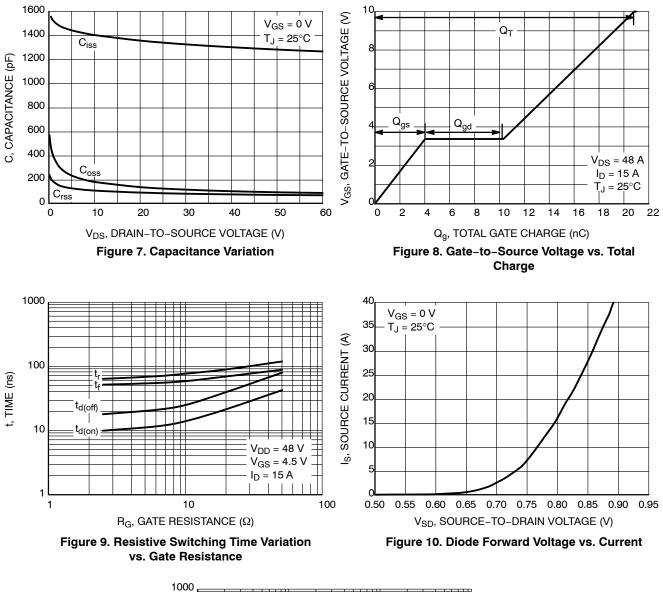
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

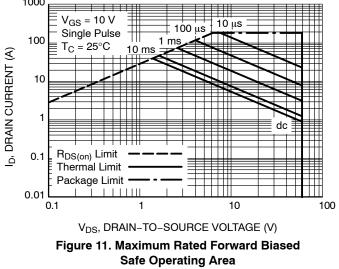
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_{D} = 250 μA		60			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, \\ V_{DS} = 60 V \qquad T_{J} = 25^{\circ}C \\ T_{J} = 125^{\circ}C$	$T_J = 25^{\circ}C$			1.0	μA
			T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V				±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		1.5		2.5	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 15 A V _{GS} = 4.5 V, I _D = 15 A			11.6	15	mΩ
					15.2	21	
HARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			1340		pF
Output Capacitance	C _{oss}				125		
Reverse Transfer Capacitance	C _{rss}				85		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 48 V, I _D = 15 A			12		nC
Threshold Gate Charge	Q _{G(TH)}				1.1		
Gate-to-Source Charge	Q _{GS}				4.0		
Gate-to-Drain Charge	Q _{GD}				6.3		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 48 V, I_{D} = 15 A			21		nC
SWITCHING CHARACTERISTICS (No	te 5)						
Turn-On Delay Time	t _{d(ON)}				10		
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 48 V, I_{D} = 15 A, R_{G} = 2.5 Ω			64		ns
Turn-Off Delay Time	t _{d(OFF)}				18		
Fall Time	t _f				52		
RAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $T_J = 25^{\circ}C$			0.8	1.2	V
		I _S = 15 A T _J = 125°C		0.7			
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/μs, I _S = 15 A			20		
Charge Time	t _a				15		ns
Discharge Time	t _b				5.0		

Reverse Recovery Charge


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

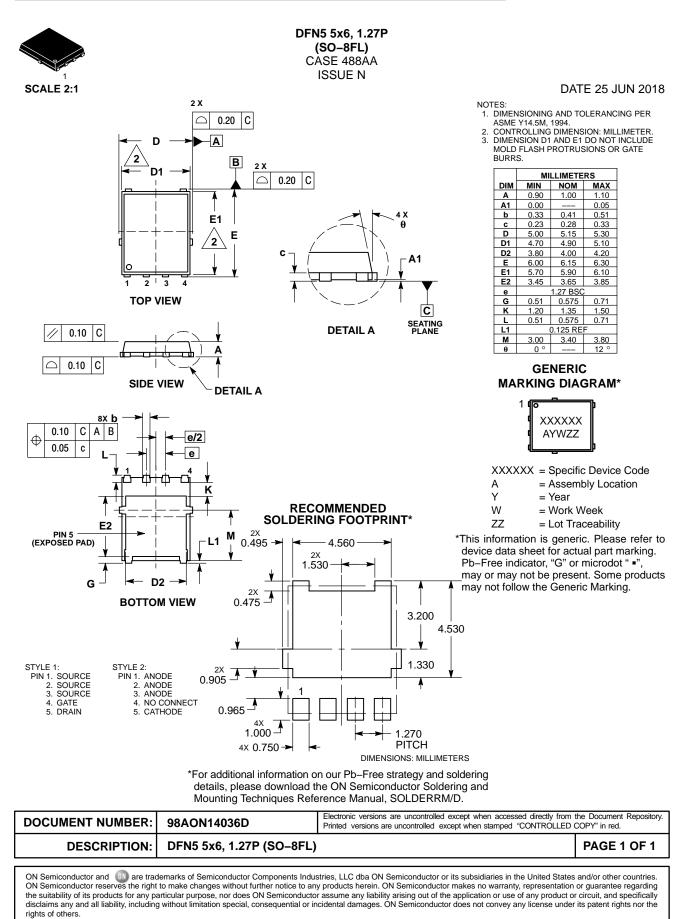

16


nC

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


Figure 12. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS5885NLT1G	V5885L	DFN5 (Pb–Free)	1500 / Tape & Reel
NVMFS5885NLWFT1G	5885LW	DFN5 (Pb–Free)	1500 / Tape & Reel
NVMFS5885NLT3G	V5885L	DFN5 (Pb–Free)	5000 / Tape & Reel
NVMFS5885NLWFT3G	5885LW	DFN5 (Pb–Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative