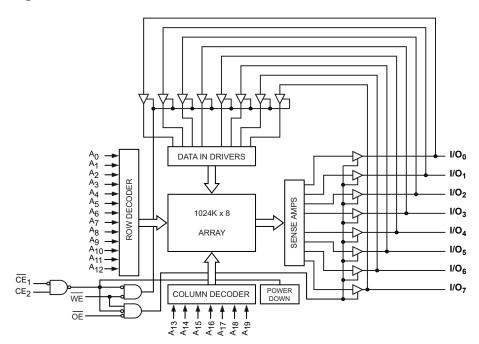


8-Mbit (1024K × 8) Static RAM

Features

- Very high speed: 45 ns
 - □ Wide voltage range: 2.20 V-3.60 V
- Pin compatible with CY62158DV30
- Ultra low standby power
 - Typical standby current: 2 μA
 - Maximum standby current: 8 μA
- Ultra low active power
 - □ Typical active current: 6 mA at f = 1 MHz
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} features
- Automatic power down when deselected
- CMOS for optimum speed/power
- Offered in Pb-free 48-ball VFBGA and 44-pin TSOP II packages

Functional Description


The CY62158EV30 is a high performance CMOS static RAM organized as 1024K words by 8 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life $^{\rm TM}$ (MoBL $^{\rm S}$) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption. Placing the device into standby mode reduces power consumption significantly when deselected ($\overline{\rm CE}_1$ HIGH or CE $_2$ LOW). The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high impedance state when the device is deselected ($\overline{\rm CE}_1$ HIGH or CE $_2$ LOW), the outputs are disabled ($\overline{\rm OE}$ HIGH), or a write operation is in progress ($\overline{\rm CE}_1$ LOW and CE $_2$ HIGH and $\overline{\rm WE}$ LOW).

To write to the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₉).

To read from the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and $\overline{\text{OE}}$ LOW while forcing the $\overline{\text{WE}}$ HIGH. Under these conditions, the contents of the memory location specified by the address pins appear on the I/O pins. See Truth Table on page 11 for a complete description of read and write modes.

For a complete list of related documentation, click here.

Logic Block Diagram

CY62158EV30 MoBL

Contents

Pin Configurations	3
Product Portfolio	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	6
Switching Characteristics	7
Switching Waveforms	
	11

Ordering Information	12
Ordering Code Definitions	12
Package Diagrams	13
Acronyms	15
Document Conventions	15
Units of Measure	
Document History Page	16
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	19
PSoC® Solutions	19
Cypress Developer Community	19
Technical Support	

Pin Configurations

Figure 1. 48-ball VFBGA pinout (Top View) [1]

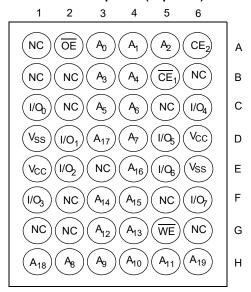
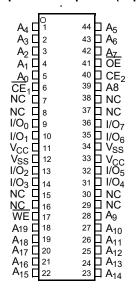



Figure 2. 44-pin TSOP II pinout (Top View) [1]

Product Portfolio

			Power Dissipation							
Product V _{CC} Range (V		V)	Speed	Operating I _{CC} (mA)				Standby, I _{SB2} (µA)		
Floudet			(ns)	f = 1 MHz f =		f = f	max	Stariuby, ISB2 (µA)		
	Min	Typ ^[2]	Max		Typ ^[2]	Max	Typ ^[2]	Max	Typ ^[2]	Max
CY62158EV30LL	2.2	3.0	3.6	45	6	7	18	25	2	8

Notes

^{1.} NC pins are not connected on the die.

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage Temperature-65 °C to +150 °C Ambient Temperature

to Ground Potential $^{[3, 4]}$ -0.3 V to $V_{CC(max)}$ + 0.3 V

DC Voltage Applied to Outputs in High Z State $^{[3,\ 4]}$ -0.3 V to V $_{\rm CC(max)}$ + 0.3 V

DC Input Voltage $^{[3, 4]}$ 0.3 V to $V_{CC(max)}$ + 0.3 V
Output Current into Outputs (LOW)
Static Discharge Voltage (MIL-STD-883, Method 3015)> 2001 V
Latch up Current> 200 mA

Operating Range

Product	Range	Ambient Temperature (T _A)	V cc ^[5]
CY62158EV30LL	Industrial	–40 °C to +85 °C	2.2 V-3.6 V

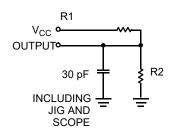
Electrical Characteristics

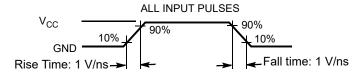
Over the Operating Range

D	December 1 and	Ta a 4 O a 4	Took Counditions				11	
Parameter	Description	Test Conditions		Min	Typ ^[6]	Max	Unit	
V _{OH}	Output HIGH voltage	$I_{OH} = -0.1 \text{ mA}$		2.0	_	_	V	
		I_{OH} = -1.0 mA, V_{CC}	≥ 2.70 V	2.4	_	_	V	
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA		-	-	0.4	V	
		I _{OL} = 2.1 mA, V _{CC} ≥	2.70 V	-	_	0.4	V	
V _{IH}	Input HIGH voltage	$V_{CC} = 2.2 \text{ V to } 2.7 \text{ V}$	/	1.8	_	V _{CC} + 0.3 V	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	/	2.2	_	V _{CC} + 0.3 V	V	
V _{IIL}	Input LOW voltage	$V_{CC} = 2.2 \text{ V to } 2.7 \text{ V}$	/	-0.3	_	0.6	V	
		V _{CC} = 2.7 V to 3.6 V		-0.3	_	0.8	V	
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$		-1	_	+1	μΑ	
l _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}, C$	Output Disabled	-1	_	+1	μΑ	
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	V _{CC} = V _{CCmax}	-	18	25	mA	
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	_	6	7	mA	
I _{SB1}	Automatic CE power down current — CMOS Inputs	$\label{eq:control_control} \begin{split} \overline{\text{CE}}_1 &\geq \text{V}_{\text{CC}} - 0.2 \text{ V,} \\ \text{V}_{\text{IN}} &\geq \text{V}_{\text{CC}} - 0.2 \text{ V,} \\ \text{f} &= \text{f}_{\text{max}} \text{ (Address ar)} \\ \text{f} &= 0 \text{ (OE and WE),} \end{split}$	/ _{IN} ≤ 0.2 V, nd Data Only),	_	2	8	μА	
I _{SB2} ^[7]	Automatic CE Power down Current — CMOS inputs			-	2	8	μА	

- Notes
 3. V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 4. V_{IH(max)}= V_{CC} + 0.75 V for pulse duration less than 20 ns.
 5. Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
 6. Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 7. Chip enables (CE₁ and CE₂) must be at CMOS level to meet the I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter [8]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF


Thermal Resistance

Parameter [8]	Description	Test Conditions	48-ball BGA	44-pin TSOP II	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	36.92	65.91	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		13.55	13.96	°C/W

AC Test Loads and Waveforms

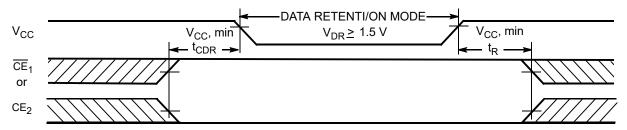
Figure 3. AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Parameters	2.5 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Note

^{8.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[9]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	-	-	V
I _{CCDR} ^[10]	Data retention current	$V_{CC} = 1.5 \text{ V}, \overline{CE}_1 \ge V_{CC} - 0.2 \text{ V}$ or $CE_2 \le 0.2 \text{ V}, V_{IN} \ge V_{CC} - 0.2 \text{ V}$ or $V_{IN} \le 0.2 \text{ V}$	-	3.2	8	μА
t _{CDR} ^[11]	Chip deselect to data retention time		0	-	-	ns
t _R ^[12]	Operation recovery time		45	-	-	ns

Data Retention Waveform

Figure 4. Data Retention Waveform

^{9.} Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

10. Chip enables (CE₁ and CE₂) must be at CMOS level to meet the I_{SB2}/I_{CCDR} spec. Other inputs can be left floating.

11. Tested initially and after any design or process changes that may affect these parameters.

12. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

Switching Characteristics

Over the Operating Range

Parameter [13, 14]	Description	45	ns	11:0:4
Parameter [19, 11]	Description	Min	Max	Unit
Read Cycle				•
t _{RC}	Read cycle time	45	_	ns
t _{AA}	Address to data valid	_	45	ns
t _{OHA}	Data Hold from address change	10	_	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	_	45	ns
t _{DOE}	OE LOW to data valid	_	22	ns
t _{LZOE}	OE LOW to Low Z ^[15]	5	_	ns
t _{HZOE}	OE HIGH to High Z ^[15, 16]	_	18	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[15]	10	_	ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[15, 16]	_	18	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power Up	0	_	ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power Down	_	45	ns
Write Cycle [17, 18	3]			
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	35	_	ns
t _{AW}	Address setup to Write End	35	_	ns
t _{HA}	Address Hold from Write End	0	_	ns
t _{SA}	Address setup to Write Start	0	_	ns
t _{PWE}	WE pulse width	35	_	ns
t _{SD}	Data setup to Write End	25	_	ns
t _{HD}	Data Hold from Write End	0	_	ns
t _{HZWE}	WE LOW to High Z ^[15, 16]	_	18	ns
t _{LZWE}	WE HIGH to Low Z ^[15]	10	_	ns

^{13.} In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the chip enable signal as described 13. In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the chip enable signal as described in the Application Note AN66311. However, the issue has been fixed and in production now, and hence, this Application Note is no longer applicable. It is available for download on our website as it contains information on the date code of the parts, beyond which the fix has been in production.
14. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 5.
15. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE}, and t_{HZWE} for any given device.
16. t_{HZCE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
17. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.
18. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of tsD and thzwe.

Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) [19, 20]

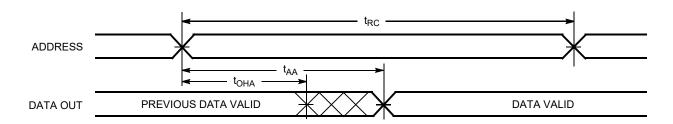
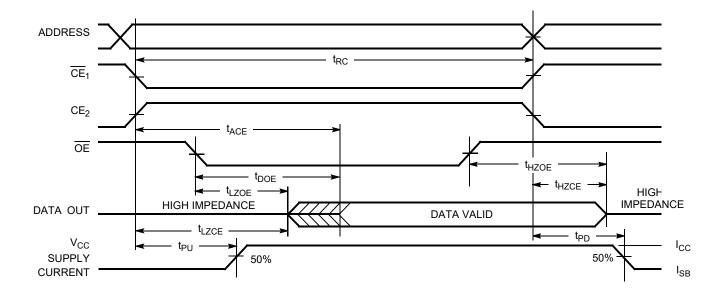



Figure 6. Read Cycle No. 2 (OE Controlled) [20, 21]

Note

^{19. &}lt;u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$.

^{20.} WE is HIGH for read cycle.

^{21.} Address valid before or similar to $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) [22, 23, 24]

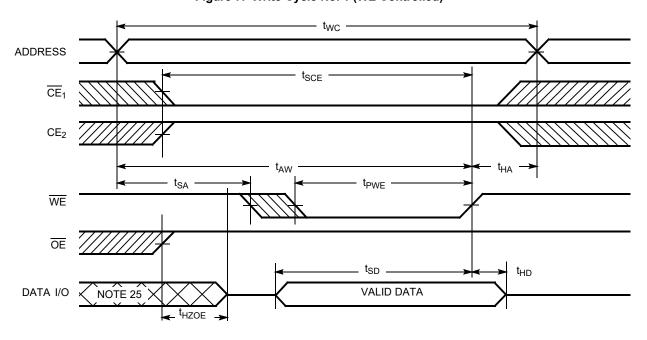
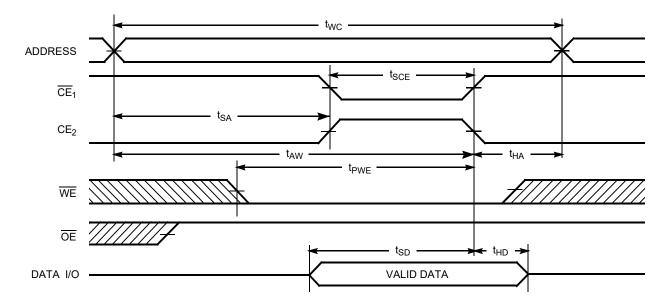
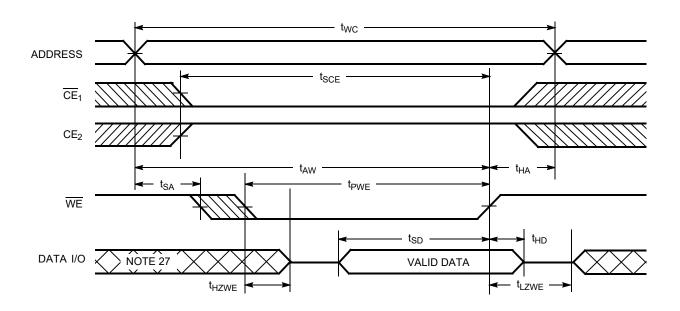



Figure 8. Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [22, 23, 24]



^{22.} The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE}_1 = V_{|L}$, and $CE_2 = V_{|H}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write \underline{by} going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write. 23. \underline{Data} I/O is high impedance if $\overline{DE} = V_{|H}$. 24. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in high impedance state. 25. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

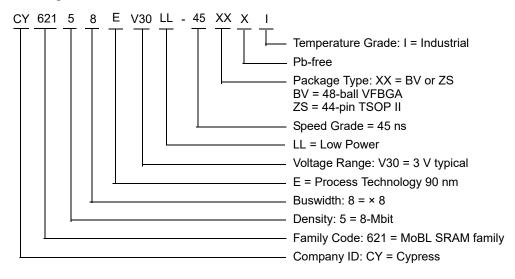
Figure 9. Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [26, 28]

^{28.} The minimum write cycle pulse width should be equal to the sum of tsD and tHZWE.

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	X ^[29]	Х	Х	High Z	Deselect/Power down	Standby (I _{SB})
X ^[29]	L	Х	Х	High Z	Deselect/Power down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

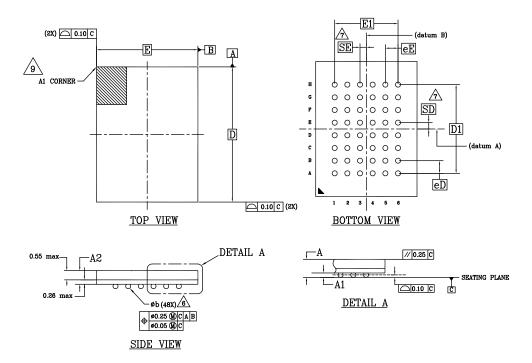
Note
29. The 'X' (Don't care) state for the Chip enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62158EV30LL-45BVXI	51-85150	48-ball VFBGA (Pb-free)	Industrial
	CY62158EV30LL-45ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	

Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

Package Diagrams

Figure 10. 48-ball VFBGA (6 × 8 × 1 mm) BV48/BZ48 Package Outline, 51-85150

	DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.	
A	-		1.00	
A1	0.16	-	•	
A2		-	0.81	
D		8.00 BSC		
E		6.00 BSC		
D1		5.25 BSC		
E1		3.75 BSC		
MD		8		
ME		6		
n		48		
Ø b	0.25	0.30	0.35	
eE		0.75 BSC		
eD		0.75 BSC		
SD		0.375 BSC		
SE.		0.375 BSC		

NOTES:

- 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-2009.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.

"SD" OR "SE" = 0.

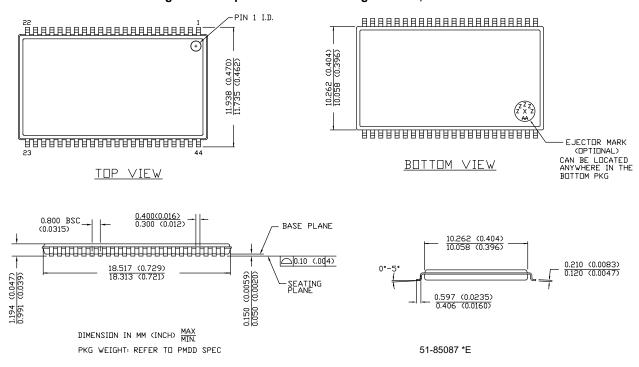
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 4. @REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
 IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.

 $\stackrel{\frown}{\triangle}$ DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
WHEN THERE IS AN OOD NUMBER OF SOLDER BALLS IN THE OUTER ROW

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.

8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.


(A) A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.

51-85150 *I

Package Diagrams (continued)

Figure 11. 44-pin TSOP Z44-II Package Outline, 51-85087

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
RAM	Random Access Memory
SRAM	Static Random Access Memory
TTL	Transistor-Transistor Logic
TSOP	Thin Small Outline Package
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μs	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Rev. E	ECN No.	Submission Date	Description of Change
**	270329		New data sheet.
*A	291271	11/19/2004	Changed status from Advance Information to Preliminary. Updated Data Retention Characteristics: Changed maximum value of I _{CCDR} parameter from 4 µA to 4.5 µA.
*B	444306	04/13/2006	Converted from Preliminary to Final. Removed 35 ns Speed Bin related information in all instances across the document. Removed 44-pin TSOP II Package related information in all instances across the document included 48-pin TSOP I Package related information in all instances across the docume Removed "L" from the part numbers across the document. Updated Product Portfolio: Changed maximum value of "Operating I _{CC} " from 2.3 mA to 3 mA corresponding to "f = 1 MHz". Changed typical value of "Operating I _{CC} " from 16 mA to 18 mA corresponding to "f = f _{max} . Changed typical value of "Operating I _{CC} " from 28 mA to 25 mA corresponding to "f = f _{max} . Changed maximum value of "Standby I _{SB2} " from 0.9 μA to 2 μA. Changed maximum value of "Standby I _{SB2} " from 0.9 μA to 2 μA. Changed maximum value of I _{SB1} parameter from 0.9 μA to 8 μA. Updated Electrical Characteristics: Changed typical value of I _{SB1} parameter from 0.9 μA to 8 μA. Changed maximum value of I _{SB2} parameter from 4.5 μA to 8 μA. Changed maximum value of I _{SB2} parameter from 4.5 μA to 8 μA. Updated AC Test Loads and Waveforms: Updated Figure 3 (Changed Test Load Capacitance from 50 pF to 30 pF). Updated Data Retention Characteristics: Added 2 μA as typical value of I _{CCDR} parameter. Changed minimum value of I _{SR} parameter from 4.5 μA to 5 μA. Changed minimum value of I _{CCDR} parameter from 4.5 μA to 5 μA. Changed minimum value of I _{CCDR} parameter from 50 pF to 30 pF). Updated Switching Characteristics: Added 2 μA as typical value for I _{CCDR} parameter from 4.5 μA to 5 μA. Changed minimum value of I _{CCDR} parameter from 6 ns to 10 ns corresponding to 45 ns speeb bin. Changed minimum value of I _{LCCR} parameter from 22 ns to 18 ns corresponding to 45 ns speed bin. Changed minimum value of I _{CCR} parameter from 20 ns to 25 ns corresponding to 45 ns speed bin. Changed minimum value of I _{CCR} parameter from 20 ns to 25 ns corresponding to 45 ns speed bin. Changed minimum value of I _{CCR} parameter from 20 ns to 25 ns corresponding to 45 ns speed bin. Up

Document History Page (continued)

	Title: CY621 Number: 38		, 8-Mbit (1024K × 8) Static RAM
Rev.	ECN No.	Submission Date	Description of Change
*C	467052	06/06/2006	Included 44-pin TSOP II Package related information in all instances across the documen Updated Features: Added Note "For 48-pin TSOP I pin configuration and ordering information, please refer to CY62157EV30 Data sheet." and referred the same note in 48-pin TSOP I package. Updated Ordering Information: Updated part numbers. Updated Package Diagrams: Removed spec 51-85183 *A. Added spec 51-85087 *A,
*D	1015643	04/28/2007	Updated Electrical Characteristics: Added Note 7 and referred the same note in I _{SB2} parameter. Updated Data Retention Characteristics: Added Note 10 and referred the same note in I _{CCDR} parameter.
*E	2934396	06/03/2010	Updated Truth Table: Added Note 29 and referred the same note in "X" under \overline{CE}_1 and CE_2 columns. Updated Package Diagrams: spec 51-85150 – Changed revision from *D to *E. spec 51-85087 – Changed revision from *A to *C. Updated to new template.
*F	3110202	12/14/2010	Updated Logic Block Diagram. Updated Ordering Information: No change in part numbers. Added Ordering Code Definitions. Updated Package Diagrams: spec 51-85150 – Changed revision from *E to *F.
*G	3269641	05/30/2011	Removed 48-pin TSOP I Package related information in all instances across the document Updated Functional Description: Removed the note "For best practice recommendations, refer to the Cypress application note "System Design Guidelines" at http://www.cypress.com." and its reference. Updated Data Retention Characteristics: Changed minimum value of t _R parameter from t _{RC} ns to 45 ns. Added Acronyms and Units of Measure. Updated to new template. Completing Sunset Review.
*H	3598409	04/24/2012	Updated Package Diagrams: spec 51-85150 – Changed revision from *F to *G. spec 51-85087 – Changed revision from *C to *D. Completing Sunset Review.
*	4100078	08/20/2013	Updated Switching Characteristics: Added Note 13 and referred the same note in "Parameter" column. Updated Package Diagrams: spec 51-85150 – Changed revision from *G to *H. spec 51-85087 – Changed revision from *D to *E. Updated to new template.
*J	4576526	11/21/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Switching Characteristics: Added Note 18 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 28 and referred the same note in Figure 9.

Document History Page (continued)

Rev.	ECN No.	Submission Date	Description of Change
*K	4790694	06/08/2015	Updated Maximum Ratings: Referred Notes 3, 4 in "Supply Voltage to Ground Potential". Updated to new template. Completing Sunset Review.
*L	5979591	11/29/2017	Updated Cypress Logo and Copyright.
*M	6819908	02/28/2020	Updated Features: Updated description. Updated Product Portfolio: Updated all values of "Operating I_{CC} " corresponding to "f = 1 MHz". Updated Electrical Characteristics: Updated all values of I_{CC} parameter corresponding to "45 ns" and "f = 1 MHz". Updated Thermal Resistance: Updated all values of Θ_{JA} , Θ_{JC} parameters corresponding to all packages. Updated Data Retention Characteristics: Updated all values of I_{CCDR} parameter. Updated Package Diagrams: spec 51-85150 – Changed revision from *H to *I. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Cypress.com/memory

cypress.com/memory

cypress.com/memory

cypress.com/memory

cypress.com/memory

Microcontrollers

Wireless Connectivity

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004–2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device whose failure could cause personal injury, death, or property damage. Examples of High-Risk Device are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose fa

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-05578 Rev. *M Revised February 28, 2020 Page 19 of 19