
1SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

User's Guide
SLAU138AR–June 2004–Revised May 2018

IAR Embedded Workbench® IDE Version 7+
for MSP430™ MCUs

This manual describes the use of IAR Embedded Workbench® (EW430) with the MSP430™ ultra-low-
power microcontrollers.

Contents
1 Read This First ... 3

1.1 How to Use This Manual... 3
1.2 Information About Cautions and Warnings .. 3
1.3 Related Documentation From Texas Instruments .. 3
1.4 If You Need Assistance .. 4

2 Get Started Now! .. 5
2.1 Software Installation .. 5
2.2 Flashing the LED ... 5

3 Development Flow ... 7
3.1 Overview ... 7
3.2 Project Settings ... 8
3.3 Using Math Library for MSP430 (MSPMathlib) in IAR EW430 5.60.1 and Newer 9
3.4 Additional Project Settings for MSP430L092 and MSP430C092... 9
3.5 Creating a Project From Scratch .. 11
3.6 Additional Project Settings for Ultra-Low-Power Mode (LPMx.5) Debugging 12
3.7 Download Options for MSP430 Devices ... 14
3.8 Password Protection for MSP430 Devices .. 15
3.9 Stack Management and .xcl Files ... 16
3.10 How to Generate TI .TXT (and Other Format) Files .. 16
3.11 Overview of Example Programs... 16
3.12 Using C-SPY ... 16

4 EnergyTrace™ Technology ... 21
4.1 Introduction... 21
4.2 Energy Measurement ... 21
4.3 IAR Embedded Workbench® for MSP430 Integration .. 21
4.4 Measuring Low-Power Currents... 31
4.5 EnergyTrace Technology FAQs ... 32

5 MSP430 FRAM Memory Protection Mechanisms.. 35
5.1 Memory Protection Unit .. 35
5.2 Intellectual Property Encapsulation (IPE) .. 36
5.3 FRAM Write Protection (FRWP)... 38

6 Frequently Asked Questions (FAQs) .. 39
6.1 Hardware ... 39
6.2 Program Development (Assembler, C-Compiler, Linker) .. 39
6.3 Debugging (C-SPY) ... 41

7 FET-Specific Menus ... 45
7.1 Menus... 45

List of Figures

1 Activate Project .. 5
2 Activate Project in Workspace Overview ... 6

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com

2 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3 L092 Mode.. 9
4 C092 Emulation Mode ... 10
5 C092 Password... 10
6 Enable Ultra-Low-Power Debug Mode .. 12
7 LPMx.5 Notifications ... 13
8 Download Options.. 15
9 JTAG Password .. 15
10 Pulse Density and Current Flow.. 21
11 Debug Session With EnergyTrace++ Windows .. 22
12 Debug Options.. 23
13 Emulator Pulldown Menu With EnergyTrace++-Related Functions ... 24
14 Enabling the State Log Window.. 24
15 State Log Window With EnergyTrace++ Data.. 25
16 State Log Summary With EnergyTrace++ Data.. 25
17 Power Log Setup Window .. 25
18 Power Log Window With EnergyTrace++ Data .. 26
19 Timeline With Power Log and State Graphs Disabled .. 26
20 Timeline With EnergyTrace++ Data ... 27
21 Function Profiler With EnergyTrace++ Data .. 27
22 Debug Session With EnergyTrace Windows ... 28
23 Emulator Pulldown Menu With EnergyTrace-Related Functions .. 29
24 Power Log Setup Window .. 29
25 Power Log Window With EnergyTrace Data ... 30
26 Timeline With Power Log Graph Disabled .. 30
27 Timeline With EnergyTrace Data... 31
28 LPM3 Current When Executing Under Debug Control .. 31
29 Release JTAG on Go Option in Emulator Pulldown Menu ... 32
30 LPM3 Current When Executing with JTAG Signals Released ... 32
31 MPU Configuration Dialog .. 35
32 IPE Configuration Dialog .. 36
33 IPE Debug Settings .. 37
34 FRWP Configuration Dialog... 38

List of Tables

1 Device Architecture, Breakpoints, and Other Emulation Features... 17

Trademarks
MSP430, E2E, EnergyTrace are trademarks of Texas Instruments.
IAR Embedded Workbench is a registered trademark of IAR Systems.
ThinkPad is a trademark of IBM.
Intel is a registered trademark of Intel Corporation.
Motorola is a trademark of Motorola Corporation.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Read This First

3SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

1 Read This First

1.1 How to Use This Manual
Read and follow the instructions in Section 2. This chapter provides instructions on installing the software,
and describes how to run the demonstration programs. After you see how quick and easy it is to use the
development tools, TI recommends that you read all of this manual.

This manual describes only the setup and basic operation of the software development environment, but it
does not fully describe the MSP430 microcontrollers or the complete development software and hardware
systems. For details of these items, see the appropriate TI and IAR™ documents listed in Section 1.3.

This manual applies to the use of the TI MSP-FET, TI MSP-FET430UIF, MSP-FET430PIF, and eZ430
development tools series.

These tools contain the most up-to-date materials available at the time of packaging. For the latest
materials (including data sheets, user's guides, software, and application information), visit the TI MSP430
website or contact your local TI sales office.

1.2 Information About Cautions and Warnings
This book may contain cautions and warnings.

CAUTION
This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your
software or equipment.

WARNING
This is an example of a warning statement.
A warning statement describes a situation that could potentially
cause harm to you.

The information in a caution or a warning is provided for your protection. Read each caution and warning
carefully.

1.3 Related Documentation From Texas Instruments
MSP430 development tools documentation:

MSP430 Hardware Tools User's Guide
eZ430-F2013 Development Tool User's Guide
eZ430-RF2480 User's Guide
eZ430-RF2500 Development Tool User's Guide
eZ430-RF2500-SEH Development Tool User's Guide
eZ430-Chronos Development Tool User's Guide
MSP Debugger's User's Guide

MSP430 device documentation:
MSP430F1xx Family User's Guide
MSP430F2xx Family User's Guide
MSP430F3xx Family User's Guide
MSP430F4xx Family User's Guide
MSP430F5xx and MSP430F6xx Family User's Guide

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/msp430
http://www.ti.com/msp430
http://www.ti.com/lit/pdf/SLAU278
http://www.ti.com/lit/pdf/SLAU176
http://www.ti.com/lit/pdf/SWRA176
http://www.ti.com/lit/pdf/SLAU227
http://www.ti.com/lit/pdf/SLAU273
http://www.ti.com/lit/pdf/SLAU292
http://www.ti.com/lit/pdf/SLAU647
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU012
http://www.ti.com/lit/pdf/SLAU056
http://www.ti.com/lit/pdf/SLAU208

Read This First www.ti.com

4 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

MSP430FR57xx Family User's Guide
MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide

CC430 device documentation:
CC430 Family User's Guide

1.4 If You Need Assistance
Support for the MSP430 devices and the FET development tools is provided by the TI Product Information
Center (PIC). Contact information for the PIC can be found on the TI website. The TI E2E™ Community
for the MSP430 is available to provide open interaction with peer engineers, TI engineers, and other
experts. Additional device-specific information can be found on the MSP430 website.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/lit/pdf/SLAU272
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAU259
http://www.ti.com/support
https://e2e.ti.com/
https://e2e.ti.com/support/microcontrollers/msp430/
http://www.ti.com/msp430

www.ti.com Get Started Now!

5SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

2 Get Started Now!
This chapter provides instruction on installing the software, and shows how to run the demonstration
programs.

2.1 Software Installation
Follow the instructions on the supplied READ ME FIRST document to install the IAR Embedded
Workbench™. Read the file <Installation Root>\Embedded
Workbenchx.x\common\doc\EW_QuickReference_LMS2.ENU.pdf from IAR for the latest information about
the Workbench.

To install and run IAR Embedded Workbench, you need the following:
• A Pentium-compatible PC with Microsoft Windows Vista (SP2), Windows 7, Windows 8, Windows 8.1,

or Windows 10. Both 32- and 64-bit variants of Windows are supported.
• Internet Explorer 7 or higher
• At least 2GB of RAM and 10GB of free disk space
• Adobe Acrobat Reader to access the product documentation

NOTE: If the MSP-FET or eZ-FET debugger driver install fails:

Under certain conditions (depending on the hardware and operating system that is used), the
MSP-FET or eZ-FET driver install may fail on the first attempt. This can lead to unresponsive
behavior on IDEs. To resolve this issue, disconnect the MSP-FET or eZ-FET and then plug it
again, or plug it in to a different USB port, and restart the IDE.

2.2 Flashing the LED
This section demonstrates on the FET the equivalent of the C-language "Hello World!" introductory
program. An application that flashes the LED is developed and downloaded to the FET, and then run.
1. Start the Workbench (Start → Programs → IAR Systems → IAR Embedded Workbench for

MSP430 Vxx → IAR Embedded Workbench).
2. Click File → Open Workspace to open the file at: <Installation Root>\Embedded Workbench

x.x\430\examples\Flashing the LED\Flashing the LED.eww. The workspace window opens.
3. Click on the tab at the bottom of the workspace window that corresponds to the MSP430 device

(MSP430xxxx) and desired language (assembler or C) to set a project active (see Figure 1).

Figure 1. Activate Project

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Get Started Now! www.ti.com

6 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Alternatively, right-click to activate a project in the Workspace Overview tab (see Figure 2).

Figure 2. Activate Project in Workspace Overview

4. Click Project → Options → Debugger → Setup → FET-Debugger
5. Click Project → Rebuild All to build and link the source code. You can view the source code by

double-clicking on the project, and then double-clicking on the displayed source file.
6. Click Project → Download and Debug (CTRL+D) to start the C-SPY debugger. C-SPY erases the

device flash and then downloads the application object file to the device flash.
See FAQ Debugging #1 if C-SPY is unable to communicate with the device.

7. Click Debug → Go to start the application. The LED should flash.
8. Click Debug → Stop Debugging to stop debugging, to exit C-SPY, and to return to the Workbench.
9. Click File → Exit to exit the Workbench.

Congratulations, you have just built and tested an MSP430 application!

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Development Flow

7SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3 Development Flow
This chapter describes how to use IAR EW430 to develop application software and how to use C-SPY to
debug it.

3.1 Overview
Applications are developed in assembler or C using the Workbench, and they are debugged using C-SPY.
C-SPY is seamlessly integrated into the Workbench. However, it is more convenient to make the
distinction between the code development environment (Workbench) and the debugger (C-SPY). C-SPY
can be configured to operate with the FET (that is, an actual MSP430 device) or with a software simulator
of the device. IAR EW430 refers to the Workbench and C-SPY collectively.

Documentation for the MSP430 family and IAR EW430 is extensive. The MSP430 home page is another
source of MSP430 information.

The components of IAR EW430 (IDE, debugger, assembler, compiler, linker) are fully documented in
<Installation Root>\Embedded Workbench x.x\common\doc and <Installation Root>\Embedded
Workbench\430\doc.

.htm files located throughout the EW430 directory tree contain the most up-to-date information and
supplement the PDF files. In addition, EW430 documentation is available online through Help.

Tool User's Guide
IDE EW430_IDEGuide.pdf
Assembler EW430_AssemblerReference.pdf
Compiler EW430_CompilerReference.pdf
C library clib.pdf
Linker and Librarian xlink.ENU.pdf
Debugging EW430_DebuggingGuide.pdf

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/msp430

Development Flow www.ti.com

8 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3.2 Project Settings
The settings required to configure the Workbench and C-SPY are numerous and detailed. Read and
thoroughly understand the documentation supplied by IAR when dealing with project settings. Review the
project settings of the supplied assembler and C examples (the project settings are accessed using
Project → Options with the project name selected). Use these project settings as templates when
developing your own projects. Note that if the project name is not selected when settings are made, the
settings are applied to the selected file (not to the project).

The following project settings are recommended or required:
• Specify the target device (General Options → Target → Device).
• Enable the generation of an executable output file (General Options → Output → Output file →

Executable).
• To most easily debug a C project, disable optimization [C/C++ Compiler → Optimizations → Size →

None (Best debug support)].
• Enable the generation of debug information in the compiler output (C/C++ Compiler → Output →

Generate debug information).
• Specify the search path for the C preprocessor (C/C++ Compiler → Preprocessor → Include Paths).
• Enable the generation of debug information in the assembler output (Assembler → Output →

Generate Debug Info).
• Specify the search path for the assembler preprocessor (Assembler → Preprocessor → Include

Paths).
• To debug the project using C-SPY, specify a compatible format [Linker → Output → Format →

Debug information for C-SPY (with runtime control modules or with I/O emulation modules)].
• Specify the search path for any used libraries (Linker → Config → Search paths).
• Specify the C-SPY driver. Select Project → Options → Debugger → Setup → Driver → FET

Debugger to debug on the FET (that is, MSP430 device). Select Simulator to debug on the simulator.
If FET Debugger is selected, use Project → Options → FET Debugger → Setup → Connection to
select the appropriate port: Texas Instruments LPT-IF for the parallel FET Interface (MSP-FET430PIF)
or Texas Instruments USB-IF for the USB Interface (MSP-FET430UIF) or for the eZ430.

• Enable the Device Description file. This file makes C-SPY "aware" of the specifics of the device it is
debugging. This file corresponds to the specified target device (Debugger → Setup → Device
description file → Override default).

• Enable the erasure of the Main and Information memories before object code download (FET
Debugger → Download → Erase main and Information memory).

• To maximize system performance during debug, disable Virtual Breakpoints (FET Debugger →
Breakpoints → Use virtual breakpoints) and disable all System Breakpoints (FET Debugger →
Breakpoints → System breakpoints on).

NOTE: Use Factory Settings to quickly configure a project.

Use the Factory Settings button to quickly configure a project to a usable state.

The following steps can be used to quickly configure a project. Note that the General Options tab does not
have a Factory Settings button.
1. Specify the target device (General Options → Target → Device).
2. Enable the generation of an executable output file (General Options → Output → Output file →

Executable).
3. Accept the factory settings for the compiler (C/C++ Compiler → Factory Settings).
4. Accept the factory settings for the assembler (Assembler → Factory Settings).
5. Accept the factory settings for the linker (Linker → Factory Settings).
6. Accept the factory settings for C-SPY (Debugger → Factory Settings).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Development Flow

9SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

7. Debug on the hardware (Debugger → Setup → Driver → FET Debugger).
8. Specify the active parallel port used to interface to the FET if not LPT1 (FET Debugger → Setup →

Connection → Texas Instruments LPT-IF) or specify the USB port (FET Debugger → Setup →
Connection → Texas Instruments USB-IF).

NOTE: Avoid the use of absolute path names when referencing files.

Instead, use the relative pathname keywords $TOOLKIT_DIR$ and $PROJ_DIR$. See the
IAR documentation for a description of these keywords. The use of relative path names
permits projects to be moved easily, and projects do not require modification when IAR
systems are upgraded (for example, from Limited or Baseline to Full).

3.3 Using Math Library for MSP430 (MSPMathlib) in IAR EW430 5.60.1 and Newer
TI's MSPMathlib is part of EW430 5.60.1 and newer releases. This optimized library provides up to 26x
better performance in applications that use floating point scalar math. For details, see the MSPMathlib
web page.

MSPMathlib may be enabled for new and existing projects on all supported devices. Enable or disable
MSPMathlib in the project options (General Options → Library Configuration → Use TI MathLib).

3.4 Additional Project Settings for MSP430L092 and MSP430C092
The MSP430L092 can operate in two different modes: L092 mode and C092 emulation mode. The
purpose of the C092 emulation mode is to behave like a C092 with up to 1920 bytes of code at its final
destination for mask generation.

The operation mode is determined by EW430 before starting the debugger. Two radio buttons are
available for the mode selection. By default the L092 mode is selected (see Figure 3 and Figure 4).

Figure 3. L092 Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/tool/mspmathlib
http://www.ti.com/tool/mspmathlib

Development Flow www.ti.com

10 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 4. C092 Emulation Mode

3.4.1 MSP430L092 Loader Code
The Loader Code in the MSP430L092 is a ROM-code from TI that provides a series of services. It enables
customers to build autonomous applications without needing to develop a ROM mask. Such an application
consists of an MSP430 device containing the loader (for example, MSP430L092) and an SPI memory
device (for example, '95512 or '25AA40); these and similar devices are available from various
manufacturers.

Most use cases for an application with a loader device and external SPI memory for native 0.9-V supply
voltage are late development, prototyping, and small series production.

Figure 3 shows the selection for loading the application into the external SPI memory.

3.4.2 Password Protection of MSP430C092
The MSP430C092 is a customer-specific ROM device that is protected by a password. To start a debug
session, the password must be provided to EW430. Figure 5 shows how to provide a HEX password in
EW430.

Figure 5. C092 Password

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Development Flow

11SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3.5 Creating a Project From Scratch
This section presents step-by-step instructions to create an assembler or C project from scratch, and to
download and run the application on the MSP430 (see also Section 3.2, Project Settings). The MSP430
IAR Embedded Workbench IDE User's Guide presents a more comprehensive overview of the process.
1. Start the Workbench (Start → Programs → IAR Systems → IAR Embedded Workbench for

MSP430 → IAR Embedded Workbench).
2. Create a new text file (File → New → File).
3. Enter the program text into the file.

NOTE: Use .h files to simplify your code development.

IAR EW430 is supplied with files that define the device registers and the bit names for each
device. These files can greatly simplify the task of developing your program. The files are
located in <Installation Root>\Embedded Workbench x.x\430\inc. Include the .h file
corresponding to your target device in your text file (#include "msp430xyyy.h"). Additionally,
files io430xxxx.h are provided and are optimized to be included by C source files.

4. Save the program text file (File → Save).
It is recommended that assembler text files be saved with a file-type suffix of ".s43" and that C text files
be saved with a file-type suffix of ".c".

5. Create a new workspace (File → New → Workspace).
6. Create a new project (Project → Create New Project). Select Tool chain: MSP430, Project

Templates: Empty project and click OK. Specify a project name and click Save.
7. Add the program text file to the project (Project → Add Files). Select the program text file and click

Open. Alternatively, double-click on the file to add it to the project.

NOTE: How to add assembler source files to your project

The default file type presented in the Add Files window is C/C++ Files. To view assembler
files (.s43), select Assembler Files in the Files of type drop-down menu.

8. Save the workspace (File → Save Workspace). Specify a workspace name and click Save.
9. Configure the project options (Project → Options). For each of the subcategories (General Options,

C/C++ Compiler, Assembler, Linker, Debugger), accept the default Factory Settings with the
following exceptions:
• Specify the target device (General Options → Target → Device).
• Enable the generation of an executable output file (General Options → Output → Output file →

Executable).
• To debug on the FET (that is, the MSP430), click Debugger → Setup → Driver → FET

Debugger.
• Specify the active port used to interface to the FET (FET Debugger → Setup → Connection).

10. Build the project (Project → Rebuild All).
11. Debug the application using C-SPY (Project → Debug). This starts C-SPY, and C-SPY takes control

of the target, erases the target memory, programs the target memory with the application, and resets
the target.
See FAQ Debugging #1 if C-SPY is unable to communicate with the device.

12. Click Debug → Go to start the application.
13. Click Debug → Stop Debugging to stop the application, to exit C-SPY, and to return to the

Workbench.
14. Click File → Exit to exit the Workbench.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Development Flow www.ti.com

12 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3.6 Additional Project Settings for Ultra-Low-Power Mode (LPMx.5) Debugging

3.6.1 What is LPMx.5
LPMx.5 is an ultra-low-power mode in which the entry and exit is handled differently than the other low-
power modes.

LPMx.5 gives the lowest power consumption available on a device. To achieve this, entry to LPMx.5
disables the LDO of the PMM module, which removes the supply voltage from the core and the JTAG
module of the device. Because the supply voltage is removed from the core, all register contents and
SRAM contents are lost. Exit from LPMx.5 causes a BOR event, which forces a complete reset of the
system.

3.6.2 Debugging LPMx.5 Mode on MSP430 Devices That Support the Ultra-Low-Power Debug Mode
To enable the ultra-low-power debug mode feature, enable the Enable ULP / LPMx.5 debug checkbox by
clicking FET Debugger → Setup → Enable ULP / LPMx.5 debug (see Figure 6). When the ultra-low
power debug mode is enabled a notification is displayed in the Debugger log every time the target device
enters and leaves LPMx.5 mode (see Figure 7).

Press the Halt or Reset button in Embedded Workbench to wake up the target device from LPMx.5.
Execution of the code is halted at the start of the program. All breakpoints that had been active before
LPMx.5 are restored and reactivated automatically.

Figure 6. Enable Ultra-Low-Power Debug Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Development Flow

13SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 7. LPMx.5 Notifications

3.6.2.1 Limitations
When a target device is in LPMx.5 mode, it is not possible to set or remove advanced conditional or
software breakpoints. It is, however, possible to set hardware breakpoints. Only hardware breakpoints that
were set during LPMx.5 can be removed in the LPMx.5 mode. Attach to running target is not possible in
combination with LPMx.5 mode debugging, as this results in a device reset.

3.6.3 Debugging LPMx.5 Mode on MSP430 Devices That Do Not Support the Ultra-Low-Power Debug
Mode

On MSP430 devices that do not support the ultra-low-power mode, the LPMx.5 low-power mode can be
debugged using the RELEASE JTAG ON GO option. This configuration provides the absolute current and
energy consumption of MSP430 LPMx.5 low-power mode.

3.6.3.1 Limitations
Using this configuration presents some limitations:
1. Breakpoint

a. Setting or erasing any kind of breakpoint is not possible when the device is in LPMx.5.
2. Device State

a. There are no notifications about the current device state. From the perspective of the IDE, the
device is running.

3. Pause
a. The pause button might not work reliably when the device is in LPMx.5 mode. The device might

not leave LPMx.5 mode when the pause button is pressed. In this case, the debug session must
be restarted. During debugging, an option is to trap the device in active mode after wake-up from
LPMx.5, so that the device can be paused or suspend reliably when it is in a known power mode
other than LPMx.5.

4. Debugger connection
a. To make sure that the debugger can always connect and synchronize to the MSP430 device.

i. Do not enter LPMx.5 directly after code start. A 500-ms delay is required between code start
and LPMx.5 entry to ensure reliable debugger synchronization.

ii. If 4-wire JTAG shows connection and synchronization errors, use 2-wire SBW instead of the 4-
wire JTAG protocol.

iii. Make sure that the code removes the lock I/O setting for all MSP430 port pins.
5. Release JTAG on Go

a. When using the "Release JTAG on Go" option in combination with LPMx.5 mode, the target device
does not resume code execution after LPMx.5 wakeup. In this case, suspend the debug session
by clicking the "Halt" button, and then resume the session by clicking the "Go" button.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Development Flow www.ti.com

14 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3.7 Download Options for MSP430 Devices
By default, C-SPY downloads the application to RAM or flash when a debug session starts. The Download
options (see Figure 8) let you modify the behavior of the download.
• Verify download

Verifies that the downloaded code image can be read back from target memory with the correct
contents.

• Allow erase/write access to locked flash memory
Enables erase/write access to Info Segment A. This option can only be used with devices that have the
Info Segment A memory.

• Allow erase/write access to BSL flash memory
Enables erase/write access to BSL flash memory. This option can only be used with MSP430F5xx
devices that have BSL flash memory.

• External code download
Saves user code to external SPI memory.

• Erase main memory
Erases only the main flash memory before download. The Information memory is not erased.

• Erase main and Information memory
Erases both flash memories—main and Information memory—before download.

• Retain unchanged memory
Reads the main and Information memories into a buffer. Only the flash segments that are needed are
erased.

• Compare with image on target
Compares the data that is to be written into a segment with the image on the target. If the data
matches the image, the data on the target is left as is, and nothing is downloaded. The new data
effectively replaces the old data, and unchanged old data is retained.

• Compare with image cached on PC
Compares the data that is to be written into a segment with the image that is cached on the host
computer.

• Erase main and Information memory inc. IP PROTECTED area
Erases the main and Information flash memories, including the IP protected area before download.

• JTAG password
If a JTAG device is password-protected, supply the needed password here.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Development Flow

15SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 8. Download Options

3.8 Password Protection for MSP430 Devices
When debugging an MSP430 device that supports protection by a user password, the hexadecimal JTAG
password must be provided to start a debug session.

Set JTAG password by clicking FET Debugger → Download → JTAG password (see Figure 9).

Figure 9. JTAG Password

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Development Flow www.ti.com

16 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

3.9 Stack Management and .xcl Files
The reserved stack size can be configured through either the project options dialog (General Options →
Stack/Heap) or through direct modification of the .xcl linker control files. These files are input to the linker
and contain statements that control the allocation of device memory (RAM, flash). See the IAR XLINK
documentation for a complete description of these files. The .xcl files provided with the IAR EW430
(<Installation Root>\Embedded Workbench x.x\430\config\lnk430xxxx.xcl) define a relocatable segment
(RSEG) called CSTACK. CSTACK is used to define the region of RAM that is used for the system stack
within C programs. CSTACK can also be used in assembler programs (MOV.W #SFE(CSTACK), SP).
CSTACK is defined to extend from the last location of RAM for 50 bytes (that is, the stack extends
downward through RAM for 50 bytes).

Other statements in the .xcl file define other relocatable regions that are allocated from the first location of
RAM to the bottom of the stack.

NOTE:
• The supplied .xcl files reserve 50 bytes of RAM for the stack, whether or not this amount

of stack is actually required (or if it is sufficient).
• There is no runtime checking of the stack. The stack can overflow the 50 reserved bytes

and possibly overwrite the other segments. No error is output.

The supplied .xcl files can be modified to tune the size of the stack to the needs of the application; edit -
D_STACK_SIZE=xx to allocate xx bytes for the stack. The .xcl file also reserves 50 byes for the heap if
required [for example, by malloc()].

3.10 How to Generate TI .TXT (and Other Format) Files
The linker can be configured to output objects in TI .TXT format for use with the MSP-GANG
programmers. Click Project → Options → Linker → Output → Format → Other → msp430-txt. Intel®
and Motorola™ formats also can be selected.

For more information, see FAQ Program Development #6 in Section 6.

3.11 Overview of Example Programs
Example programs for MSP430 devices are provided in <Installation Root>\Embedded Workbench
x.x\430\examples. Each tool folder contains folders that contain the assembler and C sources.

<Installation Root>\Embedded Workbench\x.x\430\examples\Flashing the LED\Flashing the LED.eww
conveniently organizes the FET_1 demonstration code into a workspace. The workspace contains
assembler and C projects of the code for each of the MSP430 device families. Debug and Release
versions are provided for each of the projects.

Additional code examples can be found on the MSP430 home page under Code Examples. Note that
some example programs require a 32-kHz crystal on LFXT1, and not all FETs are supplied with a 32-kHz
crystal.

3.12 Using C-SPY
See Section 7 for a description of FET-specific menus within C-SPY.

3.12.1 Breakpoint Types
The C-SPY breakpoint mechanism uses a limited number of on-chip debugging resources (specifically, N
breakpoint registers, see Table 1). When N or fewer breakpoints are set, the application runs at full device
speed (or realtime). When greater than N breakpoints are set and Use Virtual Breakpoints is enabled (FET
Debugger → Breakpoints → Use virtual breakpoints), the application runs under the control of the host
PC; the system operates at a much slower speed but offers unlimited software breakpoints (or non-
realtime). During non-realtime mode, the PC, in effect, repeatedly single steps the device and interrogates
the device after each operation to determine if a breakpoint has been hit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/msp430

www.ti.com Development Flow

17SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Both (code) address and data (value) breakpoints are supported. Data breakpoints and range breakpoints
each require two MSP430 hardware breakpoints.

(1) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. Note that this interface is supported only by
the USB emulators (eZ430-xxxx and MSP-FET430UIF USB JTAG emulator) and the MSP-GANG430 production programming
tool. The MSP-FET430PIF parallel port JTAG emulator does not support communication in 2-wire JTAG mode.

(2) Support is limited to Spy-Bi-Wire (SBW) on MSP-FET430UIF. No limitations on MSP-FET.

Table 1. Device Architecture, Breakpoints, and Other Emulation Features

Device MSP430
Architecture

4-Wire
JTAG

2-Wire
JTAG (1)

Break-
points

(N)

Range
Break-
points

Clock
Control

State
Sequencer

Trace
Buffer

LPMx.5
Debugging

Support
CC430F512x MSP430Xv2 X X 2 X X X (2)

CC430F513x MSP430Xv2 X X 2 X X
CC430F514x MSP430Xv2 X X 2 X X X(2)

CC430F612x MSP430Xv2 X X 2 X X
CC430F613x MSP430Xv2 X X 2 X X
CC430F614x MSP430Xv2 X X 2 X X X(2)

MSP430AFE2xx MSP430 X X 2 X
MSP430BT5190 MSP430Xv2 X X 8 X X X X
MSP430F11x1 MSP430 X 2
MSP430F11x2 MSP430 X 2
MSP430F12x MSP430 X 2
MSP430F12x2 MSP430 X 2
MSP430F13x MSP430 X 3 X
MSP430F14x MSP430 X 3 X
MSP430F15x MSP430 X 8 X X X X
MSP430F161x MSP430 X 8 X X X X
MSP430F16x MSP430 X 8 X X X X
MSP430F20xx MSP430 X X 2 X
MSP430F21x1 MSP430 X 2 X
MSP430F21x2 MSP430 X X 2 X
MSP430F22x2 MSP430 X X 2 X
MSP430F22x4 MSP430 X X 2 X
MSP430F23x MSP430 X 3 X X
MSP430F23x0 MSP430 X 2 X
MSP430F2410 MSP430 X 3 X X
MSP430F241x MSP430X X 8 X X X X
MSP430F24x MSP430 X 3 X X
MSP430F261x MSP430X X 8 X X X X
MSP430F41x MSP430 X 2 X
MSP430F41x2 MSP430 X X 2 X
MSP430F42x MSP430 X 2 X
MSP430F42x0 MSP430 X 2 X
MSP430F43x MSP430 X 8 X X X X
MSP430F43x1 MSP430 X 2 X
MSP430F44x MSP430 X 8 X X X X
MSP430F44x1 MSP430 X 8 X X X X
MSP430F461x MSP430X X 8 X X X X
MSP430F461x1 MSP430X X 8 X X X X
MSP430F471xx MSP430X X 8 X X X X
MSP430F47x MSP430 X 2 X
MSP430F47x3 MSP430 X 2 X

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Development Flow www.ti.com

18 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Table 1. Device Architecture, Breakpoints, and Other Emulation Features (continued)

Device MSP430
Architecture

4-Wire
JTAG

2-Wire
JTAG (1)

Break-
points

(N)

Range
Break-
points

Clock
Control

State
Sequencer

Trace
Buffer

LPMx.5
Debugging

Support
MSP430F47x4 MSP430 X 2 X
MSP430F51x1 MSP430Xv2 X X 3 X X
MSP430F51x2 MSP430Xv2 X X 3 X X
MSP430F52xx MSP430Xv2 X X 3 X X
MSP430F530x MSP430Xv2 X X 3 X X
MSP430F5310 MSP430Xv2 X X 3 X X
MSP430F532x MSP430Xv2 X X 8 X X X X
MSP430F534x MSP430Xv2 X X 8 X X X X
MSP430F535x MSP430Xv2 X X 8 X X X X
MSP430F543x MSP430Xv2 X X 8 X X X X
MSP430F54xx MSP430Xv2 X X 8 X X X X
MSP430F54xxA MSP430Xv2 X X 8 X X X X
MSP430F550x MSP430Xv2 X X 3 X X
MSP430F5510 MSP430Xv2 X X 3 X X
MSP430F552x MSP430Xv2 X X 8 X X X X
MSP430F563x MSP430Xv2 X X 8 X X X X
MSP430F565x MSP430Xv2 X X 8 X X X X
MSP430F643x MSP430Xv2 X X 8 X X X X
MSP430F645x MSP430Xv2 X X 8 X X X X
MSP430F663x MSP430Xv2 X X 8 X X X X
MSP430F665x MSP430Xv2 X X 8 X X X X
MSP430F67xx MSP430Xv2 X X 3 X X
MSP430F67xx1 MSP430Xv2 X X 3 X X
MSP430F67xx1A MSP430Xv2 X X 3 X X
MSP430F67xxA MSP430Xv2 X X 3 X X
MSP430FE42x MSP430 X 2 X
MSP430FE42x2 MSP430 X 2 X
MSP430FG42x0 MSP430 X 2 X
MSP430FG43x MSP430 X 2 X
MSP430FG461x MSP430X X 8 X X X X
MSP430FG47x MSP430 X 2 X
MSP430FG642x MSP430Xv2 X X 8 X X X X
MSP430FG662x MSP430Xv2 X X 8 X X X X X(2)

MSP430FR20xx MSP430Xv2 X X 3 X X
MSP430FR21xx MSP430Xv2 X X 3 X X
MSP430FR23xx MSP430Xv2 X X 3 X X
MSP430FR24xx MSP430Xv2 X X 3 X X
MSP430FR25xx MSP430Xv2 X X 3 X X
MSP430FR26xx MSP430Xv2 X X 3 X X
MSP430FR41xx MSP430Xv2 X X 3 X X
MSP430FR57xx MSP430Xv2 X X 3 X X
MSP430FR58xx MSP430Xv2 X X 3 X X X
MSP430FR59xx MSP430Xv2 X X 3 X X X
MSP430FR60xx MSP430Xv2 X X 3 X X X
MSP430FR68xx MSP430Xv2 X X 3 X X X
MSP430FR69xx MSP430Xv2 X X 3 X X X

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Development Flow

19SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Table 1. Device Architecture, Breakpoints, and Other Emulation Features (continued)

Device MSP430
Architecture

4-Wire
JTAG

2-Wire
JTAG (1)

Break-
points

(N)

Range
Break-
points

Clock
Control

State
Sequencer

Trace
Buffer

LPMx.5
Debugging

Support
MSP430FW42x MSP430 X 2 X
MSP430G22xx MSP430 X 2 X
MSP430G2xxx MSP430 X X 2 X
MSP430i20xx MSP430 X X 2 X
MSP430L092 MSP430Xv2 X 2 X
MSP430SL5438A MSP430Xv2 X X 8 X X X X
MSP430TCH5E MSP430 X X 2 X
RF430FRL15xH MSP430Xv2 X X 2 X

3.12.2 Using Breakpoints
If C-SPY is started with greater than N breakpoints set and virtual breakpoints are disabled, a message is
output to inform the user that only N (real-time) breakpoints are enabled (and one or more breakpoints are
disabled). Note that the workbench permits any number of breakpoints to be set, regardless of the Use
Virtual Breakpoints setting of C-SPY. If virtual breakpoints are disabled, a maximum of N breakpoints can
be set within C-SPY.

Resetting a program temporarily requires a breakpoint if Project → Options → Debugger → Setup →
Run To is enabled (see FAQ Debugging #32).

The Run To Cursor operation temporarily requires a breakpoint. Consequently, only (N – 1) breakpoints
can be active when Run To Cursor is used if virtual breakpoints are disabled (see FAQ Debugging #33).

If, while processing a breakpoint, an interrupt becomes active, C-SPY stops at the first instruction of the
interrupt service routine (see FAQ Debugging #26).

NOTE: Do not set a breakpoint on a RETI instruction if the previous instruction modifies the stack
pointer. Program execution will not work properly after reaching the break point.

3.12.3 Using Single Step
When debugging an assembler file, Step Over, Step Out, and Next Statement operate like Step Into; that
is, the current instruction is executed at full speed.

When debugging an assembler file, a step operation of a CALL instruction stops at the first instruction of
the called function.

When debugging an assembler file, a (true) Step Over a CALL instruction that executes the called function
at full device speed can be synthesized by placing a breakpoint after the CALL and using GO (to the
breakpoint in realtime mode).

When debugging a C file, a single step (Step) operation executes the next C statement. Thus, it is
possible to step over a function reference. If possible, a hardware breakpoint is placed after the function
reference, and a GO is implicitly executed. This causes the function to be executed at full speed. If no
hardware breakpoints are available, the function is executed in non-realtime mode. Step Into is supported.
Step Out is supported.

Within Disassembly mode (View → Disassembly), a step operation of a non-CALL instruction executes
the instruction at full device speed.

Within Disassembly mode (View → Disassembly), a step operation of a CALL instruction places, if
possible, a hardware breakpoint after the CALL instruction, and then executes Go. The called function
executes at full device speed. If no hardware breakpoint is available prior to the Go, the called function is
executed in non-realtime mode. In either case, execution stops at the instruction following the CALL.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Development Flow www.ti.com

20 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

It is possible to single step only when source statements are present. Breakpoints must be used when
running code for which there is no source code (that is, place the breakpoint after the CALL to the function
for which there is no source, and then Go to the breakpoint in realtime mode).

If, during a single step operation, an interrupt becomes active, the current instruction is completed and C-
SPY stops at the first instruction of the interrupt service routine (see FAQ Debugging #26).

3.12.4 Using Watch Windows
The C-SPY Watch Window mechanism permits C variables to be monitored during the debugging session.
Although not originally designed to do so, the Watch Window mechanism can be extended to monitor
assembler variables.

Assume that the variables to watch are defined in RAM, for example:
RSEG DATA16_I varword ds 2 ; two bytes per word varchar ds 1 ; one byte per character

In C-SPY:
1. Open the Watch Window (View → Watch).
2. Click Debug → Quick Watch.
3. To watch varword, enter in the Expression box:

(__data16 unsigned int *) varword

4. To watch varchar, enter in the Expression box:
(__data16 unsigned char *) varchar

5. Click the Add Watch button.
6. Close the Quick Watch window.
7. For the created entry in the Watch Window, click on the + symbol to display the contents (or value) of

the watched variable.

To change the format of the displayed variable (default, binary, octal, decimal, hex, char), select the type,
click the right mouse button, and then select the desired format. The value of the displayed variable can
be changed by selecting it, and then entering the new value.

In C, variables can be watched by selecting them and then dragging and dropping them into the Watch
Window.

Because the MSP430 peripherals are memory mapped, it is possible to extend the concept of watching
variables to watching peripherals. Be aware that there may be side effects when peripherals are read and
written by C-SPY (see FAQ Debugging #24).

CPU core registers can be specified for watching by preceding their name with '#' (that is, #PC, #SR, #SP,
#R5, and so forth).

Variables watched within the Watch Window are updated only when C-SPY gets control of the device (for
example, following a breakpoint hit, a single step, or a stop or escape).

Although registers can be monitored in the Watch Window, View → Register is the preferred method.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

21SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4 EnergyTrace™ Technology

4.1 Introduction
EnergyTrace™ Technology is an energy-based code analysis tool that measures and displays the
application’s energy profile and helps to optimize it for ultra-low-power consumption.

MSP430 devices with built-in EnergyTrace+[CPU State]+[Peripheral States] (or in short
EnergyTrace++™) support allow real-time monitoring of many internal device states while user program
code executes. EnergyTrace++ technology is supported on selected MSP430 devices and debuggers.

EnergyTrace mode (without the "++") is the base of EnergyTrace Technology and enables analog
energy measurement to determine the energy consumption of an application but does not correlate it to
internal device information. The EnergyTrace mode is available for all MSP430 devices with selected
debuggers, include CCS.

4.2 Energy Measurement
Debuggers with EnergyTrace Technology support include a new and unique way of continuously
measuring the energy supplied to a target microcontroller that differs considerably from the well-known
method of amplifying and sampling the voltage drop over a shunt resistor at discrete times. A software-
controlled dc-dc converter is used to generate the target power supply. The time density of the dc-dc
converter charge pulses equals the energy consumption of the target microcontroller. A built-in on-the-fly
calibration circuit defines the energy equivalent of a single dc-dc charge pulse.

Figure 10 shows the energy measurement principle. Periods with a small number of charge pulses per
time unit indicate low energy consumption and thus low current flow. Periods with a high number of charge
pulses per time unit indicate high energy consumption and also a high current consumption. Each charge
pulse leads to a rise of the output voltage VOUT, which results in an unavoidable voltage ripple common to
all dc-dc converters.

Figure 10. Pulse Density and Current Flow

The benefit of sampling continuously is evident: even the shortest device activity that consumes energy
contributes to the overall recorded energy. No shunt-based measurement system can achieve this.

4.3 IAR Embedded Workbench® for MSP430 Integration
EnergyTrace Technology is available as part of IAR Embedded Workbench for MSP430 microcontrollers
Version 6.10.0 or higher. During debugging of an application, additional windows are available if the
debug probe and the target device support EnergyTrace Technology.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

22 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4.3.1 Debugging Devices With EnergyTrace++ Technology Support
Devices that support EnergyTrace++™ Technology allow sampling of internal device states while an
application is executing (see Figure 11).

Figure 11. Debug Session With EnergyTrace++ Windows

Before downloading and debugging a program, enable the "Enable ULP / LPMx.5 debug" option: right
click on the project, select the FET Debugger tab, and check the "Enable ULP / LPMx.5 debug" option
(see Figure 12). If this option is not checked, no digital data can be collected from the device. Analog
measurements, however, are still possible.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

23SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 12. Debug Options

Click the Emulator menu for EnergyTrace++-related entries (see Figure 13).
• State Log
• Power Log
• Timeline
• Function Profiler

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

24 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 13. Emulator Pulldown Menu With EnergyTrace++-Related Functions

All EnergyTrace-related functions need to be enabled first by right-clicking into the respective window and
selecting "Enable" (see Figure 14).

Figure 14. Enabling the State Log Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

25SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4.3.1.1 State Log
All peripheral and clock activity is grouped under States. When a program executes, digital data is
collected from the target device and displayed in list format (see Figure 15).

The State Log shows at what point in time a specific peripheral or clock has been activated and gives a
reference to the program counter location where this happened.

Figure 15. State Log Window With EnergyTrace++ Data

4.3.1.2 State Log Summary
The State Log Summary window shows a condensed view of the peripheral and clock activity of a profiled
program (see Figure 16). Click on the column headers to sort the data.

Figure 16. State Log Summary With EnergyTrace++ Data

4.3.1.3 Power Log Setup
The Power Log Setup can be used to control the analog measurement (see Figure 17). Check each
parameter to enable data collection.

Figure 17. Power Log Setup Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

26 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4.3.1.4 Power Log Window
Similar to the State Log window, the Power Log window shows the current, voltage, and energy profile
over time, with reference to the program counter that was sampled at the given time stamp (see
Figure 18).

Figure 18. Power Log Window With EnergyTrace++ Data

4.3.1.5 Timeline
When invoking the Timeline for the first time, both Power Log and State graphs are disabled. Right click
on each section to enable it, and use the mouse wheel to zoom in and out (see Figure 19 and Figure 20).

Figure 19. Timeline With Power Log and State Graphs Disabled

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

27SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 20. Timeline With EnergyTrace++ Data

4.3.1.6 Function Profiler
The Function Profiler gives a condensed overview of the functions and their contribution to total run time
and energy consumption (see Figure 21).

Figure 21. Function Profiler With EnergyTrace++ Data

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

28 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4.3.2 Debugging Devices Without EnergyTrace++ Technology Support
Devices without EnergyTrace++ Technology support still can take advantage of the base EnergyTrace
technology analog measurements (see Figure 22).

Figure 22. Debug Session With EnergyTrace Windows

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

29SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Click the Emulator menu for EnergyTrace-related entries (see Figure 23).
• Power Log
• Timeline

Figure 23. Emulator Pulldown Menu With EnergyTrace-Related Functions

4.3.2.1 Power Log Setup
The Power Log Setup can be used to control the analog measurement (see Figure 24). Check each
parameter to enable data collection.

Figure 24. Power Log Setup Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

30 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4.3.2.2 Power Log Window
Similar to the State Log window, the Power Log window shows the current, voltage, and energy profile
over time (see Figure 25).

Figure 25. Power Log Window With EnergyTrace Data

4.3.2.3 Timeline
When invoking the Timeline for the first time, the Power Log graph is disabled. Right click to enable it, and
use the mouse wheel to zoom in and out (see Figure 26 and Figure 27).

Figure 26. Timeline With Power Log Graph Disabled

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

31SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 27. Timeline With EnergyTrace Data

4.4 Measuring Low-Power Currents
During the capture of the internal states or even when simply executing until breakpoint halt, the target
microcontroller is constantly accessed by the JTAG or Spy-Bi-Wire debug logic. These debug accesses
consume energy that is included in the numbers shown in the Power Log window and graph. To measure
the absolute power consumption of the application, it is recommended to use the EnergyTrace mode in
combination with the Release JTAG on Go option. This combination makes sure that the debug logic of
the target microcontroller is not accessed while measuring energy consumption.

Figure 28 shows the current consumption of an application sleeping in LPM3, measured when the device
is under debug control. The current column indicates approximately 152 µA current consumption, which is
significantly higher than the value stated in the device data sheet and is mostly caused by the current
consumption of the device debug logic for breakpoint polling.

Figure 28. LPM3 Current When Executing Under Debug Control

After checking the Release JTAG on Go option in the Emulator pulldown menu (see Figure 29), the
debugger puts the JTAG or Spy-Bi-Wire lines in Hi-Z state after letting the application go.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

32 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Figure 29. Release JTAG on Go Option in Emulator Pulldown Menu

As shown in Figure 30, the current consumption for the same code has reduced significantly to less than 4
µA. If this value still deviates considerably from the data sheet value, consider checking GPIO termination
or peripheral activity.

Figure 30. LPM3 Current When Executing with JTAG Signals Released

4.5 EnergyTrace Technology FAQs
Q: What is the sampling frequency of EnergyTrace++ technology?

A: The sampling frequency depends on the debugger and the selected debug protocol and its speed
setting. It typically ranges from 1 kHz (for example, when using the Spy-Bi-Wire interface set to SLOW) up
to 3.2 kHz (for example, when using the JTAG interface set to FAST). The debugger polls the state
information of EnergyTrace++ from the device status information. Depending on the sampling frequency, a
short or fast duty cycle active peripheral state may not be captured on the State graph. In addition, the
higher sampling frequency affects the device energy consumption under EnergyTrace.

Q: What is the sampling frequency of EnergyTrace technology?

A: The sampling frequency to measure the energy consumption is the same independent of which debug
protocol or speed and is approximately 4.2 kHz in Free Run mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com EnergyTrace™ Technology

33SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Q: My Power graph seems to include noise. Is my board defective?

A: The power values shown in the Power graph are derived (that is, calculated) from the accumulated
energy counted by the measurement system. When the target is consuming little energy, a small number
of energy packets over time are supplied to the target, and the software needs to accumulate the dc-dc
charge pulses over time before a new current value can be calculated. For currents under 1 µA, this can
take up to one second, while for currents in the milliamp range, a current can be calculated every
millisecond. Additional filtering is not applied so that detail information is not lost. Another factor that
affects the energy (and with it, the current) that is consumed by the target is periodic background debug
access during normal code execution, either through capturing of States information or through breakpoint
polling. Try recording in Free Run mode to see a much smoother Power graph.

Q: I have a code that repeatedly calls functions that have the same size. I would expect the function
profile to show an equal distribution of the run time. In reality, I see some functions having slightly more
run time than expected, and some functions slightly less.

A: During program counter trace, various factors affect the number of times a function is detected by the
profiler over time. The microcontroller code could benefit from the internal cache, thus executing some
functions faster than others. Another influencing factor is memory wait states and CPU pipeline stalls,
which add time variance to the code execution. An outside factor is the sampling frequency of the
debugger itself, which normally runs asynchronous to the microcontroller's code execution speed, but in
some cases shows overlapping behavior, which also results in an unequal function run time distribution.

Q: My power mode profile sometimes shows short periods of power modes that I haven't used anywhere
in my code. For example, I'm expecting a transition from active mode to LPM3, but I see a LPM2 during
the transition.

A: When capturing in EnergyTrace++ mode, digital information is continuously collected from the target
device. One piece of this information is the power mode control signals. Activation of low-power modes
requires stepping through a number of intermediate states. Usually this happens too quickly to be
captured by the trace function, but sometimes intermediate states can be captured and are displayed for a
short period of time as valid low-power modes.

Q: My profile sometimes includes an <Undetermined> low-power mode, and there are gaps in the States
graph Power Mode section. Where does the <Undetermined> low-power mode originate from?

A: During transitions from active mode to low-power mode, internal device clocks are switched off, and
occasionally the state information is not updated completely. This state is displayed as <Undetermined> in
the Profile window, and the States graph shows a gap during the time that the <Undetermined> low-power
mode persists. The <Undetermined> state is an indication that your application has entered a low-power
mode, but which mode cannot be accurately determined. If your application is frequently entering low-
power modes, the <Undetermined> state will probably be shown more often than if your application only
rarely uses low-power modes.

Q: What are the influencing factors for the accuracy of the energy measurement?

A: The energy measurement circuit is directly supplied from the USB bus voltage, and thus it is sensitive
to USB bus voltage variations. During calibration, the energy equivalent of a single dc-dc charge pulse is
defined, and this energy equivalent depends on the USB voltage level. To ensure a good repeatability and
accuracy, power the debugger directly from an active USB port, and avoid using bus-powered hubs and
long USB cables that can lead to voltage drops, especially when other consumers are connected to the
USB hub. Furthermore the LDO and resistors used for reference voltage generation and those in the
calibration circuit come with a certain tolerance and ppm rate over temperature, which also influences
accuracy of the energy measurement.

Q: I am trying to capture in EnergyTrace++ mode or EnergyTrace mode with a MSP430 device that is
externally powered, but there is no data shown in the Profile, Energy, Power and States window.

A: Both EnergyTrace++ mode and EnergyTrace mode require the target to be supplied from the
debugger. No data can be captured when the target microcontroller is externally powered.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

EnergyTrace™ Technology www.ti.com

34 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

Q: I cannot measure LPM currents when I am capturing in EnergyTrace++ mode. I am expecting a few
microamps but measure more than 150 µA.

A: Reading digital data from the target microcontroller consumes energy in the JTAG domain of the
microcontroller. Hence, an average current of approximately 150 µA is measured when connecting an
ampere meter to the device power supply pins. If you want to eliminate energy consumption through
debug communication, switch to EnergyTrace mode, and let the target microcontroller execute with
"Release JTAG on Go" option checked.

Q: My LPM currents seem to be wrong. I am expecting a few microamps but measure more, even in Free
Run mode or when letting the device execute without debug control from an independent power supply.

A: The most likely cause of this extra current is improper GPIO termination, as floating pins can lead to
extra current flow. Also check the JTAG pins again, especially when the debugger is still connected (but
idle), as the debugger output signal levels in idle state might not match how the JTAG pins have been
configured by the application code. This could also lead to extra current flow.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com MSP430 FRAM Memory Protection Mechanisms

35SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

5 MSP430 FRAM Memory Protection Mechanisms
The available memory of an FRAM-based microcontroller can be seen as unified memory, which means
the memory can be arbitrarily divided between code and data sections. As a consequence, a single
FRAM-based microcontroller can be customized for a wide range of application use cases. MSP430
devices support two memory protection methods:
• Memory Protection Unit (MPU) and Intellectual Property Encapsulation (IPE)
• FRAM Memory Write Protection (FRWP). The protection granularity (1k) can be configured on some

devices.

See the device-specific data sheet to determine which method is available on a particular device. For
instructions on the efficient use of this technology, see MSP430™ FRAM Technology – How To and Best
Practices.

5.1 Memory Protection Unit
To prevent accidental overwrites of the program by application data or other forms of data corruption, the
MPU can partition the available memory and define access rights for each of the partitions. Thus, it is
possible to prevent accidental writes to memory sections that contain application code or to prevent the
microcontroller from executing instructions that are located in the data section of the application.

Figure 31 shows the MPU and IPE configuration dialog, which is available for FRAM devices that have the
MPU feature. To access this dialog, select the menu Project → Options → General Options →
MPU/IPE/FRWP. For a detailed description of the possible configurations that are provided by the dialog,
see the IAR C/C++ Compiler User Guide. This dialog allows enabling or disabling of the MPU. The
compiler tool chain generates two memory segments (read-write memory and executable memory). The
segment borders of these two segments and their respective access bits are placed into the according
control registers during device start-up. The compiler also sets the bit for read access of the MPU Info
Memory segment. The MPUSEGxVS bit, which selects if a PUC must be executed on illegal access to a
segment, is also set by default for each of the segments.

Figure 31. MPU Configuration Dialog

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/lit/pdf/slaa628
http://www.ti.com/lit/pdf/slaa628

MSP430 FRAM Memory Protection Mechanisms www.ti.com

36 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

5.2 Intellectual Property Encapsulation (IPE)
The memory of many microcontroller applications contains information that should not be accessible by
the public. This may include both the application code itself as well as configuration settings for certain
peripherals. The IPE module allows the protection of memory that contains this kind of sensitive
information. The IPE ensures that only program code that is itself placed in the IPE protected area has
access to this memory segment. The access rights are evaluated with each code access, and even JTAG
or DMA transfers cannot access the IPE segment. The IPE module is initialized by the boot code before
the start of the application code, which ensures that the encapsulation is active before any user-controlled
access to the memory can be performed.

Figure 32 shows the dialog for configuration of IPE memory, which is accessible through the menu
Project → Options → General Options → MPU/IPE/FRWP. The runtime library provides support for
automatically initializing the IPE to protect the data and code in certain predefined memory segments. If
IPE support is included, special data structures are placed in the IPESIGNATURE memory that is read by
the boot code to initialize the IPE functionality. The linker configuration files for devices with IPE
functionality define the segments IPEDATA16_N, IPEDATA16_C and IPECODE16 in FRAM, surrounded
by the border segments IPE_B1 and IPE_B2. Make sure to place writable __no_init data to be protected
in the IPEDATA16_N segment, constant data in IPEDATA16_C, and the code to read the data in
IPECODE16. Additionally, any user-defined segment linked between the border segments IPE_B1 and
IPE_B2 is protected.

Figure 32. IPE Configuration Dialog

For a more detailed description on how to allocate space for certain code or data symbols inside sections,
see the IAR C/C++ Compiler for MSP430 User’s Guide.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com MSP430 FRAM Memory Protection Mechanisms

37SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

5.2.1 IPE Debug Settings
Because it is possible to lock out the debugger from accessing certain memory regions (including
downloading new software to the device), it is advisable to enable the option for erasing the IP protected
area while the target is under debugger control. The corresponding option can be found under Project
Options → Debugger → FET Debugger → Download, as shown in Figure 33.

Figure 33. IPE Debug Settings

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

MSP430 FRAM Memory Protection Mechanisms www.ti.com

38 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

5.3 FRAM Write Protection (FRWP)
The FRWP prevents unintended programming on FRAM code section. For MSP430FR2xx and
MSP430FR4xx MCUs, the FRAM memory is protected by setting the bits control in SYSCFG0 register.
Some of the MSP430 devices implement the control to protect and unprotect the whole memory at once,
and some of the devices such as MSP430FR2355, MSP430FR2353, MSP430FR2155, and
MSP430FR2153 can unprotect some region and protect the rest of the memory.

IAR 7.12.1 and newer versions provide a GUI to configure the FRAM write protection. By default, a new
IAR project has the Support FRWP option not configured, as the protection for information and program
memory by default is enabled by hardware (the entire FRAM memory is protected).

When the Support FRWP option is selected, you can protect or unprotect the information memory and
program memory. When the application code uses __persistent data type, the size of __persistent data is
automatically calculated and aligned with 1kB size. These data are then placed in the unprotected
program main memory section. The code is placed after the unprotected program main memory.

Figure 34 shows the FRWP configuration dialog, which is available for FRAM devices that have the FRWP
feature. To access this dialog, select the menu Project → Options → General Options →
MPU/IPE/FRWP. For a detailed description of the possible configurations that are provided by the dialog,
see the IAR C/C++ Compiler User Guide.

Figure 34. FRWP Configuration Dialog

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Frequently Asked Questions (FAQs)

39SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

6 Frequently Asked Questions (FAQs)
This section gives solutions to frequently asked questions regarding program hardware development and
debugging tools.

6.1 Hardware
For a complete list of hardware-related FAQs, see the MSP430 Hardware Tools User's Guide.

6.2 Program Development (Assembler, C-Compiler, Linker)
1. The files supplied in the 430\tutor folder work only with the simulator. Do not use the files with

the FET (see FAQ Program Development #11).
2. A common MSP430 "mistake" is to fail to disable the Watchdog mechanism; the Watchdog is

enabled by default, and it resets the device if not disabled or properly handled by the application (see
FAQ Program Development #14).

3. When adding source files to a project, do not add files that are included by source files that
have already been added to the project (for example, an .h file within a .c or .s43 file). These files
are added to the project file hierarchy automatically.

4. In assembler, enclosing a string in double quotes ("string") automatically appends a zero byte to
the string (as an end-of-string marker). Enclosing a string in single-quotes ('string') does not.

5. When using the compiler or the assembler, if the last character of a source line is backslash (\),
the subsequent carriage return or line feed is ignored (that is, it is as if the current line and the
next line are a single line). When used in this way, the backslash character is a "line continuation"
character.

6. The linker output format must be "Debug information for C-SPY" (.d43) for use with C-SPY. C-
SPY does not start otherwise, and an error message is output. C-SPY cannot input a .TXT file.

7. Position-independent code can be generated using Project → Options → General Options →
Target → Position-Independent Code.

8. Within the C libraries, GIE (Global Interrupt Enable) is disabled before (and restored after) the
hardware multiplier is used. To disable this behavior, contact TI for the source code for these
libraries.

9. It is possible to mix assembler and C programs within the Workbench. See the Assembler
Language Interface chapter of the C/C++ Compiler Reference Guide from IAR.

10. The Workbench can produce an object file in TI .TXT format. C-SPY cannot input an object file in
TI.TXT format. An error message is output in this case.

11. The example programs given in the KickStart documentation (that is, Demo, Tutor, and so
forth) are not correct. The programs work only in the simulator. The programs do not function
correctly on an actual device, because the watchdog mechanism is active. The programs need to be
modified to disable the watchdog mechanism. Disable the watchdog mechanism with this C-statement:
WDTCTL = WDTPW + WDTHOLD;
or with this assembler statement:
mov.w # WDTPW+WDTHOLD,&WDTCTL

12. Access to MPY using an 8-bit operation is flagged as an error. Within the .h files, 16-bit registers
are defined in such a way that 8-bit operations upon them are flagged as an error. This feature is
normally beneficial and can catch register access violations. However, in the case of MPY, it is also
valid to access this register using 8-bit operators. If 8-bit operators are used to access MPY, the
access violation check mechanism can be defeated by using "MPY_" to reference the register.
Similarly, 16-bit operations on 8-bit registers are flagged.

13. Constant definitions (#define) used within the .h files are effectively reserved and include, for
example, C, Z, N, and V. Do not create program variables with these names.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR
http://www.ti.com/lit/pdf/SLAU278

Frequently Asked Questions (FAQs) www.ti.com

40 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

14. The CSTARTUP that is implicitly linked with all C applications does not disable the Watchdog
timer. Use WDTCL = WDTPW + WDTHOLD; to explicitly disable the Watchdog. This statement is best
placed in the __low_level_init() function that is executed before main().
If the Watchdog timer is not disabled, and the Watchdog triggers and resets the device during
CSTARTUP, the source screen goes blank, as C-SPY is not able to locate the source code for
CSTARTUP. Be aware that CSTARTUP can take a significant amount of time to execute if a large
number of initialized global variables are used.

int __low_level_init(void)
{

/* Insert your low-level initializations here */

WDTCTL = WDTPW + WDTHOLD; // Stop Watchdog timer

/*==================================*/
/* Choose if segment initialization */
/* should be done or not. */
/* Return: 0 to omit seg_init */
/* 1 to run seg_init */
/*==================================*/
return (1);

}

15. Compiler optimization can remove unused variables and statements that have no effect and
can affect debugging. Optimization: NONE is supported within Project → Options → C/C++ Compiler
→ Code → Optimizations. Alternatively, variables can be declared volatile.

16. The IAR tutorial assumes a Full or Baseline version of the Workbench. Within a KickStart
system, it is not possible to configure the C compiler to output assembler mnemonics.

17. Existing projects from an IAR 1.x system can be used within the new IAR 2.x or 3.x system; see
the IAR document migration guide for EW430 x.x. This document is located in <Installation
Root>\Embedded Workbench x.x\430\doc\migration.htm

18. Assembler projects must reference the code segment (RSEG CODE) to use the Linker →
Processing → Fill Unused Code Memory mechanism. No special steps are required to use Linker →
Processing → Fill Unused Code Memory with C projects.

19. Ensure that the proper C runtime library is selected for C-only and mixed C and assembly
language projects (Project → General Options → Library Configuration → Library). For assembly-only
projects, the runtime library must not get linked in, otherwise the build fails and a linker error is output
(for example, that the RESET vector is allocated twice).

20. Numerous C and C++ runtime libraries are provided with the Workbench:
cl430d: C, 64-bit doubles
cl430dp: C, 64-bit doubles, position independent
cl430f: C, 32-bit doubles
cl430fp: C, 32-bit doubles, position independent
dl430d: C++, 64-bit doubles
dl430dp: C++, 64-bit doubles, position independent
dl430f: C++, 32-bit doubles
dl430fp: C++, 32-bit doubles, position independent
See the IAR MSP430 C/C++ compiler reference guide for more information on which library to use.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Frequently Asked Questions (FAQs)

41SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

6.3 Debugging (C-SPY)
1. Debugging with C-SPY does not seem to affect an externally connected MSP430 device. Should

this be the case, check whether the main debugger menu bar contains a menu item called Simulator. If
so, an actual C-SPY MSP430 core simulator session is running, and no actual communication with the
target device is established. Solution: Ensure that the C-SPY driver is set to FET Debugger
(Project → Options → Debugger → Setup → Driver).

2. C-SPY reports that it cannot communicate with the device. Possible solutions to this problem
include:
• Ensure the correct debug interface is selected; use Project → Options → FET Debugger →

Connection.
• Ensure the correct parallel port (LPT1, 2, or 3) is being specified in the C-SPY configuration if a

parallel port MSP-FET430PIF interface is used; use Project → Options → FET Debugger →
Connection → Parallel Port → LPT1 (default) or LPT2 or LPT3. Check the PC BIOS for the parallel
port address (0x378, 0x278, 0x3BC), and the parallel port configuration (ECP, Compatible,
Bidirectional, or Normal) (see FAQ Debugging #8). For users of IBM ThinkPad™computers, try
port specifications LPT2 and LPT3, even if the operating system reports the parallel port is at
LPT1.

• Ensure that the jumper settings are configured correctly on the target hardware.
• Ensure that no other software application has reserved or taken control of the COM or parallel port

(for example, printer drivers, ZIP drive drivers,) if a parallel port MSP-FET430PIF interface is
used. Such software can prevent the C-SPY or FET driver from accessing the parallel port and,
hence, communicating with the device.

• Open the Device Manager and determine if the driver for the FET tool has been correctly installed
and if the COM or parallel port is successfully recognized by the Windows OS.

• It may be necessary to reboot the computer to complete the installation of the required port drivers.
• Ensure that the MSP430 device is securely seated in the socket (so that the "fingers" of the socket

completely engage the pins of the device), and that its pin 1 (indicated with a circular indentation
on the top surface) aligns with the "1" mark on the PCB.

CAUTION
Possible Damage to Device
Always handle MSP430 devices using a vacuum pick-up tool only; do not
use your fingers, as they can easily bend the device pins and render the
device useless. Also, always observe and follow proper ESD precautions.

3. C-SPY reports that the device JTAG security fuse is blown. With current MSP-FET430PIF and
MSP430-FET430UIF JTAG interface tools, there is a weakness when adapting target boards that are
powered externally. This leads to an accidental fuse check in the MSP430 and results in the JTAG
security fuse being recognized as blown although it is not. This is valid for MSP-FET430PIF and MSP-
FET430UIF but is mainly seen on MSP-FET430UIF.
Workarounds:
• Connect the device RST/NMI pin to JTAG header (pin 11), MSP-FET430PIF or MSP-FET430UIF

interface tools are able to pull the RST line, this also resets the device internal fuse logic.
• Do not connect both VCC Tool (pin 2) and VCC Target (pin 4) of the JTAG header and also specify a

value for VCC in the debugger that is equal to the external supply voltage.

NOTE: When the VCC voltage is not high enough when trying to erase or write flash memory, the
following message displays in the console: "Target device supply voltage is too low for Flash
erase/programming". If this occurs, try to change your supply voltage.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Frequently Asked Questions (FAQs) www.ti.com

42 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

4. C-SPY can download data into RAM, information, and flash main memories. A warning message
is output if an attempt is made to download data outside of the device memory spaces.

5. C-SPY can debug applications that use interrupts and low-power modes (see FAQ Debugging
#26).

6. C-SPY cannot access the device registers and memory while the device is running. C-SPY
displays "-" to indicate that a register or memory field is invalid. The user must stop the device to
access device registers and memory. Any displayed register or memory fields are then updated.

7. When C-SPY is started, the flash memory is erased and the opened file is programmed in
accordance with the download options as set in Project → Options → FET Debugger → Download
Control. This initial erase and program operations can be disabled selecting Project → Options → FET
Debugger → Download Control → Suppress Download. Programming of the flash can be initiated
manually with Emulator → Init New Device.

8. The parallel port designators (LPTx) have the following physical addresses: LPT1: 378h, LPT2:
278h, LPT3: 3BCh. The configuration of the parallel port (ECP, Compatible, Bidirectional, Normal) is
not significant; ECP seems to work well (see FAQ Debugging #1 for additional hints on solving
communication problems between C-SPY and the device).

9. C-SPY may assert RST/NMI to reset the device when C-SPY is started and when the device is
programmed. The device is also reset by the C-SPY RESET button, and when the device is manually
reprogrammed (Emulator → Init New Device), and when the JTAG is resynchronized (Emulator →
Resynchronize JTAG). When RST/NMI is not asserted (low), C-SPY sets the logic driving RST/NMI to
high-impedance, and RST/NMI is pulled high through a resistor on the PCB.
RST/NMI may get asserted and negated after power is applied when C-SPY is started. RST/NMI may
then get asserted and negated a second time after device initialization is complete.
Within C-SPY, Emulator → "Power on" Reset cycles power to the target to generate a power-on reset.

10. C-SPY can debug a device whose program reconfigures the function of the RST/NMI pin to
NMI.

11. The level of the XOUT/TCLK pin is undefined when C-SPY resets the device. The logic driving
XOUT/TCLK is set to high-impedance at all other times.

12. When making current measurements of the device, ensure that the JTAG control signals are
released (Emulator → Release JTAG on Go), otherwise the device is powered by the signals on the
JTAG pins and the measurements are erroneous (see FAQ Debugging #14).

13. Most C-SPY settings (breakpoints,) are preserved between sessions.
14. When C-SPY has control of the device, the CPU is ON (that is, it is not in low-power mode)

regardless of the settings of the low-power mode bits in the status register. Any low-power mode
conditions are restored prior to Step or Go. Consequently, do not measure the power consumed by the
device while C-SPY has control of the device. Instead, run your application using Go with JTAG
released (see FAQ Debugging #12).

15. The View → Memory → Memory Fill dialog of C-SPY requires hexadecimal values for Starting
Address, Length, and Value to be preceded with "0x". Otherwise the values are interpreted as
decimal.

16. The Memory debug view of C-SPY (View → Memory) can be used to view the RAM, the information
memory, and the flash main memory. The Memory utility of C-SPY can be used to modify the RAM;
the information memory and flash main memory cannot be modified using the Memory utility.
The information memory and flash main memory can be programmed only when a project is opened
and the data is downloaded to the device, or when Emulator → Init New Device is selected.

17. C-SPY does not permit the individual segments of the information memory and the flash main
memory to be manipulated separately; consider the information memory to be one contiguous
memory, and the flash main memory to be a second contiguous memory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Frequently Asked Questions (FAQs)

43SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

18. The Memory window correctly displays the contents of memory where it is present. However, the
Memory window incorrectly displays the contents of memory where there is none present.
Memory should be used only in the address ranges specified by the device data sheet.

19. C-SPY uses the system clock to control the device during debugging. Therefore, device counters, ,
that are clocked by the Main System Clock (MCLK) are affected when C-SPY has control of the
device. Special precautions are taken to minimize the effect upon the Watchdog Timer. The CPU core
registers are preserved. All other clock sources (SMCLK, ACLK) and peripherals continue to operate
normally during emulation. In other words, the Flash Emulation Tool is a partially intrusive tool.
Devices that support clock control (Emulator → Advanced → Clock Control) can further minimize these
effects by selecting to stop the clock(s) during debugging (see FAQ Debugging #24).

20. There is a time after C-SPY performs a reset of the device [when the C-SPY session is first
started, when the flash is reprogrammed (via Init New Device), and when JTAG is resynchronized
(Resynchronize JTAG)] and before C-SPY has regained control of the device that the device
executes code normally. This behavior may have side effects. Once C-SPY has regained control of
the device, it performs a reset of the device and retains control.

21. When programming the flash, do not set a breakpoint on the instruction immediately following
the write to flash operation. A simple workaround to this limitation is to follow the write to flash
operation with a NOP, and set a breakpoint on the instruction following the NOP (see FAQ Debugging
#23).

22. The Dump Memory length specifier is restricted to four hexadecimal digits (0 to FFFF). This
limits the number of bytes that can be written from 0 to 65535. Consequently, it is not possible to write
memory from 0 to 0xFFFF inclusive, as this would require a length specifier of 65536 (or 10000h).

23. Multiple internal machine cycles are required to clear and program the flash memory. When single
stepping over instructions that manipulate the flash, control is given back to C-SPY before these
operations are complete. Consequently, C-SPY updates its memory window with erroneous
information. A workaround to this behavior is to follow the flash access instruction with a NOP, and
then step past the NOP before reviewing the effects of the flash access instruction (see FAQ
Debugging #21).

24. Peripheral bits that are cleared when read during normal program execution (that is, interrupt
flags) are cleared when read while being debugged (that is, memory dump, peripheral registers).
When using certain MSP430 devices (such as MSP430F15x, MSP430F16x, MSP430F43x, and
MSP430F44x devices), bits do not behave this way (that is, the bits are not cleared by C-SPY read
operations).

25. C-SPY cannot be used to debug programs that execute in the RAM of MSP430F12x and
MSP430F41x devices. A workaround to this limitation is to debug programs in flash.

26. While single stepping with active and enabled interrupts, it can appear that only the interrupt
service routine (ISR) is active (that is, the non-ISR code never appears to execute, and the single
step operation always stops on the first line of the ISR). However, this behavior is correct because the
device always processes an active and enabled interrupt before processing non-ISR (that is, mainline)
code. A workaround for this behavior is, while within the ISR, to disable the GIE bit on the stack so that
interrupts are disabled after exiting the ISR. This permits the non-ISR code to be debugged (but
without interrupts). Interrupts can later be reenabled by setting GIE in the status register in the Register
window.
On devices with the clock control emulation feature, it may be possible to suspend a clock between
single steps and delay an interrupt request (Emulator → Advanced → Clock Control).

27. The base (decimal, hexadecimal,) property of Watch Window variables is not preserved
between C-SPY sessions; the base reverts to Default Format.

28. On devices equipped with a Data Transfer Controller (DTC), the completion of a data transfer cycle
preempts a single step of a low-power mode instruction. The device advances beyond the low-
power mode instruction only after an interrupt is processed. Until an interrupt is processed, it appears
that the single step has no effect. A workaround to this situation is to set a breakpoint on the instruction
following the low-power mode instruction, and then execute (Go) to this breakpoint.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

Frequently Asked Questions (FAQs) www.ti.com

44 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

29. The transfer of data by the Data Transfer Controller (DTC) may not stop precisely when the
DTC is stopped in response to a single step or a breakpoint. When the DTC is enabled and a
single step is performed, one or more bytes of data can be transferred. When the DTC is enabled and
configured for two-block transfer mode, the DTC may not stop precisely on a block boundary when
stopped in response to a single step or a breakpoint.

30. The C-SPY Register window supports instruction cycle length counters. The cycle counter is
active only while single stepping. The count is reset when the device is reset, or the device is run (Go).
The count can be edited (normally set to zero) at any time.

31. It is possible to use C-SPY to get control of a running device whose state is unknown. Simply
use C-SPY to program a dummy device, and then start the application with Release JTAG on Go
selected. Remove the JTAG connector from the dummy device and connect to the unknown device.
Select Debug → Break (or the Stop hand) to stop the unknown device. The state of the device can
then be interrogated.

32. Resetting a program temporarily requires a breakpoint if Project → Options → Debugger → Setup →
Run To is enabled. If N or more breakpoints are set, Reset sets a virtual breakpoint and runs to the
Run To function. Consequently, it may require a significant amount of time before the program
resets (that is, stops at the Run To function). During this time the C-SPY indicates that the program is
running, and C-SPY windows may be blank (or may not be correctly updated).

33. Run To Cursor temporarily requires a breakpoint. If N breakpoints are set and virtual breakpoints are
disabled, Run To Cursor incorrectly uses a virtual breakpoint. This results in very slow program
execution.

34. The simulator is a CPU core simulator only; peripherals are not simulated, and interrupts are
statistical events.

35. On devices without data breakpoint capabilities, it is possible to associate with an instruction
breakpoint an (arbitrarily complex) expression that C-SPY evaluates when the breakpoint is hit. This
mechanism can be used to synthesize a data breakpoint. See the C-SPY documentation for a
description of this complex breakpoint mechanism.

36. The ROM Monitor referenced by the C-SPY documentation applies only to older MSP430Exxx
(EPROM) based devices; it can be ignored when using the FET and the flash-based MSP430F
devices.

37. Special function registers (SFRs) and the peripheral registers are displayed in View → Register.
38. The putchar() and getchar() breakpoints are set only if these functions are present (and the

mechanism is enabled). Note that putchar() and getchar() could be indirectly referenced by a library
function.

39. The flash program and download progress bar does not update gradually. This behavior is to be
expected. The progress bar updates whenever a "chunk" of memory is written to flash. The
development tools attempt to minimize the number of program chunks to maximize programming
efficiency. Consequently, it is possible, for example, for a 60Kbyte program to be reduced to a single
chunk, and the progress bar is not updated until the entire write operation is complete.

40. After moving a complete EW430 project (including workspace, project, source and generated
object files) to a different storage location (for example, a different PC) a rebuild of the object files
(rebuild project) is required before starting C-Spy. The Linker stores absolute path names in the object
files, which probably do not match the new storage location. C-Spy can show a message that the
source files cannot be located or can show strange artifacts during debugging.

NOTE: Linux and OS X do not support the MSP-FET430UIF if it has an old firmware image (MSP
Debug Stack v2) on it.

Customers who buy a new MSP-FET430UIF will encounter this issue on OS X or Linux,
because the MSP Debug Stack v2 is programmed on the debugger during production. To
resolve this problem, connect the debugger to a Windows PC and use IAR, CCS, or the
MSP430 Flasher to update the firmware on the debugger to the latest version (v3 or newer).

NOTE: Do not connect through a USB hub when performing a firmware update on the MSP-FET,
the MSP-FET430UIF, or a LaunchPad™ development kit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com FET-Specific Menus

45SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

7 FET-Specific Menus

7.1 Menus

7.1.1 Emulator → Device Information
Opens a window with information about the target device being used. Also, this window allows adjusting
the target voltage in the case an MSP-FET430UIF interface is used to supply power to the target by
performing a right-click inside this window. The supply voltage can be adjusted between 1.8 V and 5 V.
This voltage is available on pin 2 of the 14-pin target connector to supply the target from the MSP-
FET430UIF. If the target is supplied externally, the external supply voltage should be connected to pin 4 of
the target connector, so the MSP-FET430UIF can set the level of the output signals accordingly.

7.1.2 Emulator → Release JTAG on Go
C-SPY uses the device JTAG signals to debug the device. On some MSP430 devices, these JTAG
signals are shared with the device port pins. Normally, C-SPY maintains the pins in JTAG mode so that
the device can be debugged. During this time the port functionality of the shared pins is not available.

However, when Release JTAG On Go is selected, the JTAG drivers are set to three-state, and the device
is released from JTAG control (TEST pin is set to GND) when Go is activated. Any active on-chip
breakpoints are retained, and the shared JTAG port pins revert to their port functions.

At this time, C-SPY has no access to the device and cannot determine if an active breakpoint (if any) has
been reached. C-SPY must be manually commanded to stop the device, at which time the state of the
device is determined (that is, was a breakpoint reached?) (see FAQ Debugging #12).

7.1.3 Emulator → Resynchronize JTAG
Regain control of the device.

It is not possible to Resynchronize JTAG while the device is operating.

7.1.4 Emulator → Init New Device
Initialize the device according to the settings in the Download Options. Basically, the current program file
is downloaded to the device memory. The device is then reset. This option can be used to program
multiple devices with the same program from within the same C-SPY session.

It is not possible to select Init New Device while the device is operating.

7.1.5 Emulator → Secure - Blow JTAG Fuse
Blows the fuse on the target device. After the fuse is blown, no communication with the device is possible.

7.1.6 Emulator → Breakpoint Usage
List all used hardware and virtual breakpoints, as well as all currently defined EEM breakpoints.

7.1.7 Emulator → Advanced → Clock Control
Disable the specified system clock while C-SPY has control of the device (following a Stop or breakpoint).
All system clocks are enabled following a Go or a single step (Step or Step Into) (see FAQ Debugging
#19).

7.1.8 Emulator → Advanced → Emulation Mode
Specify the device to be emulated. The device must be reset (or reinitialized through Init New Device)
following a change to the emulation mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

FET-Specific Menus www.ti.com

46 SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs

7.1.9 Emulator → Advanced → Memory Dump
Write the specified device memory contents to a specified file. A conventional dialog is displayed that
permits the user to specify a file name, a memory starting address, and a length. The addressed memory
is then written in a text format to the named file. Options permit the user to select word or byte text format,
and address information and register contents also can be appended to the file.

7.1.10 Emulator → Advanced → Breakpoint Combiner
Open the Breakpoint Combiner dialog box. The Breakpoint Combiner dialog box permits one to specify
breakpoint dependencies. A breakpoint is triggered when the breakpoints are encountered in the specified
order.

7.1.11 Emulator → State Storage Control
Open the State Storage dialog box. The State Storage dialog box permits the user to use the state
storage module. The State Storage Module is not present on all MSP430 derivatives. See Table 1 for
implementation details

See the IAR C-SPY FET Debugger section in the MSP430 IAR Embedded Workbench IDE User Guide.

7.1.12 Emulator → State Storage Window
Open the State Storage window, and display the stored state information as configured by the State
Storage dialog.

See the IAR C-SPY FET Debugger section in the MSP430 IAR Embedded Workbench IDE User Guide.

7.1.13 Emulator → Sequencer Control
Open the Sequencer dialog box. The Sequencer dialog box permits the user to configure the sequencer
state machine.

See the IAR C-SPY FET Debugger section in the MSP430 IAR Embedded Workbench IDE User Guide.

7.1.14 Emulator → "Power on" Reset
Cycle power to the device to effect a reset.

7.1.15 Emulator → GIE on/off
Enables or disables all interrupts. Needs to be restored manually before Go.

7.1.16 Emulator → Leave Target Running
If C-SPY is closed, the target keeps running the user program.

7.1.17 Emulator → Force Single Stepping
On Go the program is executed by single steps. The cycle counter works correctly only in this mode.

NOTE: Availability of Emulator → Advanced menus

Not all Emulator → Advanced menus are supported by all MSP430 devices. These menus
are grayed out.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

www.ti.com Revision History

47SLAU138AR–June 2004–Revised May 2018
Submit Documentation Feedback

Copyright © 2004–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from April 1, 2018 to May 11, 2018 ... Page

• Updated document layout, including section, figure, and table numbering.. 1
• Added Section 3.7, Download Options for MSP430 Devices .. 14
• Changed Figure 9, JTAG Password .. 15
• Updated all contents in Section 5, MSP430 FRAM Memory Protection Mechanisms.. 35

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU138AR

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	IAR Embedded Workbench® IDE Version 7+ for MSP430™ MCUs
	1 Read This First
	1.1 How to Use This Manual
	1.2 Information About Cautions and Warnings
	1.3 Related Documentation From Texas Instruments
	1.4 If You Need Assistance

	2 Get Started Now!
	2.1 Software Installation
	2.2 Flashing the LED

	3 Development Flow
	3.1 Overview
	3.2 Project Settings
	3.3 Using Math Library for MSP430 (MSPMathlib) in IAR EW430 5.60.1 and Newer
	3.4 Additional Project Settings for MSP430L092 and MSP430C092
	3.4.1 MSP430L092 Loader Code
	3.4.2 Password Protection of MSP430C092

	3.5 Creating a Project From Scratch
	3.6 Additional Project Settings for Ultra-Low-Power Mode (LPMx.5) Debugging
	3.6.1 What is LPMx.5
	3.6.2 Debugging LPMx.5 Mode on MSP430 Devices That Support the Ultra-Low-Power Debug Mode
	3.6.2.1 Limitations

	3.6.3 Debugging LPMx.5 Mode on MSP430 Devices That Do Not Support the Ultra-Low-Power Debug Mode
	3.6.3.1 Limitations

	3.7 Download Options for MSP430 Devices
	3.8 Password Protection for MSP430 Devices
	3.9 Stack Management and .xcl Files
	3.10 How to Generate TI .TXT (and Other Format) Files
	3.11 Overview of Example Programs
	3.12 Using C-SPY
	3.12.1 Breakpoint Types
	3.12.2 Using Breakpoints
	3.12.3 Using Single Step
	3.12.4 Using Watch Windows

	4 EnergyTrace™ Technology
	4.1 Introduction
	4.2 Energy Measurement
	4.3 IAR Embedded Workbench® for MSP430 Integration
	4.3.1 Debugging Devices With EnergyTrace++ Technology Support
	4.3.1.1 State Log
	4.3.1.2 State Log Summary
	4.3.1.3 Power Log Setup
	4.3.1.4 Power Log Window
	4.3.1.5 Timeline
	4.3.1.6 Function Profiler

	4.3.2 Debugging Devices Without EnergyTrace++ Technology Support
	4.3.2.1 Power Log Setup
	4.3.2.2 Power Log Window
	4.3.2.3 Timeline

	4.4 Measuring Low-Power Currents
	4.5 EnergyTrace Technology FAQs

	5 MSP430 FRAM Memory Protection Mechanisms
	5.1 Memory Protection Unit
	5.2 Intellectual Property Encapsulation (IPE)
	5.2.1 IPE Debug Settings

	5.3 FRAM Write Protection (FRWP)

	6 Frequently Asked Questions (FAQs)
	6.1 Hardware
	6.2 Program Development (Assembler, C-Compiler, Linker)
	6.3 Debugging (C-SPY)

	7 FET-Specific Menus
	7.1 Menus
	7.1.1 Emulator → Device Information
	7.1.2 Emulator → Release JTAG on Go
	7.1.3 Emulator → Resynchronize JTAG
	7.1.4 Emulator → Init New Device
	7.1.5 Emulator → Secure - Blow JTAG Fuse
	7.1.6 Emulator → Breakpoint Usage
	7.1.7 Emulator → Advanced → Clock Control
	7.1.8 Emulator → Advanced → Emulation Mode
	7.1.9 Emulator → Advanced → Memory Dump
	7.1.10 Emulator → Advanced → Breakpoint Combiner
	7.1.11 Emulator → State Storage Control
	7.1.12 Emulator → State Storage Window
	7.1.13 Emulator → Sequencer Control
	7.1.14 Emulator → "Power on" Reset
	7.1.15 Emulator → GIE on/off
	7.1.16 Emulator → Leave Target Running
	7.1.17 Emulator → Force Single Stepping

	Revision History
	Important Notice

