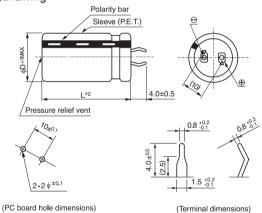


Snap-in Terminal Type


- Excellent in voltage holding property.
- Suitable for quick charge and discharge.
- Wide temperature range (-25°C to +60°C).
- Compliant to the RoHS directive (2011/65/EU).

■ Specifications

Item	Performance Characteristics							
Category Temperature Range	- 25 to +60°C							
Rated Voltage Range	2.5V							
Rated Capacitance Range	56 to 200F See Note							
Capacitance Tolerance	±20% (20°C)							
Stability at Low Temperature	Capacitance (-25°C) / Capacitance (+20°C) ×100 ≥ 70% ESR (-25°C) / ESR (+20°C) ≤ 7							
ESR, DCR*	Refer to the table below (20°C). *DC internal resistance							
Endurance	The specifications listed at right shall be met when the capacitors	Capacitance change	Within ±30% of the initial capacitance value					
	are restored to 20°C after the rated voltage is applied for 2000 hours at 60° C.	ESR	300% or less than the initial specified value					
	The specifications listed at right shall be met when the capacitors	Capacitance change	Within ±30% of the initial capacitance value					
Shelf Life	are restored to 20°C after storing the capacitors under no load for 2000 hours at 60°C.	ESR	300% or less than the initial specified value					
	ioi 2000 fiours at 00 C.							
	The specifications listed at right shall be met when the capacitors	Capacitance change	Within ±30% of the initial capacitance value					
Humidity Endurance	are restored to 20°C after the rated voltage is applied for 500 hours at 40°C 90°RH .	ESR	300% or less than the initial specified value					
Marking	Printed with white color letter on black sleeve.							

Drawing

■ Dimensions

Rated Voltage	Cap.	Cap.	ESR(mΩ) (at 1kHz)	DCR [※] Typical (mΩ)	Case size φD×L (mm)		
(code)					φ 25 (A)	φ 30 (B)	φ 35 (C)
2.5V (0E)	56	566	70	50	25 × 40	30×30	
	68	686	60	45			35×30
	82	826	60	35	25×50	30×40	
	100	107	50	30			35 × 35
	120	127	50	25		30×50	35×40
	150	157	40	22			35×50
	200	207	30	16			35×50

 $\ensuremath{\mathtt{\#}}$ The listed DCR value is typical and therefore not a guaranteed value.

Type numbering system (Example: 2.5V 150F)

Note:

The capacitance calculated from discharge time (ΔT) with constant current (i) after 30minuite charge with rated voltage (2.5V).

The discharge current (i) is 0.01 × rated capacitance (F). The discharge time (ΔT) measured between 2V and 1V with constant current.

The capacitance calculated bellow.

Capacitance (F) = $i \times \Delta T$