Silicon Power Transistors

The MJW21193 and MJW21194 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

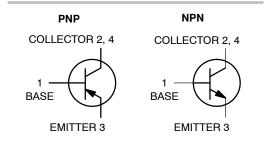
- Total Harmonic Distortion Characterized
- High DC Current Gain
- Excellent Gain Linearity
- High SOA
- These Devices are Pb-Free and are RoHS Compliant

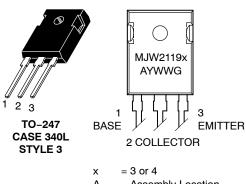
MAXIMUM RATINGS

Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	V _{CEO}	250	Vdc		
Collector-Base Voltage	V _{CBO}	400	Vdc		
Emitter-Base Voltage	V _{EBO}	5.0	Vdc		
Collector-Emitter Voltage - 1.5 V	V _{CEX}	400	Vdc		
Collector Current – Continuous	۱ _C	16	Adc		
Collector Current – Peak (Note 1)	I _{CM}	30	Adc		
Base Current – Continuous	Ι _Β	5.0	Adc		
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	200 1.43	W W/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	– 65 to +150	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	°C/W


ON Semiconductor®

http://onsemi.com

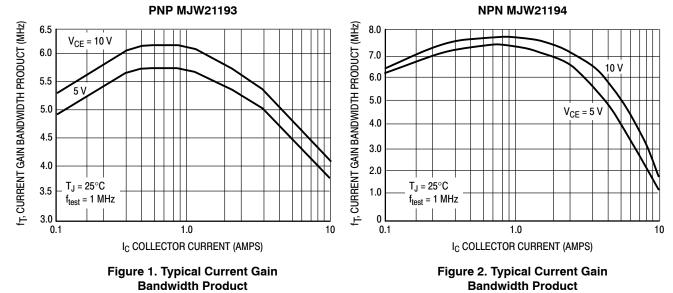
16 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 200 WATTS

MARKING DIAGRAM

A = Assembly Location

Y = Year

WW = Work Week


G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
MJW21193G	TO-247 (Pb-Free)	30 Units/Rail
MJW21194G	TO–247 (Pb–Free)	30 Units/Rail

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage $(I_{C} = 100 \text{ mAdc}, I_{B} = 0)$	V _{CEO(sus)}	250	_	-	Vdc
Collector Cutoff Current ($V_{CE} = 200 \text{ Vdc}, I_B = 0$)	ICEO	-	_	100	μAdc
Emitter Cutoff Current ($V_{CE} = 5 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	_	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	I _{CEX}	_	_	100	μAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward $(V_{CE} = 50 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$ $(V_{CE} = 80 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$	Biased I _{S/b}	4.0 2.25			Adc
ON CHARACTERISTICS	<u>.</u>				
DC Current Gain (I _C = 8 Adc, V_{CE} = 5 Vdc) (I _C = 16 Adc, I _B = 5 Adc)	h _{FE}	20 8		80	
Base-Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)	V _{BE(on)}	_	_	2.2	Vdc
Collector-Emitter Saturation Voltage ($I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc}$) ($I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc}$)	V _{CE(sat)}			1.4 4	Vdc
DYNAMIC CHARACTERISTICS					
Total Harmonic Distortion at the Output V _{RMS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS} h _F	E matched		0.8		%
(Matched pair h_{FE} = 50 @ 5 A/5 V) h_{F}		_	0.08	_	
Current Gain Bandwidth Product ($I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz}$)	f _T	4	_	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	-	-	500	pF

TYPICAL CHARACTERISTICS

1000

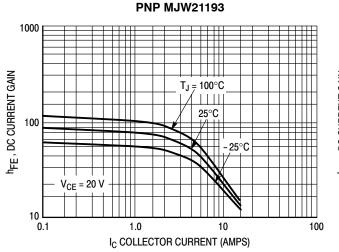
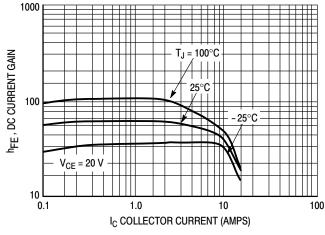
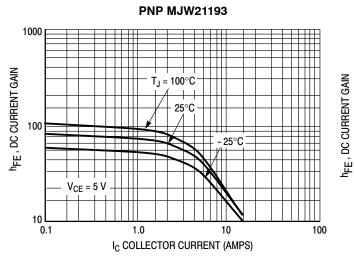
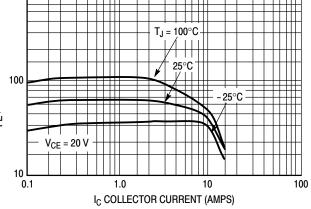



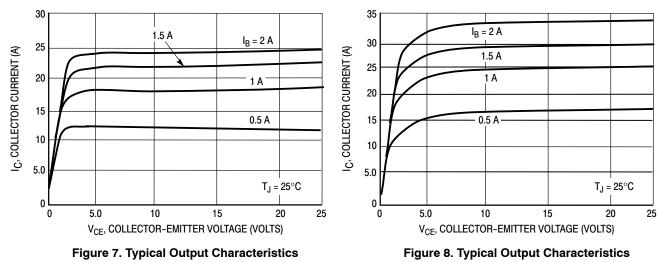
Figure 3. DC Current Gain, V_{CE} = 20 V

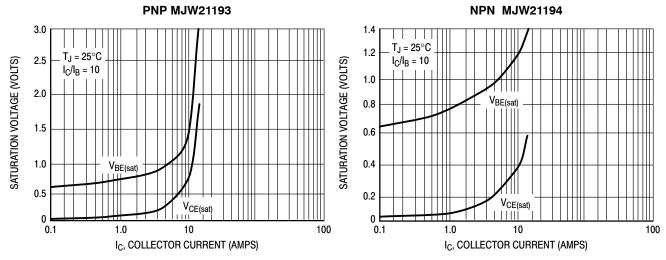
NPN MJW21194

Figure 4. DC Current Gain, V_{CE} = 20 V

NPN MJW21194


Figure 5. DC Current Gain, $V_{CE} = 5 V$


NPN MJW21194

PNP MJW21193

http://onsemi.com

TYPICAL CHARACTERISTICS

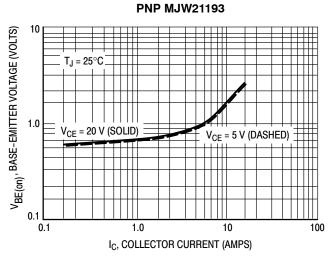


Figure 11. Typical Base–Emitter Voltage

1 Sec

10

100

10

1.0

0.1

1.0

I_C, COLLECTOR CURRENT (AMPS)

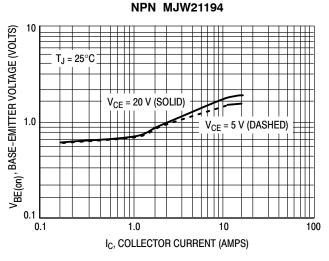
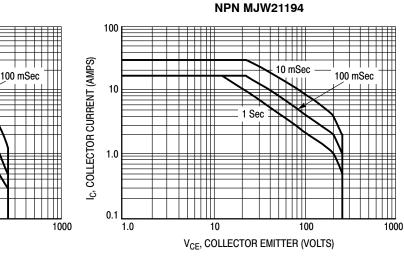



Figure 12. Typical Base-Emitter Voltage

PNP MJW21193

10 mSec

100

V_{CE}, COLLECTOR EMITTER (VOLTS)

Figure 14. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

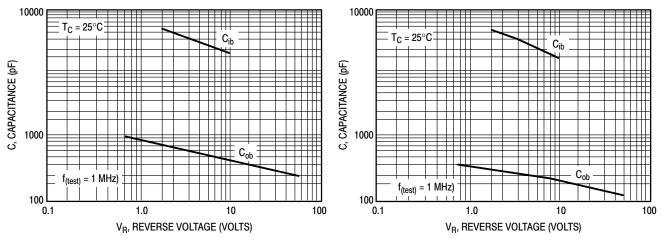


Figure 15. MJW21193 Typical Capacitance

Figure 16. MJW21194 Typical Capacitance

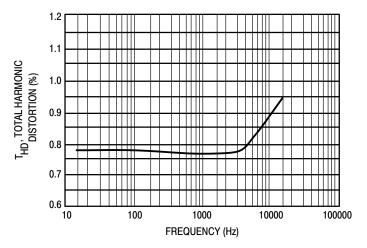


Figure 17. Typical Total Harmonic Distortion

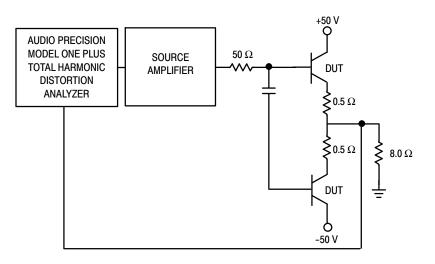
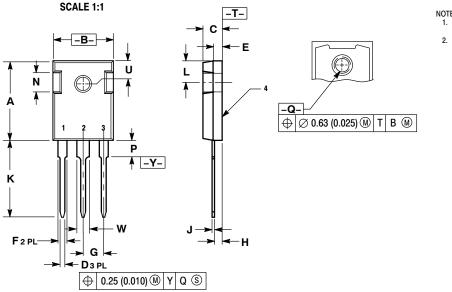



Figure 18. Total Harmonic Distortion Test Circuit

PACKAGE DIMENSIONS

TO-247 CASE 340L-02 ISSUE F

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.32	21.08	0.800	8.30
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
H	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
K	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
P		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC		0.242	BSC
W	2.87	3.12	0.113	0.123

STYLE 3: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC has been or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, or indirectly any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Order Literature: http://www.onsemi.com/orderlit

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technica Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: MJW21193 MJW21194