

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

TISP4xxxL3AJ Overvoltage Protector Series

SMA (DO-214AC) Package 25% Smaller Placement Area than SMB Ion-Implanted Breakdown Region

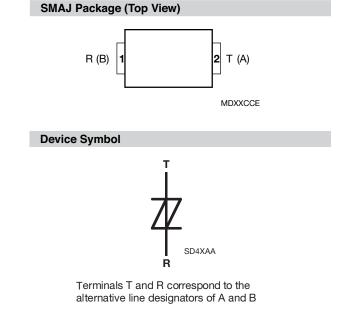
Precise and Stable Voltage

Device	V _{DRM}	V _(BO)
Device	v	v
'4070	58	70
'4080	65	80
'4090	70	90
'4125	100	125
'4145	120	145
'4165	135	165
'4180	145	180
'4220	160	220
'4240	180	240
'4260	200	260
'4290	230	290
'4320	240	320
'4350	275	350
'4360	290	360
'4395	320	395

Rated for International Surge Wave Shapes

Wave Shape	Standard	I _{TSP}
wave Shape	Standard	Α
2/10 µs	GR-1089-CORE	125
8/20 μs	IEC 61000-4-5	100
10/160 μs	FCC Part 68	65
10/700 μs	ITU-T K.20/21/45	50
10/560 μs	FCC Part 68	40
10/1000 μs	GR-1089-CORE	30

How to Order


Device	Package	Carrier	Order As
TISP4xxxL3AJ	SMA (DO-214AC)	Embossed Tape Reel Pack	TISP4xxxL3AJR-S

Insert xxx value corresponding to protection voltages of 070, 080, 090, etc.

*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

JULY 2000 - REVISED SEPTEMBER 2014

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

SUUL Recognized Components

BOURNS

Description

These devices are designed to limit overvoltages on the telephone line. Overvoltages are normally caused by a.c. power system or lightning flash disturbances which are induced or conducted on to the telephone line. A single device provides 2-point protection and is typically used for the protection of 2-wire telecommunication equipment (e.g. between the Ring and Tip wires for telephones and modems). Combinations of devices can be used for multi-point protection (e.g. 3-point protection between Ring, Tip and Ground).

The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the overvoltage to be safely diverted through the device. The high crowbar holding current helps prevent d.c. latchup as the diverted current subsides.

The TISP4xxxL3 range consists of fifteen voltage variants to meet various maximum system voltage levels (58 V to 320 V). They are guaranteed to voltage limit and withstand the listed international lightning surges in both polarities. These protection devices are in an SMAJ (JEDEC DO-214AC with J-bend leads) plastic package. These devices are supplied in embossed tape reel carrier pack. For alternative voltage and holding current values, consult the factory. For higher rated impulse currents, the 50 A 10/1000 TISP4xxxM3AJ series in SMA and the 100 A 10/1000 TISP4xxxH3BJ series in SMB are available.

Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating		Symbol	Value	Unit
	'4070		± 58	
	'4080		± 65	
	'4090		± 70	
	'4125		±100	
	'4145		±120	
	'4165		±135	
	'4180		±145	
Repetitive peak off-state voltage, (see Note 1)	'4220	V _{DRM}	±160	V
	'4240		±180	
	'4260		±200	
	'4290		±230	
	'4320		±240	
	'4350)	±275	
	'4360		±290	
	'4395		±320	
Non-repetitive peak on-state pulse current (see Notes 2, 3 and 4)				
2/10 μs (GR-1089-CORE, 2/10 μs voltage wave shape)			125	
8/20 μs (IEC 61000-4-5, combination wave generator, 1.2/50 voltage, 8/	(20 current)		100	
10/160 μ s (FCC Part 68, 10/160 μ s voltage wave shape)			65	
5/310 μs (ITU-T K.20/21/45, K.44 10/700 μs voltage wave shape)		I _{TSP}	50	A
5/310 μs (FTZ R12, 10/700 μs voltage wave shape)			50	
10/560 $\mu s~$ (FCC Part 68, 10/560 μs voltage wave shape)			40	
10/1000 μs (GR-1089-CORE, 10/1000 μs voltage wave shape)			30	
Non-repetitive peak on-state current (see Notes 2, 3 and 4)				
20 ms (50 Hz) full sine wave			18	
1 s (50 Hz) full sine wave		I _{TSM}	7	А
1000 s 50 Hz/60 Hz a.c.			1.6	
Junction temperature		ТJ	-40 to +150	°C
Storage temperature range		T _{stg}	-65 to +150	°C

NOTES: 1. For voltage values at lower temperatures, derate at 0.13 %/°C.

2. Initially, the TISP4xxxL3 must be in thermal equilibrium with $T_1 = 25$ °C.

3. The surge may be repeated after the TISP4xxxL3 returns to its initial conditions.

4. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring track widths. Derate current values at -0.61 %/°C for ambient temperatures above 25 °C.

JULY 2000 - REVISED SEPTEMBER 2014

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

BOURNS

Recommended Operating Conditions

	Component			Max	Unit
	series resistor for FCC Part 68, 10/560 type A surge survival	12			Ω
	series resistor for FCC Part 68, 9/720 type B surge survival	0			Ω
R _S	series resistor for GR-1089-CORE first-level and second-level surge survival	23			Ω
	series resistor for K.20, K.21 and K.45 1.5 kV, 10/700 surge survival	0			Ω
	series resistor for K.20, K.21 and K.45 coordination with a 400 V primary protector	7			Ω

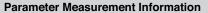
Electrical Characteristics, T_A = 25 °C (Unless Otherwise Noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
lanu	Repetitive peak off-	$V_D = V_{DRM}$ $T_A = 25$	°C		±5	μA
IDRM	state current	$V_D = V_{DRM}$ $T_A = 85$	°C		±10	μΑ
		'40	70		±70	
		'40	80		±80	
		'40	90		±90	
		'41	25		±125	
		'41	45		±145	
		'41	65		±165	
		'41	80		±180	
V _(BO)	Breakover voltage	dv/dt = Â G50 V/ms, R _{SOURCE} = 300 Ω '42	20		±220	V
		42	40		±240	
		42	60		±260	
		42	90		±290	
		43	20		±320	
		43	50		±350	
		'43	60		±360	
		43	95		±395	
I _(BO)	Breakover current	dv/dt = \pm G 0 V/ms, R _{SOURCE} = 300 Ω			±0.İ	A
Ι _Η	Holding current	$I_T = \pm 5$ A, di/dt = +/-30 mA/ms	±0.15		±0.60	А
dv/dt	Critical rate of rise of	Linear voltage ramp, Maximum ramp value < 0.85V _{DRM}	±5			kV/μs
aviat	off-state voltage		±0			κνημο
		'4070, $V_D = \pm 52V$				
		'4080, $V_D = \pm 59V$				
		'4090, $V_D = \pm 63V$				
		'4125, $V_D = \pm 90 V$				
		'4145, V _D = ±108 V				
		'4165, $V_D = \pm 122 V$				
		'4180, $V_D = \pm 131 \text{ V}$				
I _D	Off-state current	'4220, $V_D = \pm 144 V$			±2	μΑ
		'4240, V _D = ±162 V				
		'4260, V _D = ±180 V				
		'4290, $V_D = \pm 207 V$				
		'4320, $V_D = \pm 216 V$				
		'4350, $V_D = \pm 248 V$				
		'4360, $V_D = \pm 261 \text{ V}$				
		'4395, $V_D = \pm 288 V$				
I _D	Off-state current	$V_{D} = \pm 50 \text{ V}$			±10	μΑ

JULY 2000 - REVISED SEPTEMBER 2014 Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

BOURNS

Electrical Characteristics, T_A = 25 °C (Unless Otherwise Noted) (Continued)


	Parameter		Test Conditions		Min	Тур	Max	Unit
		f = 1 MHz,	$V_d = 1 \text{ V rms}, V_D = \pm 1 \text{ V}$	4070 thru '4090		53	64	
				'4125 thru '4220		40	48	
C	Off state consolitance			'4240 thru '4395		33	40	рF
C _{off}	Off-state capacitance	f = 1 MHz,	$V_d = 1 \text{ V rms}, V_D = \pm 50 \text{ V}$	'4070 thru '4090		25	30	рг
				'4125 thru '4220		18	22	
				'4240 thru '4395		14	17	

Thermal Characteristics

	Parameter	Test Conditions	Min	Тур	Max	Unit
Bein Junction to free air thermal resistance	EIA/JESD51-3 PCB, $I_T = I_{TSM(1000)}$, $T_A = 25 \text{ °C}$, (see Note 75)			115 °C/W		
R _{θJA}		265 mm x 210 mm populated line card, 4-layer PCB, $I_T = I_{TSM(1000)}$, $T_A = 25 \text{ °C}$		52		0/11

NOTE 5: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.

BOURNS

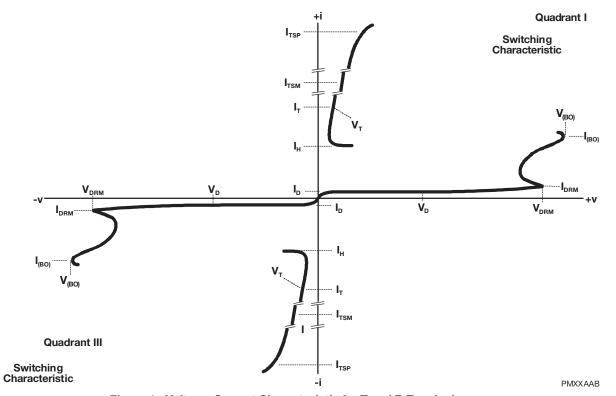
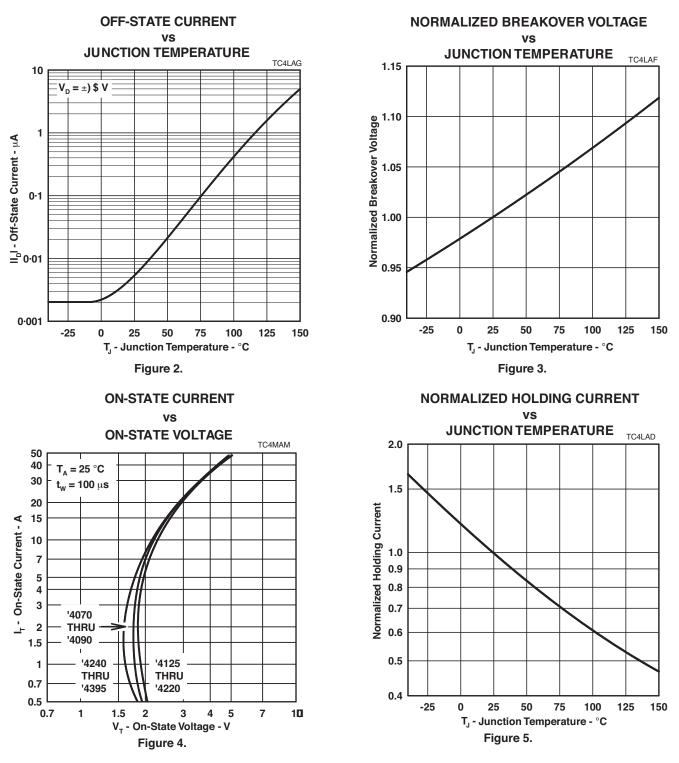
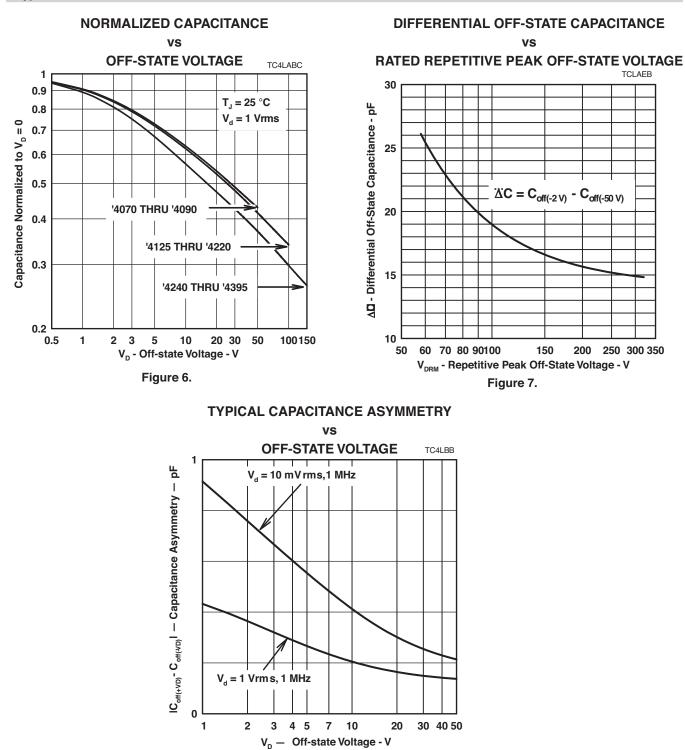



Figure 1. Voltage-Current Characteristic for T and R Terminals All Measurements are Referenced to the R Terminal

BOURNS

Typical Characteristics

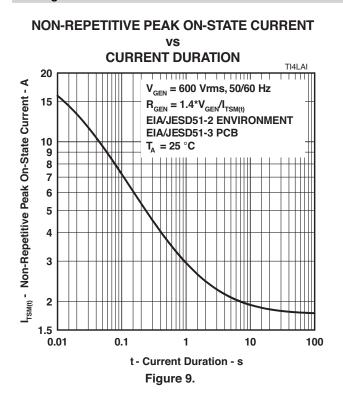


JULY 2000 - REVISED SEPTEMBER 2014

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

BOURNS

Typical Characteristics


JULY 2000 - REVISED SEPTEMBER 2014

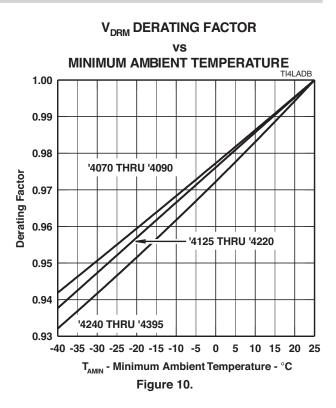
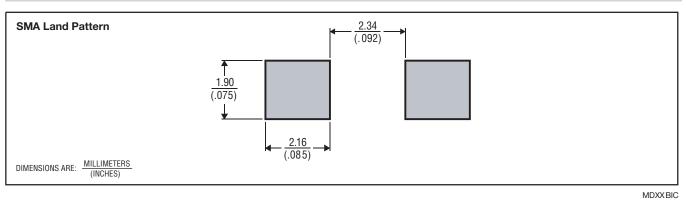

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

Figure 6.

BOURNS

Rating and Thermal Information



BOURNS

MECHANICAL DATA

Recommended Printed Wiring Land Pattern Dimensions

Device Symbolization Code

Devices will be coded as below. As the device parameters are symmetrical, terminal 1 is not identified.

Device	Symbolization Code
TISP4070L3	4070L
TISP4080L3	4080L
TISP4090L3	4090L
TISP4125L3	4125L
TISP4145L3	4145L
TISP4165L3	4165L
TISP4180L3	4180L
TISP4220L3	4220L
TISP4240L3	4240L
TISP4260L3	4260L
TISP4290L3	4290L
TISP4320L3	4320L
TISP4350L3	4350L
TISP4360L3	4360L
TISP4395L3	4395L

Carrier Information

For production quantities, the carrier will be embossed tape reel pack. Evaluation quantities may be shipped in bulk pack or embossed tape.

Carrier	Standard Quantity
Embossed Tape Reel Pack	5,000

"TISP" is a trademark of Bourns, Ltd., a Bourns Company and is registered in the U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.

JULY 2000 - REVISED SEPTEMBER 2014

Specifications are subject to change without notice. The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Bourns:

TISP4240L3AJR-STISP4290L3AJR-STISP4180L3AJR-STISP4145L3AJR-STISP4165L3AJR-STISP4125L3AJR-STISP4220L3AJR-STISP4260L3AJR-STISP4395L3AJR-STISP4080L3AJR-STISP4090L3AJR-SSTISP4070L3AJR-STISP4320L3AJR-STISP4360L3AJR-STISP4350L3AJR-STISP4350L3AJR-S