

CMR Series

Isolated 0.75W Single and Dual Output Isolated DC/DC Converters

FEATURES

- Short circuit protection options
- UL 60950 recognised
- Single or Dual Isolated Outputs
- 1kVDC or 3kVDC options 'Hi Pot Test'
- Wide temperature performance at full 0.75W load -40°C to 85°C
- Industry Standard Pinouts
- 5V, 12V and 24V Inputs
- 5V, 12V and 15V Outputs
- Pin compatible with NMR, MER1, MMV, MEV1, NMK, MEV3, NMV series.

DESCRIPTION

The CMR series are a cost effective 0.75W DC/DC converter series, in an industry standard package with industry standard pinouts, Popular input and output voltages are available as a lower power alternative to a 1W DC/DC converter. The galvanic isolation allows the device to be configured to provide an isolated negative rail in systems where only positive rails exist. The wide temperature range guarantees startup from -40° C and full 0.75 watt output at 85°C. For the short circuit protected parts (PC) protection is continuous and auto-resetting on removal of the short circuit.

SELECTION GUID	SELECTION GUIDE													
Order Code	Nominal Input Voltage	Output Voltage	Output Current	Load	Regulation	Ripple &	Noise ³	Input Current at rated load	: 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	EIIICIEIIC	Isolation Capacitance	Ĭ.	_ _ _ _ _	
	V	V	mA	- %			р-р	mA		6_	pF	MIL.	Tel.	
	•	•	-		Тур.	Max	Тур.	Max.		Min.	Тур.	۳'	Kh	Irs
CMR100C	5	5	150	9	11	6	10	218	65	69	30	1850		
CMR118C	24	5	150	6.8	10	8	15	46	65	70	60	1250		
				3kVD	C Isol	ation (ptions	;						
CMR0505SA3C	5	5	150	9	11	15	25	220	64	68	30	4240		
CMR0512S3C	5	±12	±31	5	6	6.7	8	192	74	78	30	1560		
CMR0515S3C	5	±15	±25	4	6	6.3	8.2	188	76	79	30	1060		
CMR1215S3C	12	±15	±25	3	4.5	6.5	13	80	76	79	40	925		
Short Circuit Protection Options														
CMR100PC	5	5	150	7.5	9	10	25	200	73	75.5	22	3095	61060	
CMR0505SAP3C4	5	5	150	7.5	9	20	40	195	74	76	20	2680	56444	

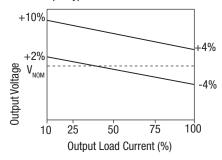
INPUT CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Voltage range	Continuous operation, 5V input types	4.5	5	5.5	V		
	Continuous operation, 12V input types	10.8	12	13.2			
	Continuous operation, 24V input types	21.6	24	26.4			
Input short circuit current	Short circuit variants		95		mA		
	CMR100PC		2	15			
Input reflected ripple	CMR0505SAP3C		5	15	mA		
current	5V & 12V input types		2.6	4	р-р		
	24V input types		10	15			

OUTPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Rated Power ²	T _A =-40°C to 85°C			0.75	W	
Voltage Set Point Accuracy	See tolerance envelope					
Line regulation	High V _{IN} to low V _{IN} ; Short circuit types		1.15	1.2	%/%	
	High V _{IN} to low V _{IN} ; All other output types		1.0	1.2	70/%	

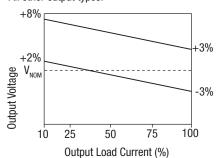
ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Isolation voltage	C versions flash tested for 1 second	versions flash tested for 1 second 1000			VDC		
	3C versions flash tested for 1 minute	3000			VDC		
Resistance	Viso=1000VDC	10			GΩ		

ABSOLUTE MAXIMUM RATINGS					
Lead temperature 1.5mm from case for 10 seconds	260°C				
5V input types	7V				
12V input types	15V				
24V input types	28V				

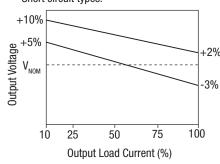
- $1. \ Calculated \ using \ MIL-HDBK-217 \ FN2 \ and \ Telcordia \ SR-332 \ calculation \ model \ with \ nominal \ input \ voltage \ at full \ load.$
- 2. See derating graph.
- 3. See ripple & noise characterisation method.
- 4. 3kVDC Isolation
- All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.



GENERAL CHARACTERISTIC	S S				
Parameter	Conditions	Min.	Тур.	Max.	Units
Switching frequency	5V input types		110		
	12V input types		120		
	24V input types		80		kHz
	CMR100PC		97		
	CMR0505SAP3C		88		


TEMPERATURE CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Specification	All output types	-40		85		
Storage		-50		125		
	5V output types		33	°C		
Casa Tamparatura abaya ambiant	All other output types		28			
Case Temperature above ambient	1kVDC short circuit types		18			
	3kVDC short circuit types		19			
Cooling	Free air convection					

TOLERANCE ENVELOPES



All other output types:

Short circuit types:

The voltage tolerance envelope shows typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading.

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions CMR series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second for C versions and 3kVDC for 1 minute for 3C versions.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The CMR is recognised by Underwriters Laboratory for functional insulation, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The CMR series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

SAFETY APPROVAL

UL60950

The CMR is recognised by Underwriters Laboratory (UL) to UL 60950 for functional insulation. The CMR100C and CMR118C in a maximum still air ambient temperature of 100°C as measured at any point on the case of the unit (hotspot).

FUSING

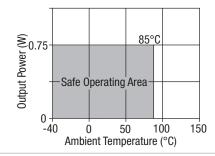
The CMR Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below.

CMR100xC: 0.5A CMR118C: 0.12A CMR05xxxx3C: 0.315A CMR12xxxx3C: 1A

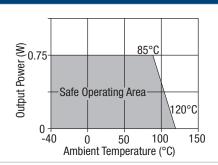
All fuses should be UL recognized and rated to 125V.

File number E151252 applies.

Rohs Compliance Information



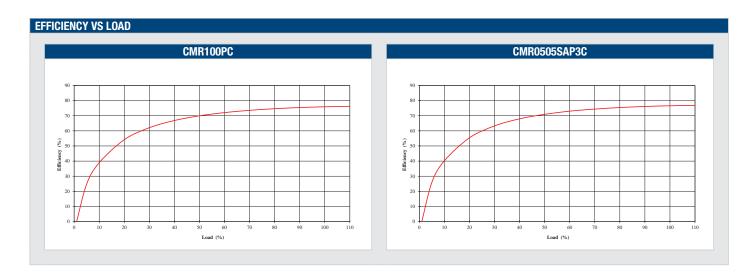
This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. The pin termination finish on this product series is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems.


For further information, please visit www.murata-ps.com/rohs

TEMPERATURE DERATING GRAPHS

Short Circuit types only.

All other types.

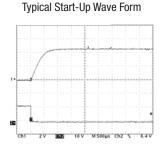


CMR Series

Isolated 0.75W Single and Dual Output Isolated DC/DC Converters

EFFICIENCY VS LOAD	
LITIOILNOT VO LUAD	
CMR100C	CMR118C
CMR0505SA3C	CMR0512S3C
CMR0515S3C	CMR1215S3C
OMITIOS 13330	OMITT213330

APPLICATION NOTES

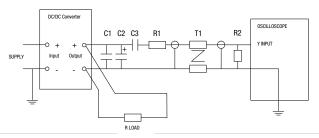

Minimum load

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of 2.2 μ s and output capacitance of 10 μ F, are shown in the table below. The product series will start into a capacitance of 47 μ F with an increased start time, however, the maximum recommended output capacitance is 10 μ F.

	Start-up time
	μs
CMR100C	2300
CMR118C	670
CMR0505SA3C	1970
CMR0512S3C	11200
CMR0515S3C	16300
CMR1215S3C	11200
CMR100PC	360
CMR0505SAP3C	370



Ripple & Noise Characterisation Method

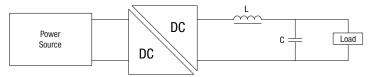
Ripple and noise measurements are performed with the following test configuration.

C1	1μF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter
C2	$10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100 \text{m}\Omega$ at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, ±1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires
Measured va	ues are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

APPLICATION NOTES (continued)

Output Ripple Reduction

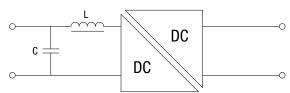

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to $5mV\ p-p\ max$.

Component selection

Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended.

The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter.

Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz


			Capacitor	
	L, μH	SMD	Through Hole	C, µF
CMR100C	10	82103C	11R103C	4.7
CMR118C	10	82103C	11R103C	4.7
CMR0505SA3C	22	82223C	11R223C	1
CMR0512S3C	150	82154C	11R154C	0.33
CMR0515S3C	220	82224C	11R224C	0.33
CMR1215S3C	220	82224C	11R224C	0.22
CMR100PC	22	82223C	11R223C	1
CMR0505SAP3C	22	82223C	11R223C	1

EMC FILTERING AND SPECTRA

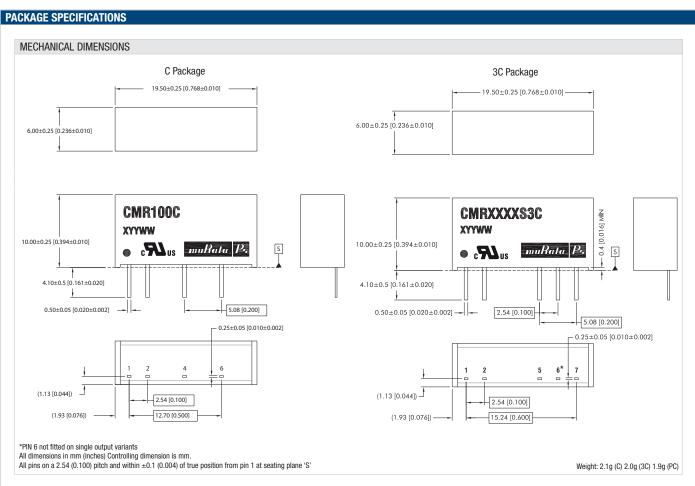
FILTERING

The following filter circuit and filter table shows the input filters typically required to meet EN 55022 Curve B, Quasi-Peak EMC limit, as shown in the following plots. The following plots show positive and negative quasi peak and CISPR22 Average Limit B (pink line) and Quasi Peak Limit B (green line) adherence limits.

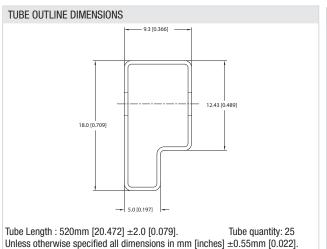
C Ceramic capacitor

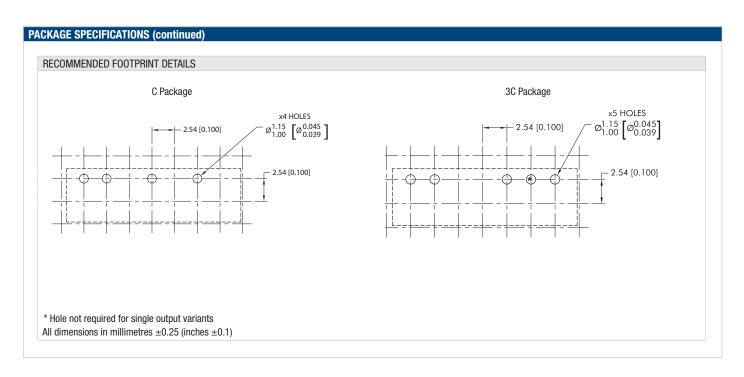
		Capacitor		
Part Number	L, μH	SMD	Through Hole	C, µF
CMR100C				
CMR118C				
CMR0505SA3C				
CMR0512S3C				
CMR0515S3C				
CMR1215S3C				
CMR100PC	22	82223C	11R223C	1
CMR0505SAP3C				

	CMR100C	CMR118C
	CMR0505SA3C	CMR0512S3C
	CMR0505SA3C	CMR0512S3C
ľ	CMR0505SA3C	CMR0512S3C
	CMR0505SA3C	CMR0512S3C
	CMR0505SA3C	CMR0512S3C
	CMR0505SA3C	CMR0512S3C
ľ	CMR0505SA3C	CMR0512S3C
	CMR0505SA3C	CMR0512S3C


www.murata-ps.com/support

CMR Series


Isolated 0.75W Single and Dual Output Isolated DC/DC Converters



PIN CONNECTIONS

PIN	С	3C Cingle Duel	
		Single	Dual
1	+Vin	+Vin	$+V_{\text{IN}}$
2	-VIN	-VIN	-V _{IN}
4	-Vout		
5		-Vоит	-Vout
6	+V 0UT		OV
7		+V out	+Vоит
1		+ v 001	+1001

Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject on an experience of the product of the p

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

CMR0505SA3C