Automotive Inductive Load Driver

This micro-integrated part provides a single component solution to switch inductive loads such as relays, solenoids, and small DC motors without the need of a free-wheeling diode. It accepts logic level inputs, thus allowing it to be driven by a large variety of devices including logic gates, inverters, and microcontrollers.

Features

- Provides Robust Interface between D.C. Relay Coils and Sensitive Logic
- Capable of Driving Relay Coils Rated up to 150 mA at 12 Volts
- Replaces 3 or 4 Discrete Components for Lower Cost
- Internal Zener Eliminates Need for Free-Wheeling Diode
- Meets Load Dump and other Automotive Specs
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These are Pb–Free Devices

Typical Applications

- Automotive and Industrial Environment
- Drives Window, Latch, Door, and Antenna Relays

Benefits

- Reduced PCB Space
- Standardized Driver for Wide Range of Relays
- Simplifies Circuit Design and PCB Layout
- Compliance with Automotive Specifications

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

Device	Package	Shipping [†]					
NUD3124LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel					
SZNUD3124LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel					
NUD3124DMT1G	SC–74 (Pb–Free)	3000 / Tape & Reel					
SZNUD3124DMT1G	SC-74 (Pb-Free)	3000 / Tape & Reel					

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Symbol	Rating	Value	Unit
V _{DSS}	Drain-to-Source Voltage – Continuous (T _J = 125°C)	28	V
V _{GSS}	Gate-to-Source Voltage – Continuous (T _J = 125°C)	12	V
Ι _D	Drain Current – Continuous (T _J = 125°C)	150	mA
Ez	Single Pulse Drain-to-Source Avalanche Energy (For Relay's Coils/Inductive Loads of 80 Ω or Higher) (T _J Initial = 85°C)	250	mJ
P _{PK}	Peak Power Dissipation, Drain-to-Source (Notes 1 and 2) (T _J Initial = 85°C)	20	W
E _{LD1}	Load Dump Suppressed Pulse, Drain-to-Source (Notes 3 and 4) (Suppressed Waveform: $V_s = 45 V$, $R_{SOURCE} = 0.5 \Omega$, T = 200 ms) (For Relay's Coils/Inductive Loads of 80 Ω or Higher) (T _J Initial = 85°C)	80	V
E _{LD2}	Inductive Switching Transient 1, Drain-to-Source (Waveform: $R_{SOURCE} = 10 \Omega$, T = 2.0 ms) (For Relay's Coils/Inductive Loads of 80 Ω or Higher) (T _J Initial = 85°C)	100	V
E _{LD3}	Inductive Switching Transient 2, Drain-to-Source (Waveform: $R_{SOURCE} = 4.0 \Omega$, T = 50 µs) (For Relay's Coils/Inductive Loads of 80 Ω or Higher) (T _J Initial = 85°C)	300	V
Rev-Bat	Reverse Battery, 10 Minutes (Drain-to-Source) (For Relay's Coils/Inductive Loads of 80 Ω or more)	-14	V
Dual-Volt	Dual Voltage Jump Start, 10 Minutes (Drain-to-Source)	28	V
ESD	Human Body Model (HBM) According to EIA/JESD22/A114 Specification	2,000	V

MAXIMUM RATINGS (T_J = 25° C unless otherwise specified)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Nonrepetitive current square pulse 1.0 ms duration.
2. For different square pulse durations, see Figure 2.
3. Nonrepetitive load dump suppressed pulse per Figure 3.
4. For relay's coils/inductive loads higher than 80 Ω, see Figure 4.

THERMAL CHARACTERISTICS

Symbol	Rating	Value	Unit
T _A	Operating Ambient Temperature	-40 to 125	°C
Т _Ј	Maximum Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-65 to 150	°C
PD	Total Power Dissipation (Note 5)SOT-23Derating above 25°CSOT-23	225 1.8	mW mW/°C
PD	Total Power Dissipation (Note 5) SC-74 Derating above 25°C SC-74	380 3.0	mW mW/°C
R _{θJA}	Thermal Resistance Junction-to-Ambient (Note 5) SOT-23 SC-74 SC	556 329	°C/W

5. Mounted onto minimum pad board.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain to Source Sustaining Voltage (I _D = 10 mA)	V _{BRDSS}	28	34	38	V	
$ \begin{array}{l} \mbox{Drain to Source Leakage Current} \\ (V_{DS} = 12 \ V, \ V_{GS} = 0 \ V) \\ (V_{DS} = 12 \ V, \ V_{GS} = 0 \ V, \ T_J = 125^{\circ}C) \\ (V_{DS} = 28 \ V, \ V_{GS} = 0 \ V) \\ (V_{DS} = 28 \ V, \ V_{GS} = 0 \ V, \ T_J = 125^{\circ}C) \\ \end{array} $	I _{DSS}			0.5 1.0 50 80	μΑ	
$ \begin{array}{l} \mbox{Gate Body Leakage Current} \\ (V_{GS} = 3.0 \ V, \ V_{DS} = 0 \ V) \\ (V_{GS} = 3.0 \ V, \ V_{DS} = 0 \ V, \ T_J = 125^{\circ}C) \\ (V_{GS} = 5.0 \ V, \ V_{DS} = 0 \ V) \\ (V_{GS} = 5.0 \ V, \ V_{DS} = 0 \ V, \ T_J = 125^{\circ}C) \end{array} $	I _{GSS}		- - - -	60 80 90 110	μΑ	
ON CHARACTERISTICS	<u></u>				-	
Gate Threshold Voltage ($V_{GS} = V_{DS}$, $I_D = 1.0$ mA) ($V_{GS} = V_{DS}$, $I_D = 1.0$ mA, $T_J = 125^{\circ}$ C)	V _{GS(th)}	1.3 1.3	1.8 -	2.0 2.0	V	
	R _{DS(on)}	- - -		1.4 1.7 0.8 1.1	Ω	
Output Continuous Current ($V_{DS} = 0.25 \text{ V}, V_{GS} = 3.0 \text{ V}$) ($V_{DS} = 0.25 \text{ V}, V_{GS} = 3.0 \text{ V}, T_J = 125^{\circ}\text{C}$)	I _{DS} (on)	150 140	200	_	mA	
Forward Transconductance $(V_{DS} = 12 \text{ V}, I_D = 150 \text{ mA})$	9FS	-	500	-	mmho	
DYNAMIC CHARACTERISTICS	•					
Input Capacitance (V _{DS} = 12 V, V _{GS} = 0 V, f = 10 kHz)	Ciss	-	32	-	pf	
Output Capacitance (V _{DS} = 12 V, V _{GS} = 0 V, f = 10 kHz)	Coss	-	21	_	pf	
Transfer Capacitance $(V_{DS} = 12 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 10 \text{ kHz})$	Crss	_	8.0	_	pf	
SWITCHING CHARACTERISTICS	-	_	_	_	_	
Propagation Delay Times: High to Low Propagation Delay; Figure 1, $(V_{DS} = 12 \text{ V}, V_{GS} = 3.0 \text{ V})$ Low to High Propagation Delay; Figure 1, $(V_{DS} = 12 \text{ V}, V_{GS} = 3.0 \text{ V})$	t _{PHL} t _{PLH}	-	890 912	_	ns	
High to Low Propagation Delay; Figure 1, $(V_{DS} = 12 \text{ V}, V_{GS} = 5.0 \text{ V})$ Low to High Propagation Delay; Figure 1, $(V_{DS} = 12 \text{ V}, V_{GS} = 5.0 \text{ V})$	t _{PHL} t _{PLH}	-	324 1280	-		
Transition Times: Fall Time; Figure 1, (V _{DS} = 12 V, V _{GS} = 3.0 V) Rise Time; Figure 1, (V _{DS} = 12 V, V _{GS} = 3.0 V)	t _f t _r	-	2086 708	_	ns	
Fall Time; Figure 1, (V _{DS} = 12 V, V _{GS} = 5.0 V) Rise Time; Figure 1, (V _{DS} = 12 V, V _{GS} = 5.0 V)	t _f t _r	- -	556 725	-		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Figure 1. Switching Waveforms

Figure 3. Load Dump Waveform Definition

Figure 13. Transient Thermal Response for NUD3124LT1G

APPLICATIONS INFORMATION

Figure 14. Applications Diagram

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AR**

NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.039	0.044	
A1	0.01	0.06	0.10	0.000	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.017	0.020	
с	0.08	0.14	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.04	0.110	0.114	0.120	
Е	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.080	
L	0.30	0.43	0.55	0.012	0.017	0.022	
L1	0.35	0.54	0.69	0.014	0.021	0.027	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
Т	0°		10 °	0 °		10 °	

STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SC-74 CASE 318F-05 **ISSUE N**

NOTES

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05.

	М	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.37	0.50	0.010	0.015	0.020
С	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
HE	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	_	10°	0°	-	10°

STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. 6. GATE 2 DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NUD3124DMT1G NUD3124LT1G SZNUD3124DMT1G