

Is Now Part of

ON Semiconductor®

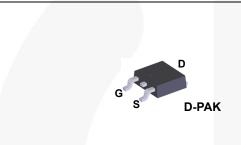
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

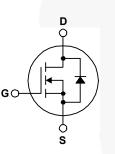
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

SEMICONDUCTOR

November 2013

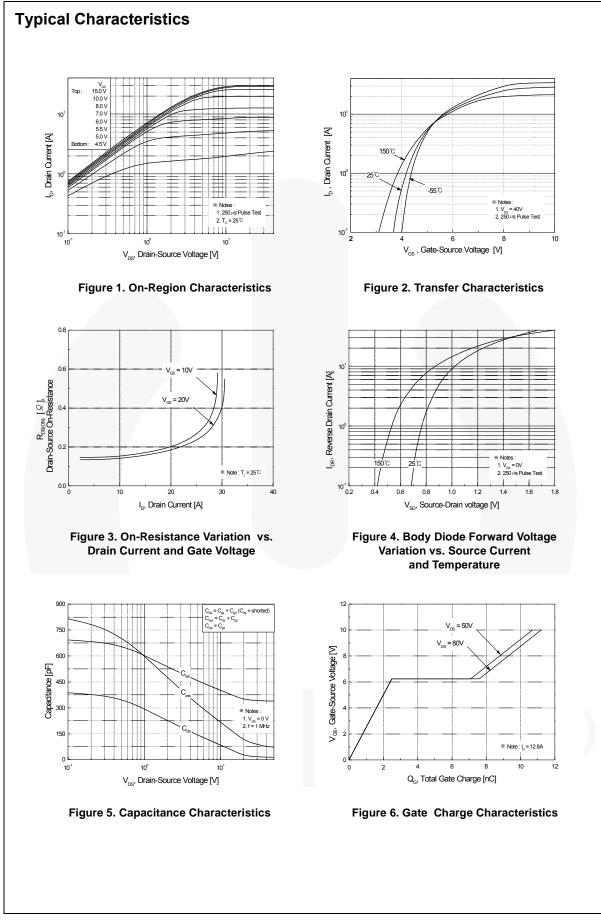

FQD13N10 N-Channel QFET[®] MOSFET 100 V, 10 A, 180 mΩ

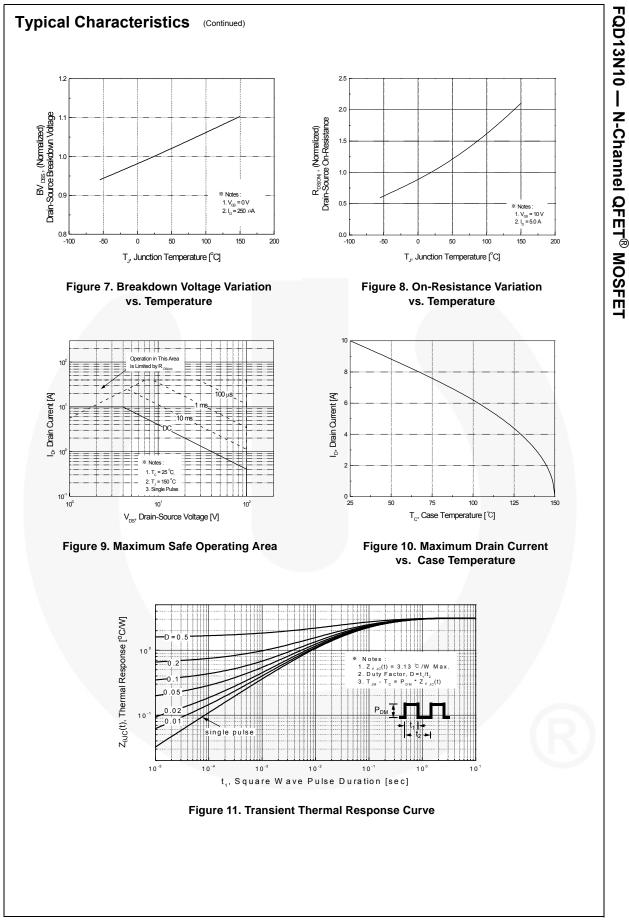

Description

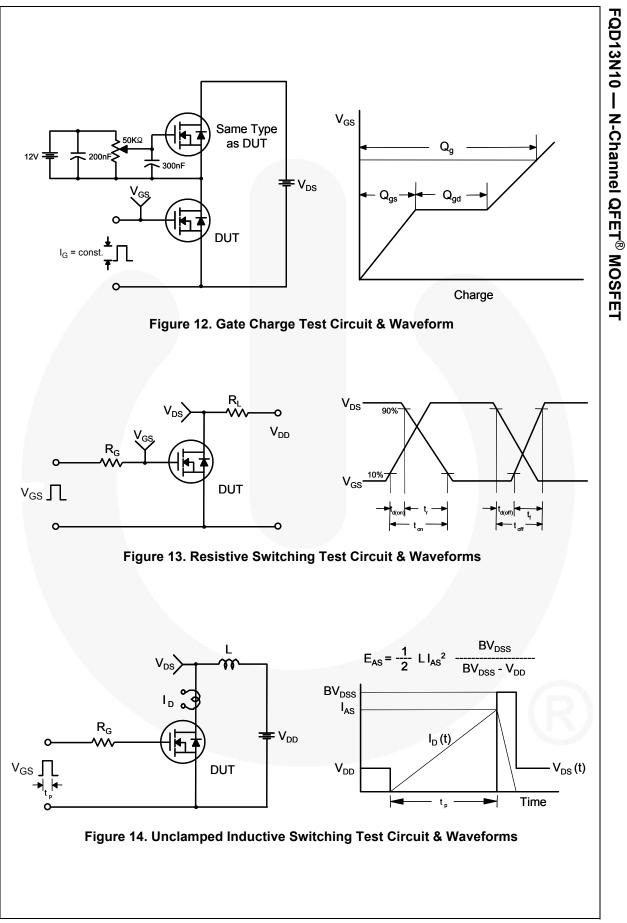
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce . Low Gate Charge (Typ. 12 nC) on-state resistance, and to provide superior switching • Low Crss (Typ. 20 pF) performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, • 100% Avalanche Tested audio amplifier, DC motor control, and variable switching power applications.

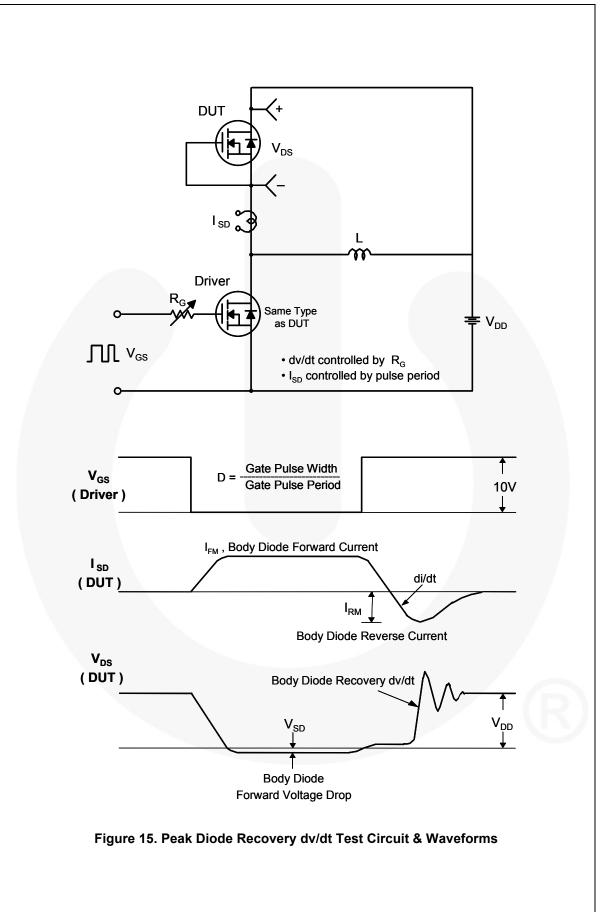
Features

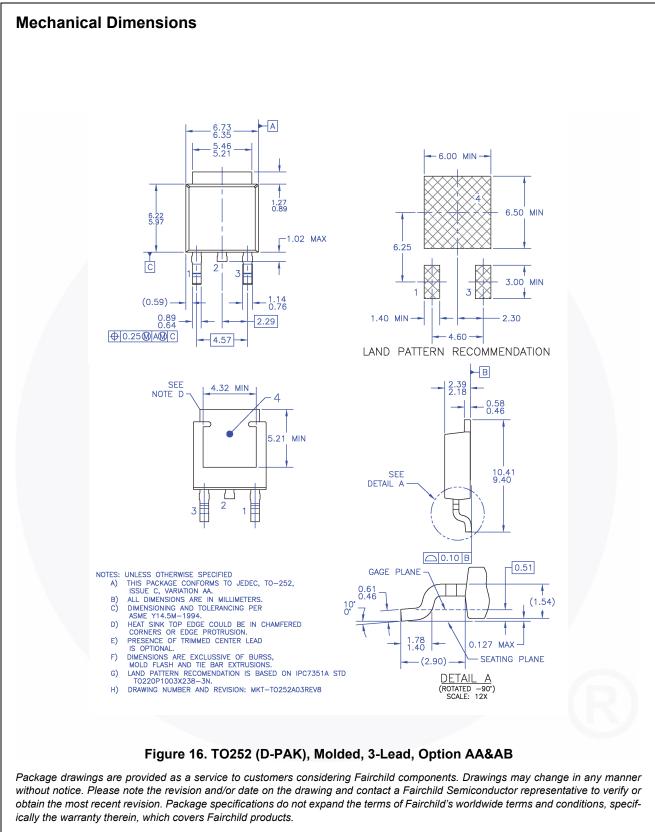
- 10 A, 100 V, $R_{DS(on)}$ = 180 m Ω (Max.) @ V_{GS} = 10 V, I_D = 5 A


Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


Symbol	Parameter	FQD13N10TM	Unit
V _{DSS}	Drain-Source Voltage	100	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)	10	A
	- Continuous (T _C = 100°C)	6.3	A
I _{DM}	Drain Current - Pulsed (N	ote 1) 40	А
V _{GSS}	Gate-Source Voltage	± 25	V
E _{AS}	Single Pulsed Avalanche Energy (N	ote 2) 95	mJ
I _{AR}	Avalanche Current (N	ote 1) 10	A
E _{AR}	Repetitive Avalanche Energy (N	ote 1) 4.0	mJ
dv/dt	Peak Diode Recovery dv/dt (N	ote 3) 6.0	V/ns
P _D	Power Dissipation ($T_A = 25^{\circ}C$) *	= 25°C) * 2.5	
	Power Dissipation (T _C = 25°C)	40	W
	- Derate above 25°C	0.32	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C
ΤL	Maximum lead temperature for soldering, .1/8" from case for 5 seconds	300	°C


Thermal Characteristics


Symbol	Parameter	FQD13N10TM	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	3.13	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W
	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50	


lectric Symbol Off Cha SV _{DSS} ABV _{DSS}		FQD13N10		\aye	Fackin	kage Packing Method Reel		Size	Tape W	lath	Quantity
Symbol Off Cha ^{3V_{DSS} ABV_{DSS}}	cal Chai		-				330	mm	16 mm		2500 units
Symbol Off Cha ^{3V_{DSS} ABV_{DSS}}	cal Cha										
Dff Cha BV _{DSS} ABV _{DSS}		racteristics	T _C = 25°0	C unless oth	herwise noted						
BV _{DSS}		Parameter			Test Co	nditions		Min	Тур	Мах	Unit
BV _{DSS}	aracterist	ics									
ΔBV _{DSS} /ΔTJ	Drain-Source Breakdown Voltage			V _{GS} = 0 V, I _D = 250 μA			100			V	
iΔiJ	Coefficient			I_D = 250 µA, Referenced to 25°C				0.09	0.09	V/°C	
DSS	7			V _{DS} =	V _{DS} = 100 V, V _{GS} = 0 V					1	μA
	Zero Gate	Voltage Drain Curr	rent	V _{DS} =	80 V, T _C =	125°C				10 100	μA
GSSF	Gate-Body	y Leakage Current,	Forward	V _{GS} =	25 V, V _{DS}	= 0 V					nA
GSSR	Gate-Body	y Leakage Current,	Reverse	V _{GS} =	-25 V, V _{DS}	_s = 0 V				-100	nA
	aracteristi			1							-1
/ _{GS(th)}		shold Voltage		V _{DS} =	V _{GS} , I _D = 1	250 µA		2.0		4.0	V
R _{DS(on)}	Static Drai			V _{GS} =	10 V, I _D =	5.0 A			0.142	0.18	Ω
	On-Resista		_	V -	40 V, I _D =	500	_		6.2		S
FS	Forward I	ransconductance	_	VDS -	40 V, I _D -	5.0 A	_		6.3		3
Dvnami	ic Charac	teristics									
Ciss	Input Capa		_	V -	25 \/ \/	- 0.1/			345	450	pF
Coss	· · ·	Output Capacitance			25 V, V _{GS} мн 7	= 0 V,			100	130	pF
	Reverse Transfer Capacitance			f = 1.0 MHz							
2 _{rss}	ILEVEISE I		C I						20	25	pF
Prss	Treverse I	1							20	25	pF
		acteristics							20	25	pF
Switchi		acteristics		Voo =	50 V In =	12.8 Δ			20 5	25 20	pF ns
Switchi	ing Chara	acteristics Delay Time			50 V, I _D =	12.8 A,					
Switchi d(on) r	ing Chara Turn-On D	acteristics Delay Time Rise Time		V _{DD} = R _G = 2	5				5	20	ns
Switchi d(on) r d(off) f	ing Chara Turn-On D Turn-On R	acteristics Delay Time Rise Time Delay Time			5		(Note 4)		5 55	20 120	ns
Switchi d(on) r d(off) f	ing Chara Turn-On D Turn-On R Turn-Off D	acteristics Delay Time Rise Time Delay Time Call Time		R _G = 2	5	((Note 4)		5 55 20	20 120 50	ns ns ns
C _{rss} Switchi d(on) r d(off) f Q _g Q _{gs}	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate	acteristics Delay Time Rise Time Delay Time Call Time		R _G = 2	25 Ω 80 V, I _D =	((Note 4)		5 55 20 25	20 120 50 60	ns ns ns ns
Switchi d(on) r d(off) f Q _g	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate	acteristics Delay Time Rise Time Delay Time Call Time Charge Tree Charge		R _G = 2	25 Ω 80 V, I _D =	(12.8 A,	(Note 4)		5 55 20 25 12	20 120 50 60	ns ns ns ns nC
Switchi d(on) r d(off) f λ_g λ_{gs} λ_{gd}	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain	acteristics Delay Time Rise Time Delay Time Call Time Charge Charge n Charge		R _G = 2 V _{DS} = V _{GS} =	25 Ω 80 V, I _D = 10 V	(12.8 A, (5 55 20 25 12 2.5	20 120 50 60 16 	ns ns ns ns nC nC
Switchi d(on) r d(off) f Qg Qgs Qgd Drain-S	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain	Acteristics Delay Time Rise Time Delay Time Call Time Charge rce Charge n Charge ode Character	istics a	$R_G = 2$ $V_{DS} =$ $V_{GS} =$	25 Ω 80 V, I _D = 10 V kimum F	12.8 A, () Ratings			5 55 20 25 12 2.5	20 120 50 60 16 	ns ns ns ns nC nC
Switchi d(on) r d(off) f 2g 2gs 2gd Drain-S s	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Source Dia	Acteristics Delay Time Rise Time Delay Time all Time Charge Charge n Charge ode Character Continuous Drain-S	istics al	$R_G = 2$ $V_{DS} =$ $V_{GS} =$ nd Max	25 Ω 80 V, $I_D =$ 10 V kimum F vard Curre	12.8 A, () Ratings			5 55 20 25 12 2.5	20 120 50 60 16 10	ns ns ns nC nC nC A
Switchi d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S s SM	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Source Dia Maximum Maximum	acteristics Delay Time Rise Time Delay Time a Charge Charge Tree Charge n Charge Ode Characteri Continuous Drain-S Pulsed Drain-Source	istics ar Source Dic ce Diode F	R _G = 2 V _{DS} = V _{GS} = Md Max	$P_{25 \Omega}$ 80 V, I _D = 10 V kimum F vard Current	(12.8 A, (Ratings nt		 	5 55 20 25 12 2.5 5.1	20 120 50 60 16 10 40	ns ns ns nC nC nC A A
Switchi	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Source Did Maximum Maximum Drain-Sou	acteristics Delay Time Rise Time Delay Time Gall Time Charge Charge Charge Charge Ode Characteri Continuous Drain-S Pulsed Drain-Source rce Diode Forward	istics ar Source Dic ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $M_{GS} =$ $M_{GS} =$ $M_{GS} =$ $M_{GS} =$ $M_{GS} =$	$80 \text{ V, } \text{I}_{\text{D}} =$ $80 \text{ V, } \text{I}_{\text{D}} =$ 10 V $\frac{\text{kimum F}}{\text{vard Current}}$ $\frac{\text{Current}}{0 \text{ V, } \text{I}_{\text{S}} = 1$	(12.8 A, (Ratings nt 0 A			5 55 20 25 12 2.5 5.1	20 120 50 60 16 10	ns ns ns nC nC nC A A A V
Switchi d(on) r d(off) f Ω_g Ω_{gs} Ω_{gd}	ing Chara Turn-On D Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Source Did Maximum Maximum Drain-Sou Reverse R	acteristics Delay Time Rise Time Delay Time a Charge Charge Tree Charge n Charge Ode Characteri Continuous Drain-S Pulsed Drain-Source	istics ar Source Dic ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	$P_{25 \Omega}$ 80 V, I _D = 10 V kimum F vard Current	12.8 A, () Ratings nt 0 A 2.8 A,			5 55 20 25 12 2.5 5.1	20 120 50 60 16 10 40	ns ns ns nC nC nC A A

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

FQD13N10 — N-Channel QFET[®] MOSFET

Advance Information	Formative / In Design	may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.

Rev. 166

QD13N10

N-Channel QFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FQD13N10TM</u>