

LOW-VOLTAGE QUADRUPLE BUS SWITCH

IDT74CBTLV3125

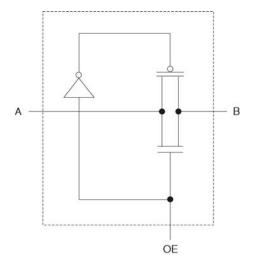
FEATURES:

- Pin-out compatible with standard '125 Logic products
- 5Ω A/B bi-directional bus switch
- · Isolation under power-off conditions
- · Over-voltage tolerant
- · Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- Available in QSOP and TSSOP packages

APPLICATIONS:

• 3.3V High Speed Bus Switching and Bus Isolation

DESCRIPTION:

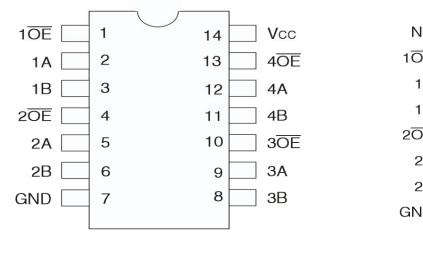

The CBTLV3125 features four independent switches. Each switch is enabled when the associated output-enable (\overline{OE}) input is low.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

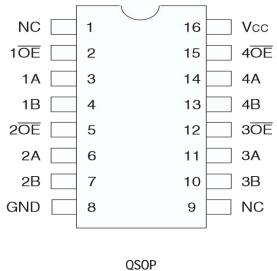
SIMPLIFIED SCHEMATIC, EACH SWITCH

FUNCTIONAL BLOCK DIAGRAM

з 2 1A 1B sw 10E 5 6 2A SW 2R 20E 9 8 ЗA ЗB sw 10 3OE 12 11 4A 4B SW 13 40E



NOTE: 1. Pin numbers shown apply to the 14-pin TSSOP package.


The IDT logo is a registered trademark of Integrated Device Technology, Inc.
INDUSTRIAL TEMPERATURE RANGE

DECEMBER 2014

PIN CONFIGURATION

TSSOP TOP VIEW

TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max U	
Vcc	SupplyVoltage Range	–0.5 to +4.6 V	
Vi	Input Voltage Range	–0.5 to +4.6	V
	Continuous Channel Current	128	mA
Ік	Input Clamp Current, VI/O < 0	-50	mA
Tstg	Storage Temperature	–65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE(1)

Input OE	Inputs/Outputs
L	A Port = B Port
Н	Disconnect

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS, $TA = 25^{\circ}C^{(1)}$

Symbol	Parameter Test Conditions		Min.	Мах.	Unit
Vcc	SupplyVoltage		2.3	3.6	V
Vih	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	—	V
		Vcc = 2.7V to 3.6V	2	—	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	—	0.7	V
		Vcc = 2.7V to 3.6V	—	0.8	
TA	Operating Free-Air Temperature		-40	85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Conditions: TA = -40 °C to +85 °C

Symbol	Parameter	Test Conditions		Min.	Тур. ⁽¹⁾	Max.	Unit
Vik	Control Inputs, Data Inputs	Vcc = 3V, II = -18mA		_	_	-1.2	V
li	Control Inputs	Vcc = 3.6V, VI = Vcc or GND		_	_	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0 or 3.6V, switch	n disabled	_	_	5	μA
IOFF		Vcc = 0, VI or Vo = 0 to 3.6V		_	_	50	μA
Icc		Vcc = 3.6V, Io = 0, VI = Vcc or GND		_	_	10	μA
$\Delta ICC^{(2)}$	Control Inputs	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	_	300	μA
Сі	Control Inputs	VI = 3V or 0		_	4	—	рF
CIO(OFF)		$V_0 = 3V \text{ or } 0, \overline{OE} = V_{CC}$		_	6	_	рF
	Vcc = 2.3V	VI = 0	Io = 64mA	_	5	8	
	Typ. at Vcc = 2.5V		lo = 24mA	_	5	8	
Ron ⁽³⁾		VI = 1.7V	Io = 15mA	_	27	40	Ω
		VI = 0	Io = 64mA	_	5	7	
	Vcc = 3V		lo = 24mA	_	5	7	
		VI = 2.4V	lo = 15mA	—	10	15	

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

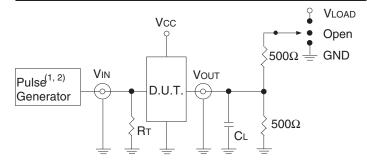
2. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.

3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

		$Vcc = 2.5V \pm 0.2V$		$VCC = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PD ⁽¹⁾	Propagation Delay	-	0.15	-	0.25	ns
	A to B or B to A					
ten	Output Enable Time	1	4.6	1	4.4	ns
	OE to A or B					
tois	OutputDisableTime	1	3.9	1	4.2	ns
	OE to A or B					

NOTE:


1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).

IDT74CBTLV3125 LOW-VOLTAGEQUADRUPLEBUSSWITCH

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
Vih	3	Vcc	V
Vт	1.5	Vcc / 2	V
Vlz	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

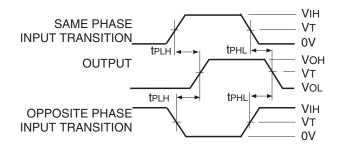
Test Circuits for All Outputs

DEFINITIONS:

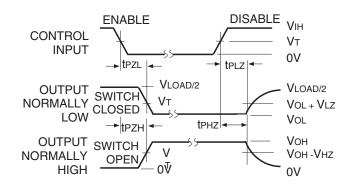
CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

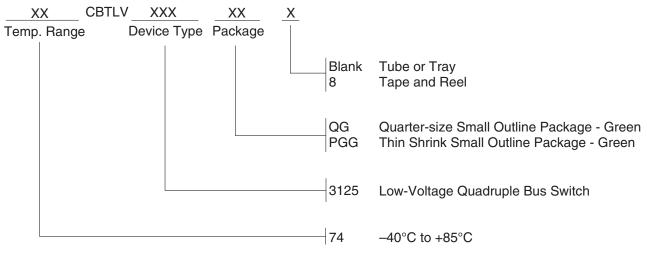

1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.

2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2.5ns.


SWITCH POSITION

Test	Switch
tPLZ/tPZL	Vload
tpнz/tpzн	GND
ted	Open

INDUSTRIAL TEMPERATURE RANGE



Enable and Disable Times

IDT74CBTLV3125 LOW-VOLTAGEQUADRUPLEBUSSWITCH

ORDERING INFORMATION

Datasheet Document History

07/14/2008 Pg. 1 Updated IDT Logo.

12/04/2014 Pg. 5 Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): 74CBTLV3125PGG8 74CBTLV3125QG 74CBTLV3125PGG 74CBTLV3125QG8