TIP47G, TIP48G, TIP50G

High Voltage NPN Silicon Power Transistors

This series is designed for line operated audio output amplifier, SWITCHMODE power supply drivers and other switching applications.

Features

- Popular TO-220 Plastic Package
- Complementary to the MJE5730 and MJE5731 Series
- These Devices are Pb-Free and are RoHS Compliant*

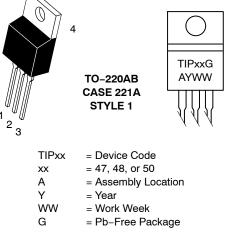
MAXIMUM RATINGS

Rating	Symbol	TIP47	TIP48	TIP50	Unit		
Collector - Emitter Voltage	V _{CEO}	250 300 400		Vdc			
Collector - Base Voltage	V _{CB}	350 400 500			Vdc		
Emitter – Base Voltage	V _{EB}	5.0 Vo		Vdc			
Collector Current – Continuous	۱ _C	1.0 Ade			1.0		Adc
Collector Current – Peak	I _{CM}	2.0 Ac		2.0 A		Adc	
Base Current	Ι _Β	0.6 Adc			0.6		Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D			W W/°C			
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	2.0 W 0.016 W/°C					
Unclamped Inducting Load Energy (See Figure 8)	E	20 mJ		mJ			
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-(65 to +15	50	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.125	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W



ON Semiconductor®

www.onsemi.com

1.0 AMPERE POWER TRANSISTORS NPN SILICON 250-300-400 VOLTS 40 WATTS

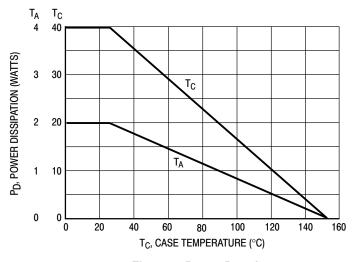
ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2014 October, 2014 – Rev. 11

TIP47G, TIP48G, TIP50G


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 1) ($I_C = 30 \text{ mAdc}, I_B = 0$)	TIP47 TIP48 TIP50	V _{CEO(sus)}	250 300 400	- - -	Vdc
Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 200 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 300 \text{ Vdc}, I_B = 0)$	TIP47 TIP48 TIP50	I _{CEO}		1.0 1.0 1.0	mAdc
$ Collector Cutoff Current \\ (V_{CE} = 350 Vdc, V_{BE} = 0) \\ (V_{CE} = 400 Vdc, V_{BE} = 0) \\ (V_{CE} = 500 Vdc, V_{BE} = 0) $	TIP47 TIP48 TIP50	I _{CES}		1.0 1.0 1.0	mAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS (Note 1)					
DC Current Gain ($I_C = 0.3 \text{ Adc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}$)		h _{FE}	30 10	150 -	-
Collector–Emitter Saturation Voltage $(I_C = 1.0 \text{ Adc}, I_B = 0.2 \text{ Adc})$		V _{CE(sat)}	-	1.0	Vdc
Base-Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 10 Vdc)		V _{BE(on)}	-	1.5	Vdc
DYNAMIC CHARACTERISTICS					-
Current–Gain – Bandwidth Product ($I_C = 0.1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 2.0 \text{ MHz}$)		f _T	10	-	MHz
Small–Signal Current Gain (I _C = 0.2 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	25	-	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse width \leq 300 µs, Duty Cycle \leq 2.0%.

ORDERING INFORMATION

Device	Package	Shipping
TIP47G	TO-220 (Pb-Free)	50 Units / Rail
TIP48G	TO-220 (Pb-Free)	50 Units / Rail
TIP49G	TO-220 (Pb-Free)	50 Units / Rail
TIP50G	TO-220 (Pb-Free)	50 Units / Rail

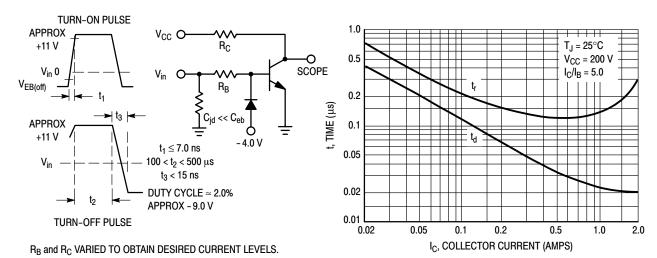


Figure 2. Switching Time Equivalent Circuit

Figure 3. Turn-On Time

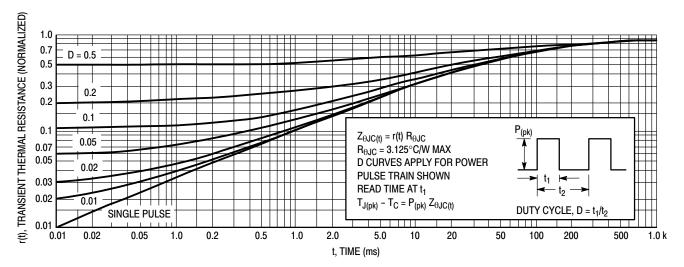


Figure 4. Thermal Response

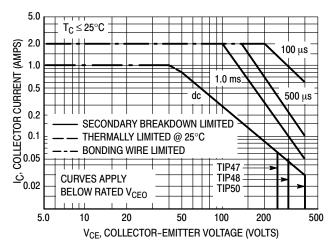
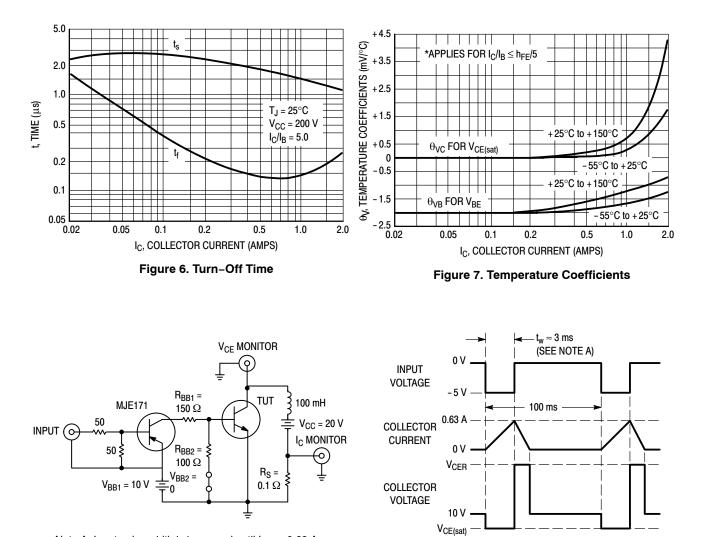
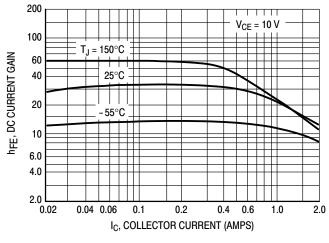
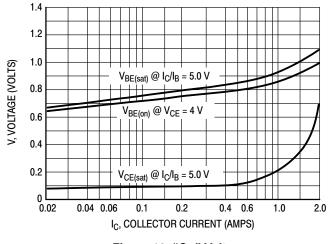



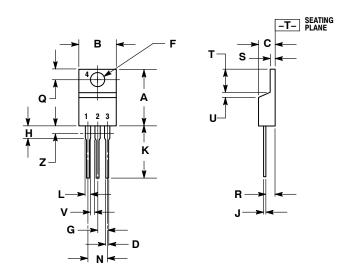
Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.


Note A: Input pulse width is increased until I_{CM} = 0.63 A.

TIP47G, TIP48G, TIP50G



PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

NOTES DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE 3 ALLOWED.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.415	9.66	10.53	
С	0.160	0.190	4.07	4.83	
D	0.025	0.038	0.64	0.96	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.161	2.80	4.10	
ſ	0.014	0.024	0.36	0.61	
Κ	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Ζ		0.080		2.04	

STYLE 1: PIN 1

BASE

2 3. EMITTER 4.

COLLECTOR

COLLECTOR

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and evaponees and reasonable attraction does out of directive any deim of expression inverted expression and the experiment of evaponets on the directive and evaponets of evaponets on the directive and evaponets on the evaponets on the experiment. expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even is such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: TIP47G TIP48G TIP50G