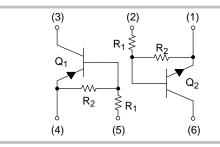
Dual Bias Resistor Transistors

NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the EMD5DXV6 series, two complementary BRT devices are housed in the SOT–563 package which is ideal for low power surface mount applications where board space is at a premium.


Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in 8 mm, 7 inch Tape and Reel
- Lead Free Solder Plating
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

SOT-563 CASE 463A

MARKING DIAGRAM

U5 = Specific Device Code

M = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
EMD5DXV6T5G	SOT-563 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

 $\textbf{MAXIMUM RATINGS} \ (T_A = 25^{\circ}C \ unless \ otherwise \ noted, \ common \ for \ Q_1 \ and \ Q_2, \ - \ minus \ sign \ for \ Q_1 \ (PNP) \ omitted)$

Rating	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	I _C	100	mAdc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)			Max	Unit
Total Device Dissipation Derate above 25°C	T _A = 25°C	P _D	357 (Note 1) 2.9 (Note 1)	mW mW/°C
Thermal Resistance	Junction-to-Ambient	$R_{ heta JA}$	350 (Note 1)	°C/W
	Symbol	Max	Unit	
Total Device Dissipation Derate above 25°C	T _A = 25°C	P _D	500 (Note 1) 4.0 (Note 1)	mW mW/°C
Thermal Resistance	Junction-to-Ambient	$R_{ heta JA}$	250 (Note 1)	°C/W
Junction and Storage Temperature		T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

^{1.} FR-4 @ Minimum Pad

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Input Resistor

Resistor Ratio

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherw Characteristic	Symbol	Min	Tun	Max	Unit
	Symbol	Min	Тур	IVIAX	Unit
Q1 TRANSISTOR: PNP					
OFF CHARACTERISTICS	1	1	1	1	1
Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	I _{CBO}	-	-	100	nAdc
Collector-Emitter Cutoff Current (V _{CB} = 50 V, I _B = 0)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0, I _C = 5.0 mA)	I _{EBO}	_	_	1.0	mAdc
ON CHARACTERISTICS					
Collector-Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	V _{(BR)CBO}	50	_	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 2.0 mA, I _B = 0)	V _{(BR)CEO}	50	-	-	Vdc
DC Current Gain (V _{CE} = 10 V, I _C = 5.0 mA)	h _{FE}	20	35	-	
Collector–Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(SAT)}	-	-	0.25	Vdc
Output Voltage (on) (V_{CC} = 5.0 V, V_{B} = 2.5 V, R_{L} = 1.0 k Ω)	V _{OL}	-	-	0.2	Vdc
Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.5 V, R _L = 1.0 k Ω)	V _{OH}	4.9	-	-	Vdc
Input Resistor	R1	3.3	4.7	6.1	kΩ
Resistor Ratio	R1/R2	0.38	0.47	0.56	<u></u>
Q2 TRANSISTOR: NPN					
OFF CHARACTERISTICS					
Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	I _{CBO}	_	_	100	nAdc
Collector-Emitter Cutoff Current (V _{CB} = 50 V, I _B = 0)	I _{CEO}	-	_	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0, I _C = 5.0 mA)	I _{EBO}	-	_	0.1	mAdc
ON CHARACTERISTICS	<u> </u>		JI		
Collector-Base Breakdown Voltage (I _C = 10 μA, I _E = 0)	V _{(BR)CBO}	50	_	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 2.0 mA, I _B = 0)	V _{(BR)CEO}	50	_	_	Vdc
DC Current Gain ($V_{CE} = 10 \text{ V}, I_{C} = 5.0 \text{ mA}$)	h _{FE}	80	140	-	
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(SAT)}	_	-	0.25	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	_	-	0.2	Vdc
Output Voltage (off) ($V_{CC} = 5.0 \text{ V}$, $V_B = 0.5 \text{ V}$, $R_L = 1.0 \text{ k}\Omega$)	V _{OH}	4.9	-	-	Vdc

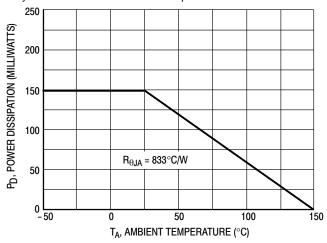
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

R1

R1/R2

33

8.0


47

1.0

61

1.2

 $\mathsf{k}\Omega$

TYPICAL ELECTRICAL CHARACTERISTICS — EMD5DXV6 PNP TRANSISTOR

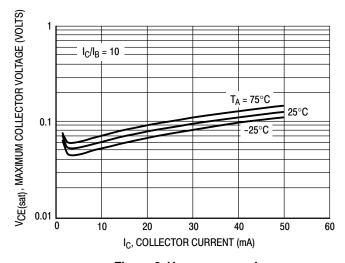


Figure 2. V_{CE(sat)} versus I_C

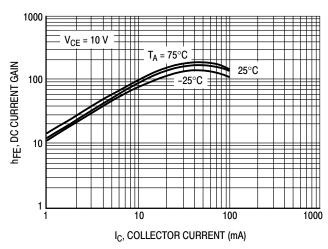


Figure 3. DC Current Gain

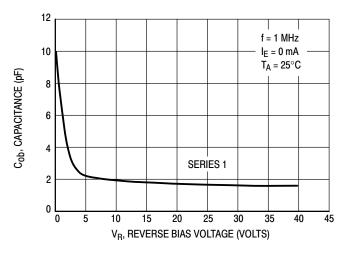


Figure 4. Output Capacitance

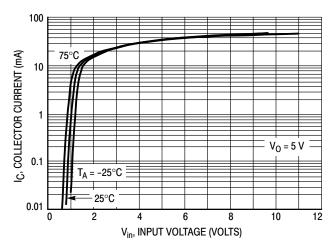


Figure 5. Output Current versus Input Voltage

TYPICAL ELECTRICAL CHARACTERISTICS — EMD5DXV6 NPN TRANSISTOR

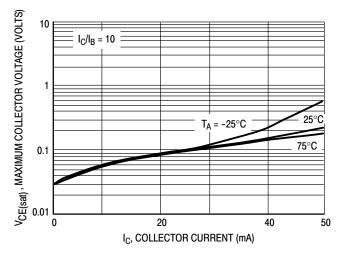


Figure 6. V_{CE(sat)} versus I_C

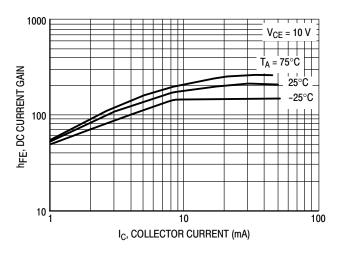


Figure 7. DC Current Gain

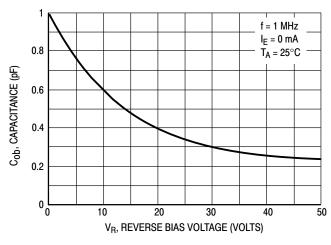


Figure 8. Output Capacitance

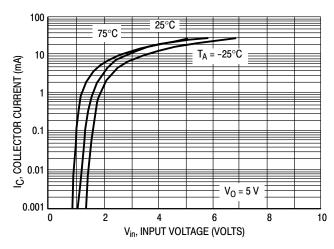


Figure 9. Output Current versus Input Voltage

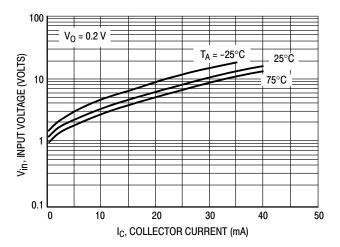
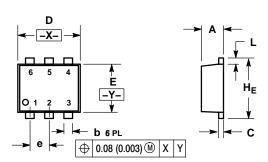
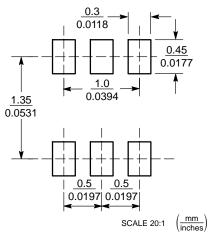



Figure 10. Input Voltage versus Output Current

PACKAGE DIMENSIONS


SOT-563, 6 LEAD CASE 463A ISSUE F

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
 - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.021	0.023	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.12	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.062	0.066	
Е	1.10	1.20	1.30	0.043	0.047	0.051	
е	0.5 BSC			0.02 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.50	1.60	1.70	0.059	0.062	0.066	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: EMD5DXV6T5G